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Modeling the evolution of system reliability in the presence of Condition Monitoring (CM) signals is an im-
portant issue for improved reliability assessment and system lifetime prediction. In practice, during its lifetime, a
system usually works under varying operating conditions due to internal or external factors such as the ambient
environments, operational profiles or workloads. In this context, the system reliability can show varying evo-
lution behaviors (follow changing underlying trajectories), which presents new challenges to describe precisely
the dynamics of system reliability. Thus, this paper proposes a novel data-driven approach to address the pro-
blems including the identification of varying operating conditions, the construction and dynamical updating of
evolution model, and finally the online prediction of system reliability, focusing on systems under one common
and typical case of varying operating conditions, the multi-state operating condition. Experiments based on
artificial data and some widely studied real reliability cases reveal that the proposed method has superior
performance compared with some existing benchmark approaches, in the case under consideration. This im-
proved reliability prediction provides fundamental basis for advanced prognostics such as the Remaining Useful

Life (RUL) estimation.

1. Introduction

Generally, reliability assessment focuses on predicting the future
system reliability or State of Health (SOH) based on Condition
Monitoring (CM) signals (observable indicators used to infer the un-
observable underlying SOH, e.g., the capacity of a battery or the
bearing vibration of a gear-box) [1]. It provides fundamental analysis
for failure prognostics methods such as Remaining Useful Life (RUL)
estimation or other methodologies aiming at avoiding system sudden
shutdowns, increasing system availability and safety, and reducing the
cost of accident and maintenance [2].

Traditional reliability assessment methods regard the degradation
process of system reliability or SOH as determined and seek to construct
the underlying degradation model from a large number of historical
data of similar equipments, without taking account the dynamics of
operating conditions or specificity for a individual equipment [3-8].
Actually as noted by Bian, by now the majority of reliability prediction
models are based on the assumption that the prevailing operating
conditions are regarded as temporarily constant or irrelevant to the
evolution process [9]. However, the engineering equipments in prac-
tical industrial systems, especially in the modern complex systems,
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usually work under varying operating conditions caused by not only the
uncontrollable external environment such as ambient temperature or
other circumstance factors, but also the controllable operating profiles
or workloads. In this situation, it is indispensable to consider the effect
of varying conditions for advanced reliability assessment.

Recently, reliability assessment and SOH prediction for equipment
under varying conditions have been investigated [10] and a dynamic
multi-state condition is proposed as a typical model to depict general
varying conditions [11]. Under the dynamic multi-state condition:

(I) The system is regarded as operating at one of several discrete
candidate states.

(II) The concerned time series consisting of CM signals evolve fol-
lowing different underlying degradation models under different
state.

(III) The transition between states is randomly happened and can be
regarded as a hopping process but not a gradual change.

This modeling framework is mostly appropriate when the operating
conditions can be clearly distinguished and their effects on the relia-
bility evolution processes are significant. For instance, consider the
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workload induced from an aircraft engine in different flight conditions
as: takeoff, maximum climb, maximum cruise, loiter, flight idle, taxi,
ground idle, and cutoff [9]. The evolution of workload in these condi-
tions will be totally different and the switching of conditions is sudden
and can be regarded as random, thus distinct dynamic multi-state
conditions can be recognized in this case.

Reliability assessment and SOH prediction with reference to
equipments operating under this dynamic multi-state condition have
been investigated from the perspective of statistical modeling and priori
inference. The works of [9, 12-14] are some examples representing the
state of art on this branch of methodologies.

The inherent drawbacks of the statistical modeling based meth-
odologies derives from its two strong premises: (1) the degradation
process of system state should follow a certain statistical model, such as
the continuous-time Markov chain, the hidden Markov model, the
hidden semi-Markov model or the Wiener process, .etc.; (2) the statis-
tical property of the degradation model, for example the transition
probability matrix for Markov-based models, should be a priori known
or estimated. However, for practical instances, theoretical statistical
models such as Markov chain are very hard to be verified and esti-
mating its transition probability matrix is often time consuming or even
inaccessible. Thus the applicability of such methods is limited in en-
gineering practitions.

