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H I G H L I G H T S

• Quantitative modeling framework for operational flexibility assessment.

• Integration of short-term constraints in generation expansion planning model.

• Renewable energy penetration drives flexibility needs higher than carbon limits.
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A B S T R A C T

This paper proposes an integrated framework for operational flexibility assessment in power system planning
with a significant share of intermittent renewable energy sources (RES). The framework proposed includes: (i)
the formulation of an integrated generation expansion planning (GEP) and unit commitment (UC) model ac-
counting for key short-term technical constraints, (ii) the elaboration of accurate and systematic horizon re-
duction methods to alleviate the computational burden of the resulting large-sized optimization problems and
(iii) the definition of suitable metrics for the operational flexibility assessment of the obtained plans. The fra-
mework is applied to a ten year planning horizon of a realistically sized case study representing the national
power system of France, under several scenarios of RES penetration levels and carbon limits, spanning levels of
up to 50%. The importance of incorporating the detailed short-term constraints within long-term planning
models is shown. The results of the assessment show that, under high renewable energy penetration, neglecting
the short-term constraints may lead to plans significantly short on flexibility, reaching shortage levels of up to
50% in frequency and several GWs in magnitude. Also, the load not served reaches levels of up to 3% and carbon
emission is underestimated by up to 60%. Furthermore, the results highlight the importance of relying on sui-
table quantitative metrics for operational flexibility assessment in power systems planning rather than solely
relying on generic performance measures, such as system costs and mixes of power plants, which are shown not
to sufficiently reflect the flexibility levels of the obtained plans.

1. Introduction

Generation expansion planning (GEP) is a well studied techno-eco-
nomic problem, which relates to determining the optimal of generation
technologies mix, their siting and their investment schedules, for en-
suring that the electricity demand over a certain time horizon can be
satisfied. With the power sector being constantly subjected to changes,
driven by economical, technical, social and environmental issues, GEP
modeling techniques have continuously evolved to accommodate the
newly arising requirements. Such modeling advancements have been
covered in recent literature reviews and include, among others [1,2]:

improvements in the details considered (e.g. reliability and main-
tenance), policy developments, such as the restructuring of the power
sector, renewable energy sources (RES) integration and support
schemes, uncertainty and stochasticity modeling, and the consideration
of real-options for adaptive power systems design [3].

One of the most recent concerns in power systems planning is
dealing with the high share of intermittent RES penetration required in
the system, driven by strict environmental policies, such as the EU re-
newable energy directive [4] and its proposed revision [5], and other
regional and national targets. The resulting increased variability in the
net load (system demand minus RES production) requires that the
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remainder of the thermal units cope with tighter operational flexibility
requirements [6,7]. This is generally defined as the ability of the system
to respond to the inter-temporal variability rising both from inter-
mittent RES production and from variations in electricity demand. In
this respect, operational flexibility regards the short-term operation of
those generation units and their technical characteristics: ramping
rates, unit commitment states, minimum up and down times, start-up
times and minimum stable load, to name a few.

From an assessment point of view, accounting for operational flex-
ibility is a critical element for overall system reliability (see for example
Fulli et al. [8] for a discussion on these requirements in Europe).

Reliability relates to firm-capacity1 at each time period sufficient to
satisfy the system load, using typical metrics such as loss of load ex-
pectation (LOLE) and expected energy not supplied (EENS). Opera-
tional flexibility, instead, considers how a specific operational state of
the system at a given period would contribute to (or hinder) its ability
to deploy its resources for accommodating subsequent load variations.
For this, no time period can be assessed in isolation of the others, nor
without detailed knowledge of the system state and technical char-
acteristics at the given period.

List of symbols

Indexes

i index of power plant cluster
j index of sub-periods (hours)
s index of sub-periods (load-levels)
y index of planning year

Sets

I set of power plant clusters
Inew subset of new power plants cluster
Ires subset of renewable energy units cluster
Ith subset of thermal and nuclear units cluster
J set of hourly sub-periods
S set of load-levels sub-periods
Y set of years in the planning horizon
Θ set of investment decision variables
Ω set of operation decision variables

Parameters

Y end end year of the planning horizon
Y res first year during which the RES quota target is binding

∗Ly, demand at sub-period j or s in year y (MW)
Dury s, duration of load block s in year y (hours)
Pi

max maximum capacity of power plant i (MW)
Pi

min minimum stable power output of power plant ∈i I th (MW/
h)

Ci
inv investment cost of unit i (M€)

Ii
max maximum allowable units to be commissioned within the

planning horizon
Ti

life expected life-time of new power plant i (years)
Ti

const construction time of power plant i (years)
Ri

Umax maximum upwards ramping capability of power plant
∈i I th (MW/h)

Ri
Dmax maximum downwards ramping capability of power plant

∈i I th (MW/h)
Pi

start maximum output of power plant ∈i I th when started
(MW)