Another trajectory to address the reliability assessment and SOH
prediction resorts to posterior estimation methodologies, e.g. machine
learning, which asserts system state and system reliability or SOH
through a “black box” constructed upon massive historical CM data and
current measurement [15-17]. Nevertheless, this kind of methods have
not yet been explored in depth for online SOH prediction under the
dynamic multi-state condition, because of the difficulties lying in three
aspects: (1) how to identify different system state by CM signals, in
other words, how to effectively select the feature from CM signals; (2)
how to efficiently classify the selected features into classes and (3) how
to dynamically adapt the “black box” -like prediction model to meet the
realtime demand for online tasks.

In this paper, we develop a novel multi-state dynamic SVR approach
to deal with the online reliability assessment and SOH prediction pro-
blems under the dynamic multi-state conditions. To the authors’
knowledge, this is the first time that such type of problems is solved
with an online machine learning structure. To begin with, premises of
this paper are listed in following:

(1) The whole historical training reliability data are assumed known.

(2) The measured CM signals get updated at each new time step.

(3) Only the effects of different states are concerned. The effects posed
by the state transition are regarded beyond the discussion of this
paper.

As Fig. 1 shows, the proposed multi-state dynamic SVR is a frame-
work to posteriorly estimate the system state from recent measurements
and recursively update the SOH prediction model according to the state
estimation through a sequential Monte Carlo (SMC) paradigm.

As we shall show, novelties and contributes of the present work
exhibit in the following aspects:

_______________________ |

Optimal SVR hyper- | |

parameter under each
state

f Offline training
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(1) The effect of operating condition on system reliability evolution is
analyzed. Especially, the dynamic multi-state operating condition is
modeled and investigated.

(2) An online machine learning framework is proposed to deal with the
realtime reliability assessment and SOH prediction problems under
the dynamic multi-state operating condition. It improves the ex-
isting statistical modeling based methods in two points: (1) the
priori information of system states and state transition is not re-
quired, so it is more universal for practical applications and (2) it
defines different operating states directly from the posterior de-
gradation model of measurements but not from the preset opera-
tional profiles (though, of course, the alteration of degradation
model of measurements is often caused by the change of opera-
tional profiles). This state classification and identification result
shall be more efficient to improve the prediction model.

(3) A novel feature of “optimal SVR hyper-parameters” with superior
representing capacity and implementing efficiency is proposed to
classify reliability evolution trajectories under different state. The
feasibility of this feature derives from a notable fact that since the
hyper-parameters of SVR are critically decisive to its prediction
performance, the optimal SVR hyper-parameters filtered by SMC for
training degradation trajectories under different state will dis-
tribute to different zone in the parameters space. In another word,
the distribution of the particles (distributed candidate solutions in
SMC paradigm) can be actually regarded as a statistical description
or a feature about the system state. Compared with features ob-
tained from traditional feature selection methods such as K-means
or Principle Component Analysis (PCA), this “optimal SVR hyper-
parameters” feature possesses enough representability of depicting
the degradation models under different state, but cost fewer com-
putation.

(4) On the basis of “optimal SVR hyper-parameters” feature, an online

prediction framework involving recursive SMC and a novel

Replacement Operation is proposed to dynamically update the

prediction model based on the state estimation. This implementing

framework significantly decrease the computational burden on the
online stage.

Improved prediction performance under the multi-state operating

condition is achieved by the proposed method. On one hand, when

the concerned system is recognized as working under a stable state,
the PF-SVR will maintain convergence to the corresponding clus-
tering center, which leads to a more accurate and stable prediction
results in this case. On the other hand, when the concerned system
is recognized as experiencing a transition between multi-state, the
system state estimation can effectively help to capture the changing
evolution trend and adapt to the new trend much quicker, so finally
avoids losing tracking and results in better prediction performance.

(6) It is noteworthy that all the online procedures including the system
state estimation and prediction model updating are performed re-
cursively, meaning that at each time step only the latest measure-
ment are requested to be manipulated but not the total historical
data. That is to say, the computational cost of the proposed method
could be considerable.

5

~

To illustrate the aforementioned strengths, the proposed approach is
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Fig. 1. Brief framework of the proposed multi-state dynamic SVR modeling.
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applied to real reliability case studies including two cases regarding
typical CM signals of Li-ion battery: I) the inner temperature; II) the
capacity of full charged, and more cases based on standard databases
from NASA PCoE (Prognostics Center of Excellence) [18]. Through
these case studies, the performance of the proposed approach is eval-
uated with respect to the metric as Root Mean Square Error (RMSE) and
is compared with the original PF-SVR method and another benchmark
approach, the FGAPSO-SVR, from literature [19].

The remainder of the paper is organized as follows. Section 2 in-
troduces some reviewing background knowledge about PF-SVR and the
PCC method. The proposed novel model is presented in Section 3.
Section 4 illustrates the case studies. Section 5 provides some conclu-
sions on the findings of the research.

2. Theoretical background

Reliability prediction based on measured CM data can amount to a
time series prediction problem that estimates the future values based on
the known current and past data. Moreover, considering the multi-state
operating condition, the objective problem this paper try to address can
be mathematically stated as following.

Given that:

(1) A collection of time series extracted from historical reliability tra-
jectories under different states:

1 L 1 i Lj 1 L
A = {ts},...ts] 1,..‘,tsj,...,ts;,...,tsj’,...,tsc...,tsC <}

@

where ts} represents a time series that j represents its true state, L; re-
presents the total number of time series under this state, and ¢ counts
the total number of states.

(2) A discrete time series Y of variable y composed of past measure-
ments until current time step:

Y= 0 Ve 1) @)
where k corresponds to the counter of current time step.

Pursue:

The value of time series in next time step:
Vw1 = fe(81) = fe O Vi—1s -+ Yk—p+1) 3

where the input vector s represents the p-lagged previous valves of Y
and fi(-) represent the prediction model at current time step.
Solution:
The problem described above can be divided into three sub-pro-
blems performed at, respectively, the off-line stage and online stage.
Off-line stage:

(1) Build the classification model by denoting the collection of prob-
able system states as I'={1,...,c}, where c corresponds to the total
number of states:

ArA T (€))

which partitions A into some dissimilar classes, such that time series
belonging to the same class are characterized as working under the
same state.

Online stage:

(2) Estimate the current system state according to the classification
model A and the latest measurements sj:
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U = ¢(s¢|A) (6)

where Uy = {ul, i € I'} represents the memberships (probabilities) of
current system belonging to each state.

(3) Update the prediction model for prediction task of Eq. (3), based on
state estimation and priori trained optimal prediction models of
each state:

Je () = a(fi_ (D10 @)

In this paper, the sub-problems (1) are solved by the PCC method
and the sub-problems (2) and (3) are addressed within our proposed
approach based on an SVR framework. Due to the limits of paper
length, only a brief overview about the basic theoretic background of
SVR and PCC method are presented in the following and more detailed
description about the proposed approach is given in Section 3.

2.1. Overviews about the SVR method and its parameters tuning through PF

For a concerned time series data set D = {(s;, yi)}:‘zl, the regression
function (3) can be framed as following:

f(s)=wld(s) + b 8)

where w represents the weight vector and b represents the intercept,
respectively, of the regression model, and ®: RP — F represents a non-
linear function which maps the low-dimensional input vectors to the
feature space F. Thus, the pervasive form (8) is valid not only for the
linear case but also the nonlinear case.