∗CFi y, , capacity factor of renewable energy sources ∈i Ires during
sub-period j or s, of year y (%)

Ei amount of carbon emission per MWh of power plant i
(tCO2/MWh)

Ey
max maximum total allowable emission per year y (tCO2)

EFORi Expected forced outage rate of power plant i (%)
Mi

u minimum up-time for power plant ∈i I th (hours)
Mi

d minimum down-time of power plant ∈i I th (hours)
DRy discount rate for year y (%)
Ci y

mrgl
, marginal cost of power plant i including the variable O&M

and CO2 costs, considering inflation (€/MWh)
Ci

s start-up cost of power plant i (€)
Clns cost of load not served (€/MWh)
Ci

fom
fixed O&M costs of power plant i (€)

Peny
level annual renewable penetration level requirement (%)

Prr percentage of the load required to be covered by primary
reserve (%)

Srrup percentage of the load required to be covered by the sec-
ondary upwards reserve (%)

Srrdn percentage of the load required to be covered by the sec-
ondary downwards reserve (%)

ares percentage of the variable generation output covered by
secondary reserve (%)

rmin minimum planning reserve margin (MW)

Continuous variables

∗pi y, , energy output of power plant i at sub-period j or s, during
year y (MWh)

pri y j, , primary reserve of unit i at sub-period j during year y
(MWh)

sri y j
up
, , secondary upwards reserve of unit i at sub-period j during

year y (MWh)
sri y j

dn
, , secondary downwards reserve of unit i at sub-period j

during year y (MWh)
∗lnsy, load not served at sub-period j or s, during year y (MW)

vi y j, , shut-down decision of unit i during sub-period j in year y

Discrete variables

xi y, availability (commissioning) state of power plant i in year
y

qi y, commissioning decision of power plant i in year y
ui y j, , commitment status of power plant i during sub-period j in

year y
zi y j, , start-up decision of power plant i during sub-period j in

year y

Acronyms

CF Capacity Factor
EFS Expected Flexibility Shortfall
GEP Generation Expansion Planning
IRRE Insufficient Ramping Resources Expectation
LDC Load Duration Curve
LNS Load Not Served
MILP Mixed Integer Linear Programming
O&M Operation and Maintenance
RES Renewable Energy Sources
UC Unit Commitment

1 Available generation capacity excluding failed units, units in maintenance, offline
units, etc.
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Therefore, dedicated metrics to describe operational flexibility have
been recently proposed in the literature, varying in the degree of
complexity and in the data required for their estimation. Lannoye et al.
[9] proposes a probabilistic metric that takes into account key technical
characteristics and operational states of the generation units, and ag-
gregates them for a system-level assessment. Oree and Hassen [10]
proposes a composite metric which aggregates a set of the generation
units flexibility parameters through normalization, weighting and cor-
relation analysis. In [11] a number of interdependent metrics are de-
fined for individual generation units to assess their available flexibility
in real time, while [12] proposes a metric which additionally considers
the impacts of the transmission network on the flexibility levels.

There is no consensus on which metrics are best adapted to evaluate
operational flexibility within the different contexts of power system
evaluation. The flexibility challenges caused by RES integration require
a delicate balance between the level of details considered and the
simplicity of understanding the measurements obtained. Extensive
metrics such as those proposed in Ulbig and Andersson [11] and Zhao
et al. [12] may be suitable for real-time operational assessment, but
would be too laborious to consider within a long-term planning context.
Simpler measures that consider key technical details but neglect the
operational state of the system may provide useful long-term insights
but are limited in accounting for time-specific attributes of flexibility,
such as those imposed by RES intermittency. There is, then, a need for
developing intermediate level probabilistic metrics, such as that pro-
posed in [9] and used in this work, which itself is limited by considering
only the frequency of flexibility shortage while neglecting its magni-
tude. This is discussed in details in Section 2.4.

With respect to power systems planning, traditional long-term GEP
models do not consider the chronological representation of net load
variations, nor the short-term technical constraints of the generation
units, but rather rely on average system representations. The generation
plans obtained are, therefore, not explicitly driven by the requirement
to deal with short-term variations. This type of evaluation is, on the
contrary, typically performed by the well known unit commitment (UC)
problem, which does not consider investment decisions [13]. Accord-
ingly, to account for the operational flexibility aspect, recent planning
studies have started to investigate the importance of integrating the
short-term constraints within long-term planning models. Belderbos
and Delarue [14] solve a traditional GEP model based on a basic
screening curve method and propose a perturbation algorithm with
embedded short-term constraints to improve the plans obtained. They
show that considering the short-term constraints results in the in-
stallation of more mid and peak load capacities than the case of ne-
glecting them. Similar results are reported in [15], who solve a com-
bined GEP-UC model for a single future year, under several wind
penetration and carbon pricing scenarios. Additionally they show that
neglecting short-term constraints leads to an underestimation of carbon
emission and wind curtailment levels of the obtained plans. The same
general trends are shown in [16,17] for case studies on Ireland and
Poland, respectively. For multi-annual planning studies, Koltsaklis and
Georgiadis [18] propose a combined model and use it for the future
planning of the Greek power system, while Guo et al. [19] propose a
similar investigation applied to the Chinese power system. In both cases
the results revealed the correlation between significant RES penetration
with increased amounts of peaking units investments. Finally, Pereira
et al. [20] compare an integrated model to a classical one for a ten year
planning period and show that neglecting these constraints under-
estimates both the investment costs and the emissions levels.