Then, the e-insensitive loss function [ is introduced to evaluate the
error of regression:

b-fll<e

I=ly=f(s E = {|y’—f(s)| — &, otherwise

©)

By minimizing both the regression error, which is denoted as slack
variables £, §i*, and the Euclidean norm of the weight vector w, i.e.,
||lw||, which depict the complexity of the regression model and therefore
is closely related to the generalization ability, a compromised quadric
optimization problem to identify the regression model arises as follows:

- 1 N
minimizeJ (w, &, £*) = 5 lwl* + C Z &+&9
i=1

v —wld(s) —b<e+§
wid@s)+b—y <e+& i=1,-
£ £ 20

s. L. - n

(10)

where C is the penalty coefficient denotes the trade-off between em-
pirical and generalization errors. Through the Lagrangian Dual method,
the solution of this quadratic optimization problem can be obtained
through the KKT condition and the output value is:

n
fl&) = (W(s)) + b= (@ —aK(s,5) + b
i=1
K(si, 5) = ©(s)"0(s)) a1
where K(s;, s;) is a kernel function satisfying the Mercer condition. More
detailed derivation about the Dual Theorem and the KKT condition can
refer to [20].

Generally, for better learning and prediction performance, the SVR
parameters that need to be properly tuned include the kernel width o
which control the mapping function (refers Radial Basis Function
without specific instructions) from the low dimensional non-linear data
into the high dimensional feature spaces, the regularization coefficient
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C specifying the trade-off cost between minimizing the empirical risk
and the model complexity and the tube size ¢ of the ¢-insensitive loss
function. Stacked into a vector as x = [0, C, €], the optimal hyper-
parameters Vector Xnimq i treated as the true state of a hypothetical
system and the real reliability values are treated as the measurements of
this system, thus the PF method can be adopted to estimate the true
state, namely the optimal SVR hyper-parameters.

The state transition equation and measurement equation of this
hypothetical system can be written as:

hy () + e
8 (X, 81) + v

Xk+1 =
Vi

12)

where x;, € R™ is the system state (optimal hyper-parameters) at time k,
hy is the state transition equation, s, € RP is the input vector at time k, g
is the measurement function and yy is the measurement at time k. The
vectors U, Vi represent nonlinear noises with zero means and variances
Q, R, respectively. In this PF-SVR model, the state transition equation hy
actually represents the particles drift operation, which manipulates the
old particles to generate a set of new particles through the application
of a given rule. The measurement equation g, represents the expanded
regression model built by SVR with the parameters of the optimal
particle at time k. The input vector s, represents the training samples, in
any case consisting of the historical reliability values.

On the basis of Eq. (12), the main procedures of SVR tuned by PF
shows as follow:

(1) Initialization. Set the initial SVR parameter vector x, and the
number of particles N (e.g. in the range [300, 500]). The particles
values and their weights are initialized as {x = x,, w} = 1/1\&};\21.

Fork=1,2, ..:

(2) Perform PF process:
(a) By utilizing the particles set {£]_;, l/Ns}f\i1 at the previous time
k—1, predict the current state (at time step k) through the state
transition equation:

fli\k—l =h@®@i_) + uiy, wf =, 13)

(b

[l

Predict the SVR regression outputs {)7;”{_1}_1\&1 through the
i=
measurement equation:

5)\Ii|k—1 = gk_l(flim-p Se—1) + Vi 14

This is actually performed by training the SVR with the para-
meter vector f;i“(_l and historical reliability values s;_;.

(c) As the new measurement yy arrives, update each particle weight
by substituting the difference between the predictions {3, Iil k—l}:\il
and the measurement yj into a Gaussian likelihood equation:

w/i & wlé—1P(Vk |£Ii|k—1) (15)
~i 2
DRl )) = 1 ex _(Vk - yk\k—l)
PO klk—1 \/ﬁ p 2 (16)
(d) Normalize the particles weights:
i i N
Wl = wl/ Zj=1 w] a7

(e) Perform resampling to eliminate the low-weighted particles and
reproduce high-weighted particles [21], generating a new
random particles set (£}, 1/N).