The above studies have investigated the importance of including the
short-term constraints within long-term planning models to account for
the operational flexibility in power systems planning by analyzing the
differences in generation mixes, system costs, curtailment levels, or a
combination of these. None of those studies, however, have performed
a quantitative assessment using metrics that are specifically designed to
evaluate the operational flexibility aspect. Furthermore, the mentioned

planning models are computationally intensive, so that different ad-hoc
methods for the horizon reduction have been used but neglecting to
address the bias that these could introduce on the results of the as-
sessment.

To overcome these limitations, in this paper we introduce an in-
tegrated operational flexibility assessment framework that (i) is based
on consistent horizon reduction methods driven by an explicit optimi-
zation objective to avoid biases that can arise from ad-hoc approx-
imations and (ii) adopts suitable metrics to quantitatively assess the
flexibility level of the obtained plans.

Within the framework presented, an integrated GEP-UC model is
proposed, cast as a mixed integer linear programming (MILP) problem,
and we employ the integer clustering method for handling discrete
decision variables [21], which provides a good approximation and a
significant reduction of the computational complexity. A 10 years
planning horizon is considered based on historical load and RES ca-
pacity factor data obtained for the national system of France. The
horizon reduction is systematically dealt with by the implementation of
a dynamic programming algorithm that optimizes the step-function
approximation of the traditional GEP model and an exhaustive search
algorithm for the chronological load approximation of the integrated
GEP-UC model. For the quantitative operational flexibility assessment,
the probabilistic metric of insufficient ramping resource expectation
(IRRE) proposed in [9] is used. We complement this measure by ori-
ginally introducing the expected flexibility shortfall (EFS) metric, which
indicates the expected load loss when the system is not able to ade-
quately respond to the inter-temporal variability.

The numerical examples consider a single-region green-field plan-
ning problem with no generation units existing in the system. On one
hand, this is done to avoid any bias those existing units may impose on
the expansion plans and, therefore, to focus solely on the models out-
comes; on the other hand, it is done to validate the framework cap-
ability for efficiently addressing large-sized instances. The framework,
however, is straightforwardly applicable to grey-field planning pro-
blems and easily extendable to muli-regional planning. A wide range of
RES penetration levels (0% to 50%), most notably wind and solar, is
considered and the same for carbon emission limits.

The original contributions of the work are:

• The paper contributes to power systems planning with high shares
of RES penetration and stringent carbon targets, by proposing a
computationally efficient, multi-period integrated GEP-UC model
that accounts for key short-term constraints and chronological net
load representation. In particular,
* The importance of considering these constraints to account for
operational flexibility under high RES penetration has been de-
monstrated quantitatively by comparing the output of the in-
tegrated model to that of the traditional GEP, which leads to in-
vestment decisions based on average system operating conditions.

* For computational tractability, horizon reduction is introduced by
systematic optimization, to avoid biases on the results obtained by
ad-hoc methods.

• The paper introduces the expected flexibility shortfall (EFS) metric
for operational flexibility assessment to capture the expected
amount of load loss specifically due to insufficient flexibility. We
analyze the complementarity of this metric to other metrics of lit-
erature, most notably the insufficient ramping resource expectation
(IRRE) proposed in [9] which considers the expected frequency of
flexibility shortage rather than its magnitude.

• The relevance of the overall modeling for real applications is shown
by considering a case study representing the national system of
France, with load and RES capacity-factor data spanning a 10-years
planning period. Sensitivity to key supply and demand parameters is
also performed.

• The results of the paper for a wide range of RES penetration targets
and carbon emission limits allows highlighting the importance of
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relying on suitable metrics for the assessment rather than on
quantities typically considered for power system planning, like
generation mixes, system costs and amount of renewable curtail-
ment, which are not capable to reflect the true flexibility levels of
the obtained plans.

For real applications, the integrated framework can be used by
power system planners to rapidly and accurately evaluate the impact of
different system parameters and policy requirements on the resulting
generation expansion plans, most notably in terms of operational flex-
ibility. The planner can, then, adapt the policy requirements to ensure
generation plans with an adequate flexibility level or set proper ex-
pectations on which levels are attainable under a specific set of para-
meters and requirements. Moreover, several remarks are highlighted in
the relevant sections regarding the proper treatment of RES investments
as decision variables within the simplified optimization model as well
as the horizon reduction method, which can prove useful for

practitioners if similar types of models are to be considered.