(3) Output the parameter estimation at time k
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- N
Foe= 2, BN (18)

(4) Train the SVR model with the updated parameter vector Xy, to get
the prediction J,, of the future time step k+1.

In practical applications, one issue to be considered is how to obtain
the initial SVR parameters. According to whether the historical data is
sufficient or not, two kinds of approaches can be considered here: the
exhaustive searching approaches such as the Grid-Searching method
with historical data and the expert based approaches such as the AS
method [22], when there is no sufficient historical data.

2.2. Overview about the PCC method

PCC is an approach derived from Bezdek's Fuzzy C-Means (FCM)
algorithm [23]. It reformulates the fuzzy clustering partition [24, 25],
which limits that one pattern can only belong to one class, and avoids
the trivial solution that all memberships are equal to zero [26]. Instead,
an elastic possibilistic partition is proposed, so that it can be used to
generate memberships that have a typicality interpretation as a con-
fidence measure.

Let U denote a partition matrix generated by the PCC algorithm. The
elements u; of U are subject to the following conditions [27]:

u; € [0, 1], for all i and j,
N

0< Zuijstoralli, and
j=1

maxu;; > 0 for all j. 19

Here, u; are the membership values of pattern x; to cluster i; N is the
size of the data set. Then, the purpose of possibilistic clustering is to
assign high membership values to patterns which are good re-
presentatives of the clusters and low membership values to non-re-
presentative patterns. The objective function which meets this purpose
can be formulated as follows [28]:

N c N
20 sy + Do Dy (L= )

i=1 j=1 =1 j=1

Me

Ju (U, v) =
(20)

where s;; is the distance of pattern x; from the prototype v; (the center of
ith cluster), 5; are suitable positive numbers and r,, determines the
fuzziness of the final possibilistic partition and the shape of the possi-
bility distribution (if r,, — 1, the membership functions are crisp, if
rm — oo, they are maximally possibilistic). Here, the first term demands
that the distances s; be as low as possible, whereas the second term
requires that u; be as large as possible, thus avoiding the trivial solu-
tion. The selection of »; will be discussed later.

The minimization of the objective function in Eq. (20) leads to op-
timal possibilistic membership functions of the form:

1
Bj=——7"

Sij Vhm—1
L+ |2
;

It is obvious that the u;; obtained from Eq. (21) lies in the range that
Eq. (19) imposes as constraint.

The value of #; determines at which distance the membership of a
pattern to the cluster i can be assigned a value of 0.5 (like “the 3 dB
point” in confidence analysis) and, thus, it influences the shape of the
cluster. In this sense, it needs to be chosen according to the desired
“bandwidth” of the possibility (membership) distribution for each
cluster. On the other hand, #; determines the relative importance of the
second term compared with the first term. In practice, #; is taken in
proportion to the average fuzzy distance of all patterns to cluster i [28]:

(21)
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N i
Ej:lluij Sij
N
DIy X

where K is typically chosen unitary and the membership u; is usually
obtained by the standard Fuzzy C-Means (FCM) algorithm [25, 27, 29].

The updating of the prototypes relies on the chosen distance mea-
sure, since different distance measures lead to different algorithms. For
the most common case, the distance is described by an inner product
induced norm metric, as in the FCM algorithm, i.e.

n =K i=1,2,..,c

(22)

s = (5 — v)'M;(x; — ) (23)
The prototype is, then, updated as:
m
N
2=t (u,—,’-‘ ) %;
vi=——— i=12 ..c
S (/ﬁ-‘]
j=1 |7 24)

From Egs. (21), (22), (24), the procedures for the standard possi-
bilistic clustering algorithm are:

1 Set the number of clusters c;

2 Set the fuzziness index r,,;

3 Perform an initial partition of the patterns into ¢ fuzzy clusters, e.g.
by using the standard Fuzzy C-Means (FCM) algorithm [25].