2. Operational flexibility assessment framework

2.1. Overview

The integrated operational flexibility assessment framework pro-
posed is schematically illustrated in Fig. 1. For comparison purposes, it
will be applied to two types of power system planning models: the
traditional GEP model soft-linked with a UC model (denoted S-GEP)
and the integrated GEP-UC model solved as a single optimization (de-
noted C-GEP). Fig. 1a illustrates the assessment framework applied to
the former, and Fig. 1b that applied to the latter. The framework stands:
(i) the formulation of the models, (ii) the elaboration of accurate hor-
izon reduction approximation methods and (iii) the elaboration of
suitable metrics for assessment of the operational flexibility of the ob-
tained plans. The schematic illustration summarizes the different steps

Fig. 1. Operational flexibility assessment framework.
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in applying the framework. The planner would, first, employ the proper
systematic horizon reduction method with respect to the planning tool
of choice. Optimal generation expansion plans and their operation are,
then, obtained through the optimization models. Finally, the defined
metrics are used to quantify the operational flexibility levels of the
obtained plans. The planner can, then, evaluate whether or not the
plans meet the required levels of flexibility and can evaluate the impact
of adjusting the different parameters on the plans obtained. Each of
these elements is described in details in the following sections.

2.2. Power system planning models formulation

As previously mentioned, two types of power system planning
models are considered for operational flexibility assessment:

2.2.1. Soft-linked GEP-UC model (S-GEP)
The S-GEP model consists of two mixed integer linear programming

problems which are successively solved:

i. A long-term GEP model, which has the objective of minimizing the
total discounted cost over the planning horizon under typical long-
term simplified constraints. No hourly chronological order is con-
sidered and load is represented as load blocks derived from a load-
duration curve (LDC) with duration (Dury s, ) and levels (Ly s, ). The
detailed model formulation can be found in Appendix A.1

ii. A short-term UC model, which has the objective of minimizing the
short-term operational costs, taking into account the detailed short-
term technical capabilities of the units, the chronological demand
and RES availability. The detailed model formulation can be found
in Appendix A.2

The soft linking of the two problems is achieved by:

1. Solving the long-term GEP problem first, under the simplified
system representation;

2. Populating the obtained investment plans within the UC problem,
which is, then, solved to obtain the detailed operation of these plans.

2.2.2. Combined GEP-UC model (C-GEP)
The C-GEP model is the straightforward integration of the two

models described above into a single optimization model, with the
following adjustments:

• The load-duration step representation indexed by (s) in the S-GEP
model is replaced by the hourly chronological representation (j), for
all parameters and decision variables.

• The detailed operating cost equation of the UC objective function
replaces that of the traditional GEP model.

The resulting high resolution MILP problem is known to be com-
putationally challenging, especially when considering a multi-annual
planning horizon: (i) the formulation has been, therefore, adapted to
handle discrete decision variables by means of the integer clustering
method proposed in [21]; (ii) and time horizon reduction is introduced
systematically, as explained in the next section.

2.3. Time horizon reduction

The traditional GEP, UC and integrated GEP-UC models have dif-
ferent natures, notably in the time resolution considered for the load
and RES capacity factor (CF). Different approximation methods are,
therefore, employed for the horizon reduction.

2.3.1. Load and RES-CF approximations for the GEP model
To obtain the investment decisions in the traditional GEP model,

yearly load is typically represented as a load-duration curve (LDC),

which is approximated by a step-function, where each step represents
an average load-level and duration. This function is typically obtained
by deciding in an ad-hoc manner the number of steps and segmenting
the LDC accordingly. Depending on the choice of segmentation, the
outcome of the model can greatly differ, for instance, if more steps are
introduced for the peak load hours or the base ones. Moreover, in a
multi-annual planning context the LDC forecast varies among the dif-
ferent years, so that a segmentation strategy for a year might not be
optimal for other years. A consistent method for the LDC approximation
is, therefore, necessary.

The seminal work of [22] is one of very few studies in power sys-
tems planning found to address this issue. We define a similar optimi-
zation problem where the objective of the step function approximation
is the minimization of the energy mismatch between each approxi-
mated step and its actual corresponding segment. The optimization
problem can be formulated as:

∑ ∑ −
= = −

F i hmin ( ( ) )
n

N

i t

t

n
t 1

2

n

n

1 (1)

subject to:

∑=
−

= …
− = −

h
t t

F i n N1 · ( ), 1,2, ,n
n n i t

t

1 n

n

1 (2)

where F i( ) represents the actual LDC function, N is the total number of
steps specified for the approximation, n is the index of the current ap-
proximation step, hn is the height (load level) of the step function for
step n and tn is the breakpoint at which the step function changes value
from step n to step +n 1. The objective is to find the breakpoints vector
t which fully defines the approximated step function and is such to
minimize the mismatch of Eq. (1). This problem can be stated as a
dynamic programming problem, where the backward recursive func-
tional equation is defined as:

∑= ⎡

⎣
⎢ − + ⎤

⎦
⎥ = …

⩽ ⩽ =
− + −f x F i h f t n N( ) min ( ( ) ) ( ) , 1,2, ,n x t T i x

t

N n n1
2

1
(3)

for which − +hN n 1 can be calculated as given in Eq. (2).
It is important to note that since we consider the investment in RES

capacity as a decision variable, it heavily depends on the average ca-
pacity factor (CF) of each RES technology. Neglecting this consideration
within the simplified long-term GEP problem is equivalent to assuming
that wind and solar technologies are fully dispatchable. Constraint
(A.11) in the Appendix is, therefore, introduced to avoid this in-
accuracy. Similar to the LDC approximation, the CF of each RES tech-
nology can be approximated by a level and a duration. However, the
real average correlation between the load and the RES-CF should be
maintained to avoid unrealistic and biased results. An illustration of the
approach followed in this work to achieve this is given in Appendix B.

2.3.2. Load and RES-CF approximations for the UC and GEP-UC models
The horizon reduction for the C-GEP and UC models need to

maintain the real hourly chronological order of both the load and the
RES-CF. This is typically achieved by approximating the full year to a
number of days, weeks or months while preserving the sub-period
chronological order. We opt to represent a year by a number of sampled
weeks obtained by solving an optimization problem similar to that
proposed by De Sisternes and Webster [23], which reported superior
approximations than other ad-hoc methods.

The weeks are selected with the objective of minimizing the energy
mismatch between the actual LDC and the approximated one (LDCaprox)
obtained through scaling up the weeks sampled to the full year length.
Mathematically this is represented by [23]:

∑∈ −∗

=

ϕ arg LDC LDCmin ( )
ϕ i

T

i ϕ i
aprox

0
,

2

(4)
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where T is the total number of hours in each planning year and ϕ is a
vector containing the set of indexes of the selected weeks. The opti-
mization can be solved using an exhaustive search that evaluates all
possible combinations of the n specified weeks and selects those that
minimizes the energy mismatch. Once the optimal weeks are obtained
for the load, the same weeks are selected for the RES-CF data to ensure
that the correlation between the two is maintained.

2.4. Flexibility assessment metrics

To quantify the flexibility of the system, we adopt two probabilistic
metrics: the insufficient ramping resource expectation (IRRE) proposed
in [9], and the originally introduced expected flexibility shortfall (EFS)
metric.

2.4.1. Insufficient Ramping Resource Expectation (IRRE)
The IRRE is the expected number of instances in which the gen-

eration units in a power system cannot answer to the changes in net
load. The metric is generally obtained by [9]:

1. Calculating the net load ramping time series for the whole planning
horizon in both upwards (up) and downwards (dn) directions.

2. Calculating the up/dn available flexible resources within a specified
time horizon of interest (e.g. one hour), given the availability and
commitment status of each generation unit, its start-up time, its
actual production level and its total upwards or downwards ramping
capabilities for the next period.

3. Aggregating all the time series for all resources to obtain the total
up/dn available flexibility time series.

4. Calculating the up/dn available flexibility empirical cumulative
distribution function from the total available flexibility time series.

5. Calculating the probability of insufficient ramping by substituting
the required net load ramping in the obtained distribution function.
The sum of the up/down probabilities time series gives the IRRE
+/−.

2.4.2. Expected Flexibility Shortfall (EFS)
While the IRRE indicates the expected frequency for not meeting the

flexibility requirements, it does not give any information about how
short the system is on average when not able to meet these require-
ments. This can be calculated through the expected flexibility shortfall
(EFS) metric.

The EFS metric builds on the value-at-risk (VaR) measure defined as
the “possible maximum loss over a given holding period within a fixed
confidence level” [24]. Mathematically, this is defined as:

= ⩾ >VAR X x P X x α( ) sup{ | [ ] }α (5)

where X in our context is a variable denoting the loss of load due to
insufficient flexibility and ⩾ >x P X x αsup{ | [ ] } indicates the highest

α100 percentile of the loss distribution.
The expected flexibility shortfall (EFS) is, thus, the conditional ex-

pectation of load loss due to insufficient flexibility, given that it is be-
yond the VaR level, or:

= ⩾EFS X E X X VaR X( ) [ | ( )]α α (6)

The EFS is calculated by performing steps (1)–(3) of the IRRE cal-
culations, followed by:

4. Calculating the up/dn losses time series as the absolute difference
between the up/dn net load ramping series and the respective total
available flexibility resources.

5. Calculating the VaR at the desired −α100(1 )% confidence levels.
6. Calculating the EFS as the average loss for observations exceeding

the VaR level, at the respective confidence levels.

3. Numerical example

3.1. Test system

For the multi-annual demand representation, we have taken the
10 years load data of France, from 2006 to 2015, which are publicly
available at [25], to represent a realistic system demand for 10 plan-
ning years. We have similarly calculated the RES-CF, namely wind and
solar power, from the actual yearly production time series, by dividing
each hourly production by the total installed capacity of each tech-
nology. This results in the hourly CF time series per renewable tech-
nology and for each year.

Table 1 summarizes the technical and cost data for the generation
technologies considered in the expansion planning. The cost data and
units capacities are obtained from the IEA/NEA Projected Costs of
Generating Electricity report (2015 edition) [26]; the remaining tech-
nical characteristics are largely based on data described in [27] to
maintain consistency with characteristics relevant to the French power
system. The discount rate is assumed to be 3%, the minimum design
reserve margin rmin is set to 15% of the maximum annual load, operating
reserves are set to cover 1% of the hourly load for primary and sec-
ondary reserves, and 10% of the hourly RES production for upwards and
downwards secondary reserves. The penalty for not meeting demand
(Clns) is set to 4 k€/MWh to discourage load shedding. Finally, the
construction time of new units is neglected, as we are considering a
relatively concise planning horizon.

3.2. Implementation notes and remarks

All optimization problems are modeled in the Python programming
language. The MILP problems are programmed using the Pyomo soft-
ware package [28,29] and solved using IBM ILOG-CPLEX with an op-
timality gap of 0.1%. It is important to note that for the UC and the
GEP-UC models, the yearly demand is approximated by 4 representative
weeks and the chronological order within each week is maintained;
however, the immediate demand profile change between one week and
the next may not reflect the realistic variation that could occur in the
system. It is important, therefore, to decouple the operational decision
variables from one week to the next, to eliminate any bias from in-
correct initialization. In this respect, unit states are constrained to be
identical at the beginning and end of each week, which reasonably
assumes that each week is followed by a similar one.

Table 1
Technical and economic characteristics for the different generation technologies.

Technology Pi
max Pi

min Ri
Umax Ri

Dmax Mi
u Mi

d Ei EFORi Ci
inv Ci

mrgl Ci
s

i[ ] [MW] [MW] [MWh/min] [MWh/min] [h] [h] [tCO /MWh2 ] [M€] [€/MWh] [k€]

Nuclear 1400 700 0.5%Pn/min 0.5%Pn/min 12 48 0 0.01 3.95 9.33 15.0
Fossil hard coal 1100 550 1.5%Pn/min 1.5%Pn/min 6 10 0.96 0.06 2.08 36.67 11.26
Fossil gas (CCGT) 550 165 5%Pn/min 5%Pn/min 3 5 0.46 0.04 1.02 69.00 7.53
Fossil gas (OCGT) 270 54 20%Pn/min 20%Pn/min 1 2 0.67 0.08 0.7 110.00 3.79
On-shore wind 80 0 / / / / 0 ∗ 1.9 0 /
Solar-PV 60 0 / / / / 0 ∗ 1.5 0 /
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4. Results and discussion

4.1. RES penetration and carbon emission policy scenarios

We first explore 12 scenarios covering a wide range of RES pene-
tration and carbon emission targets: a base case with no RES nor
emission requirements, in addition to all remaining combinations of
0%, 25%, 35% and 50% binding RES penetration targets (as a per-
centage of total electricity demand) and 0%, 75% and 50% emission
limit (as a percentage of each corresponding no emission limit sce-
nario). We apply the assessment framework on the two types of plan-
ning models considered (C-GEP and S-GEP), for comparing the effect of
integrating the short-term constraints within the long-term investment
planning problem, primarily in terms of operational flexibility. For the
S-GEP model, each annual LDC is approximated by twelve load-dura-
tion steps using the dynamic programming optimization described in
Section 2.3.1. The normalized root mean squared error (NRMSE) of the
energy mismatch for the ten approximated yearly LDC have a mean of
3.91% and a standard deviation of 0.002. For the C-GEP model, each
year is approximated by four weeks through the optimization problem
described in Section 2.3.2, where within each week, hourly chron-
ological order is maintained. The NRMSE of the 10 approximated yearly
loads have a mean of 0.63% and a standard deviation of 0.003.

4.1.1. Base case
We start by investigating the results of the base case for both S-GEP

and C-GEP models. Fig. 2 illustrates the total capacity installed of each
generation technology, at the end of each year as obtained by each
model. The bulk of the investments is done in the first year, where
82.01 GW and 80.59 GW total capacities are installed as given by the S-
GEP and the C-GEP model, respectively. These capacities gradually
increase to the end of the planning horizon. The final total capacities
installed are 87.14 GW and 85.72 GW for S-GEP and C-GEP, respectively.
The additional investments in both cases are in the Fossil OCGT tech-
nology. It can be observed that, in this case of no RES penetration re-
quirement, the capacity investments given by both models closely
match (see Fig. 2).