4 Approximate #; using Eq. (22).

5 With the givenU* = {ui;‘ }, compute the optimal prototypes v*,i = 1,
2, -, ¢ from Eq. (19);

6 With the optimal v* = {v*}, compute the optimal membership values
uij-‘, i=1,2,-,¢j=1,2,, N from Eq. (21).

7 Repeat steps 5 and 6, until no change of J,,,(U, v) is detected from
one iteration t to the next or until the maximum change of the
membership functions from one iteration t to the next is below a
predefined threshold ¢, i.e.

t+1 t

3. The novel multi-state dynamic SVR method

(25)

In this section, a detailed description about our proposed multi-state
Dynamic SVR is provided. Like all the dynamic prediction methods, this
proposed method is implemented in two stages: (I) the off-line stage
training the prior knowledge, i.e., the historical time series of reliability
evolution trajectories, to construct the state classification model, (II)
and the online stage dynamically predicting the system reliability based
on the posterior measurement. Firstly, a flowchart of the proposed
approach is given as Fig. 2 for clarity and more specific details are
demonstrated in the following.

3.1. Off-line training stage

As stated in previous sections, in this work, the historical reliability
trajectories and their true state are assumed known. Then the prior
information remained to be trained in the off-line stage can be noted as
Eq. (1) and the objective in this stage is to build a classification model
ArA—T.

For this, it is requested to first select features F from A, and then
learn the relationship between the extracted features F and their labeled
state, thus the construction of classification model can be rewritten as:

A:F—->T (26)

which actually represents a supervised learning process.
Step 1: Feature selection
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It is necessary, prior to any training, to select proper features that
competently describe the difference between samples with different
label. In this paper, the selected feature to characterize time series
trends resorts to hyper-parameters, noted as x = [o, C, €], of SVR model
that optimally fit the concerned time series. The feasibility of this
“optimal hyper-parameters” feature derives from a notable fact that
since the hyper-parameters are critically important to the prediction
performance of SVR model, the hyper-parameters of SVR model opti-
mally fitting time series with different trend will distribute in different
area within the parameters space. In another words, the distribution of
the optimal hyper-parameters can actually stands for a statistical de-
scription identifying the relationship between time series and their
state. Within the PF-SVR paradigm, this “optimal hyper-parameters”
feature can achieve satisfactory performance, including the capability
of characterizing and availability of implementation.

For the time series ts; € A, their features x; are firstly collected.
Since the computational cost is not that important in the off-line stage,
the precise but computation consuming high-dense mesh-refinement
Grid Search method through the Cross-Validation scheme are con-
sidered. Then, a collection of optimal hyper-parameters
F={x], ..x, .x}, .xi, ...x]-Lf, .. X}, .x} can be extracted from A
and is regarded as the labeled features.

For ease of clarity, Fig. 3 shows an example of collecting the optimal
hyper-parameters from time series with two states of conditions.

Step 2: Classification model construction.

With the selected features F, this step aims to construct the classi-
fication model.

Through the PCC method, the classification model A: F—T is rea-
lized by assigning each feature x a membership U = {u, ...,u.} where u;
represents the probability it belongs to class i. Denoting the calculation
of the membership as:

U =
B

®(x, B)
{Bl’-"’Bc} = {(l)l, M, 7]1),~~~’(vc’ Mc’ 776)}

(27)

where B; = (v;, M, n,) is the statistical description used by PCC about
class i that v; represents the prototype (class center) of each class, M;
represent the distance measure covariance, and 7; represents a tuned
positive number controlling the degree of concentration. Then, for a
given test feature x, its membership U can be calculated through @(-),
which corresponds to the procedures of Eqs. (21)-(23).

As Fig. 4 shows, the class description
B ={(vn;, My, n)), ...,(v;, M, )} can be intuitively represented as el-
lipses in the features space, where the ellipse centers represent the
prototype v; of each state and the dots on the ellipse edge are assigned a
membership value of 0.5 to the corresponding prototype which actually
represent the distance measurement matrix M; and constant #; of each
state. The details of how to acquire v, M and 7 on the basis of F can refer
to Section 2.2.

3.2. Online reliability prediction stage

As stated in Section 2, prediction problem considered in this paper
can be defined as:

Vw1 = Fe (51) = £ O Veers Vi pe1) (28)

where the output ¥, is the prediction of time series value at time step k,
the input vector s is composed of the p-lagged reliability values in p
previous time steps and fi(-) represents the prediction model in time
step k.

In the online stage, it is assumed that at each new time step the
measurement of the last time step becomes available and the under-
lying evolution trend of system reliability is changed which means the
prediction model shall be adjusted correspondingly. Thus, the objective
in this stage is to, first, update the system state estimation on the basis
of new measurement and, second, update the prediction model
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Fig. 2. Flowchart of the proposed multi-state Dynamic SVR method.

value = Trajectory | of state |
A State ] = = = Trajectory 2 of state 1

e s e e Trajectory 3 of state 1
_____ Trajectory 4 of state 1

Training labeled features

g I o
e Optimal hyper-parameters X, of state 1

l e Optimal hyper-parameters xf of state 1
l e Optimal hyper-parameters x: of state | |
e Optimal hyper-parameters le of state 1 |
Trajectory 1 of state 2 |
= = = Trajectory 2 of state 2 l !
Value — . — Trajectory 3 of state 2 e Optimal hyper-parameters X, of state 2 |
A State 2 = = = = = Trajectory 4 of state 2 | e Optimal hyper-parameters x§ of state 2
o« oo Trajectory5ofstate 2 I e Optimal hyper-parameters x; of state 2
" %@,ﬁc\\ l e Optimal hyper-parameters xj of state 2 |

o

e Optimal hyper-parameters xf of state 2 |

» time

Fig. 3. An example of extracting the “optimal hyper-parameters” features for time series with two potential states.
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Fig. 4. An illustration of PCC classification model.

according to the state estimation.

As time step k + 1 arrives, with the newly available measurement
value yy, the state estimation U at time step k can be calculated. Denote
the membership calculation process as:

Uc= ¢ |B) (29)

Then the prediction model is also recursively updated according to
the updated membership and optimal prediction models of each state:

Jer1 () = A OIU)

Therefore, the aforementioned objectives in this stage can be
mathematically stated as equivalent to the construction of £ and 7.

In this paper, the prediction model is constructed within the SVR
paradigm, thus it can be actually described by its hyper-parameters for
given training samples (for more details refer to Section 2.1). Denote
the prediction model built by SVR with the hyper-parameters x and the
training dataset Y as f, y(-), then the prediction model can be rewritten
as:

(30)

SO Sy ©

A
Je©) _far ©) (31)

Hence, the problem of updating the prediction models stated as Eq.
(30) turns to a problem of updating the hyper-parameters:

Xip1 = A (x| U) (32)

Besides, the optimal SVR hyper-parameters X,pimq is also regarded
as the state feature in this paper, so the problem of calculating the
memberships stated as Eq. (29) also turns to a problem of calculating
the hyper-parameters:

= €/(yk7xk)
(I)(xé{plimal) B)

k
xoptimal
Us

(33)

Therefore, a link between the measured reliability data and the state
estimation is built through the SVR hyper-parameters, as Fig. 5 illus-
trates. Then, the constructions of £’ and #’ are presented in the following
parts.

Step 3: System state estimation: construction of £’.