To further assess the S-GEP and C-GEP obtained plans, a number of
performance measures are compared. We consider the amount of load
not served (LNS), the amount of RES shedding, the total carbon emis-
sion and the total cost (investment+ operating costs)2 of the plans
obtained through each model for the whole planning horizon. Table 2a
summarizes the results of the different measures for the base case. The

C-GEP model outperforms the S-GEP in the resulting LNS, amounting to
0.01% of the total load for the former as opposed to 0.12% for the
latter. Since only a small fraction of the capacities installed are in RES
technologies, no RES shedding was needed. The increased inter-tem-
poral variability caused by large RES production could, typically, make
it more cost effective to shed higher quantities of renewable energy
than to cycle thermal units. For carbon emission, operating the C-GEP
plan results in higher total emission (≈ 1700 Mtons compared to
≈ 1380 Mtons by the S-GEP model) since more fossil capacities are in-
stalled. The total investment and operating cost is lower for the C-GEP
plan (310.59 Bn€) compared to the S-GEP one (313.00 Bn€). This, to-
gether with the lower amount of LNS, highlights that the C-GEP plan is
better adapted to satisfy the load at lower cost.

The quantitative operational flexibility assessment of the resulting
plans is summarized in Table 2b. The IRRE and EFS results are reported
for the total upwards (+) and downwards (−) net load variations. The
results show that operating the S-GEP plan is expected not to satisfy
7.38% of the total number of upwards ramps (IRRE+) as opposed to
2.20% for the C-GEP plan. Similarly, the EFS+ is higher for the S-GEP
plan, amounting to 512.00MW and 2400MW compared to 90MW and
450MW for the C-GEP plan at the 95% and the 99% confidence in-
tervals, respectively. For the negative ramps, it is shown that the op-
erational flexibility shortages are of much less significance, albeit still
being slightly worse for the S-GEP plan.

4.1.2. Increasing RES penetration and emission limit policies
Table 3 summarizes the results of the different performance mea-

sures for the base-case (top-left corner), along with the different com-
binations of RES penetration (horizontally) and emission limit (verti-
cally) policies considered. First, we notice how an increased RES
penetration requirement leads to a significant difference in the final
capacity mix given by the S-GEP and the C-GEP models. Moving hor-
izontally across the Table, i.e. to higher RES penetration, the “short-
term aware” C-GEP model results in mixes with higher fossil capacities
and much less nuclear than the S-GEP one. Fossil technologies possess
overall better short-term dynamic properties, such as faster ramping
and cycling capabilities. The investment decisions derived by the in-
tegrated C-GEP model, therefore, accounts for the increased short-term
variability by shifting the mix towards these technologies. Moreover,
the total installed capacities are higher for the C-GEP plans compared to
the S-GEP ones. This difference increases for higher RES penetration,
from around 10 GW (for the 25% RES penetration scenario) up to 30
GW (for the 50% RES penetration scenarios). This is since the S-GEP
model overestimates the actual RES availability as it considers average
capacity factor values, resulting in lower perceived need for total ca-
pacity investments.

Fig. 2. Cumulative yearly installed capacity for the base case obtained through the S-GEP (left) and C-GEP (right) models.

2 Excluding the cost of LNS to avoid redundancy.
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Table 2
Results of different performance measures and operational flexibility metrics for the plans obtained through the S-GEP and C-GEP models for the base case (No RES
requirement, no carbon limits) (worse performance highlighted).

(a) Installed capacities and generic performance measures results

(b) Operational flexibility metrics results

Table 3
Results of the different performance measures for the plans obtained through the S-GEP and C-GEP models for the range of RES penetration and
carbon emission limits considered (worse performance highlighted)
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The impact of these capacity differences is reflected in the resulting
LNS percentage. There is a steep increase in the amount of LNS for the
S-GEP plans, from 0.12% and up to 2.7% for the highest RES penetra-
tion scenarios. This represents an unacceptably high level of LNS and
defies the security of supply of the obtained plans. The C-GEP plans, on
the other hand, maintain a low average LNS percentage of 0.02%, with
negligible variation across all scenarios.

RES shedding is shown to also increase under higher RES penetra-
tion levels; however, it remains lower for the C-GEP plans compared to
the S-GEP ones. As previously explained, shedding decisions are taken
when they are more cost effective than cycling thermal units. The C-
GEP model accounts for these quantities shed and ensures that the plans
obtained, when operated, would still meet the RES quota requirements.
This is not the case for the S-GEP model, which may result in final mixes
that are theoretically meeting these requirements, but practically are
not.

It is shown that under RES penetration scenarios, the C-GEP plans
have a higher total investment and operation costs (excluding LNS cost)
than the S-GEP ones. However, the increase in these costs is not in the
same order of magnitude of the additional capacities installed and the
cost of LNS avoided. The maximum cost difference is +6.31% higher
for the C-GEP plan compared to the S-GEP one (50% RES scenarios),
whereas the installed capacities is around +20% higher. The LNS cost
avoided in these cases is significant and if taken into consideration
would in fact result in lower overall costs for these plans.