In this paper, the prediction model is constructed within the PF-SVR
paradigm, thus the hyper-parameters can be represented by a set of
particles (for more details refer to Section 2.1). Denoting the particle set
at time step k as:

. A
Particles;. — (X (%L, . x), Wi (Wi, ..., wM)} 34)
Then the predictions of y, before it becomes available by each
particle can be represented as:

~i

yli = fxi,Y (yk—l’ Yi-2> '"’yk—p)’ Y= {yk—windowsize+1’ ""yk—l} (35)

It is notable that only a properly selected length, denoted as

41

window size, of previous data is utilized as the training data to generate
the prediction model. Otherwise, a too short training window is not
sufficient to depict the characteristics of current system state; and a too
long training window will significantly increase the computational cost
and, more importantly, the state estimation about the current system
could be obscured because of the overlap effect of other previous states.
Once the time step updates to time step k + 1, the true measured
data at time step k, yy, is available, so the weight vector can be updated
as W, - Wi, by substituting the difference between the output pre-
dictions {j;‘lk, ...,fff]} and the true measurement y; into Egs. (15)—(17).
Thus the optimal hyper-parameters for time step k is obtained as:

X = ) Wik} (36)

By the Eq. (36), the construction of ¢’ is fulfilled. Given this updated
optimal SVR parameter xé‘p,imal, the membership indicating the possi-
bility that the current system belonging to each state can be represented
as:

U = {uf, uf, .uly
ul = ! i
1+ (ﬂ)rm_l
7
Si = ma — v) M Xoptimal — Vi) (37)

Step 4: Prediction model updating: construction of #’.

Once the system state estimation at time step k is characterized by
the membership Uy, the prediction model is requested to be updated
according to Uy.

As we have stated, within the PF-SVR framework, the updating of
prediction model means the updating of SVR hyper-parameters, which

resorts to a sequential evolution process of a set of particles, thus:
X1 = W (x,|Uy) — Particles,., = W (Particlesy |Uy) (38)

In order to use the state estimation result Uy to improve the evo-
lution process of particles, a novel Replacement Operation is proposed
and is performed with the following procedures:

A) Generating the replacement particles. At a general time step k, a

collection of replacement particles, noted as
Kk _ gkl ke ki :
Xieplace = Xreplaces > Xreplace} WHeTe X,o1,, denotes the particles gen-

erated from state i, is obtained based on the membership Uy and
classification model {V, M, Eta}. The total size of X,’zp,m is set as:

Niyeplace = N-replacerate (39)

where N is the particles number and replace rate is a preset coefficient
controlling the total amount of replacement particles, and the size of
x,’gﬂace, i.e., number of particles generated from state i, which is pro-
portional to the corresponding membership value u;, is quantified as:
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Fig. 5. An illustration of how the SVR hyper-parameters connect the measurements and prediction model.

ki P
ygll;lace = replace'ulé; i=12,..,c (40)
Then, x)i,., is generated by:
ki . ki .
xre;:lace = Gausszan{vi) M9 Nre;lace}) L= 1’ 2: s C (41)

where Gaussian{v, M, N} is a Gaussian generating function that draws N
Gaussian distributed samples with center on v and covariance of M.

B) Replacing old particles. In the resampling step, only (N — Nypiace)
particles are resampled from the old particles. Denoting the collec-
tion of resampled particles as X,’;mmplc, the updated collection of
particles are then composed of the (N — Nypiecc) resampled particles
and Nyepiqce replacement particles:

x*

resample]

Xk+1 = [Xrlzplace’ (42)

This Replacement Operation plays an important role in improving
the particles evolution process. As illustrated in Fig. 6, in the case that
the current system is characterized with a high membership value toa
partlcular state, which is intuitively reflected by that the current x, pnmal

“close” to a specific cluster center (see Fig. 6a), then large number of
replacement particles will be generated from this cluster and replace
the old particles, so that the particles will converge quickly to this
cluster center and gain the resistance to other local optima. So, in this
case, the evolution process of particles is significantly improved by the
replacement particles, namely, the state estimation knowledge. On the
contrary, the origin PF-SVR takes no advantage of the state estimation
knowledge, thus the evolution of particles mainly relies on the random
drift, which tends to show a comparatively slower convergence and the
vulnerability to local optima. On the other hand, in another case that
the current system is characterized with membership all low or nearly
homogeneous to each state (see Fig. 6b), which means there is no clear
state assignment can be provided, then 