Regarding carbon emission; the C-GEP plans have higher emission
levels compared to the S-GEP ones, since their capacity mix is char-
acterized by higher amounts of fossil technologies. As previously ex-
plained, the optimal decision to shift the mix towards fossil technolo-
gies is due to their improved capability to counterbalance the increase
in net-load variations caused by high RES levels. This, in fact, indicates
that increasing RES penetration levels by itself does not guarantee
lower carbon emission levels in the system, since the rest of the capa-
cities would be required to consist of more dynamic yet more emitting
units. In this respect, the S-GEP model is considered to underestimate
the actual emission levels under real operation. For our numerical ex-
ample, these underestimations are found to reach levels up to 60% for
the 35% RES, no emission limit case.

Imposing carbon emission limits, as shown by moving vertically
across the table does not have a significant impact on most of these
measures. It does, however, considerably affect the capacity mix ob-
tained by the different models. Evidently, as more stringent carbon
limits are imposed, the capacity mix shifts towards less emitting tech-
nologies and, most notably, nuclear. Most of the fossil capacity reduc-
tion is in the fossil coal capacity since it is the most emitting one; the
total capacity installed, however, remains almost constant.
Furthermore, despite the large differences in the capacity mixes, the
total costs of the plans do not heavily vary, averaging around +1%
increase in most cases.

The quantitative impact of increased RES penetration and stringent
emission limits on the operational flexibility of the expansion plans is
summarized in Table 4. For the upwards ramping requirements, the
results show that the S-GEP plans become significantly short on flex-
ibility as higher percentages of RES penetrate the system. A linear and
steep increasing trend of the flexibility shortage, reaching an IRRE+ of
up to 47% (for the 50% RES case), represents a failure to meet half the
number of times the system is expected to provide upwards flexibility.
The EFS+ similarly exhibits a multifold increase relative to plans with
lower RES penetrations (e.g. EFS value of 8157.30MW compared to
2402.85MW with 99% confidence, for the 50% and 0% RES cases,
respectively). For the C-GEP plans, the different metrics report very low
expected shortages compared to the S-GEP ones. The IRRE+ does not
exceed 2.20% and remains almost constant at an average of 1.30% for
all cases considered. Similarly, the EFS+ of the C-GEP plans does not
exceed a comparatively lower values in the order of hundreds of MW at
most, for all cases considered.

For the downwards ramping requirements, as with the base case,
the flexibility shortages are found to be negligible. This is reasonably
justified for single-region planning where, as a consequence of con-
sidering all generation units located at the same region, sufficient
available resources can reduce their output to answer to downward
ramps. However, it is still shown through the IRRE- results that systems
with very large RES presence would exhibit some flexibility shortage.
Generally, downwards flexibility shortage would become more relevant
if multi-regional planning is considered, since the available resources
will be limited for each region.

Overall, it is shown that the flexibility shortage of the C-GEP plans
remain low and almost constant across the different cases considered,
while that of the S-GEP plans are much more significant and highly
affected by the RES penetration levels than by carbon emission limits.
The consistently low C-GEP shortage values do not only indicate this
model superior adequacy in accounting for the different RES and
carbon requirements, but that it is also able to fully cope to the varia-
tions in the different policy requirements, while ensuring adequate
operational flexibility levels.

The shown results are found to be consistent with those of the other
studies reviewed. Most notably, in Palmintier and Webster [15] where
an overall similar investigation was conducted comparing two similar
modeling methods as those presented in this work. Their investigation
over a range of RES and carbon levels revealed the same trends in the
capacity mixes obtained, most notably, that with higher RES penetra-
tion, the mix shifts to include more units with faster dynamic properties
(typically fossil peaking units). They also showed that carbon emission
can be underestimated by 30–60% by planning models that do not
consider short-term system representation. However, they considered
only a single-period optimization problem with wind penetration as an
exogenous parameter, and did not consider quantitative metrics for the
operational flexibility assessment. The multi-period planning con-
sidered here allows more realistic planning paradigms, where invest-
ment decisions can be optimally taken at different periods, and allows
covering a wide variation in the system parameters at the different
periods (see for example the wide spectrum of inter-temporal load
variations of the four weeks sampled per year in Appendix C). More-
over, the results indicate, that although the capacity mixes may give
some indication of the flexibility levels of the plans obtained, they do
not capture to what extent these plans are short on operational flex-
ibility. This becomes clear when suitable quantitative metrics are used,
as shown in these results.

4.2. Exploring the effect of fuel cost variation on operational flexibility

The investment plans obtained are evidently dependent on the set of
system parameters initially chosen. Since we consider a deterministic
problem, the variation in those parameters could admittedly alter the
results obtained, most notably, the uncertainties regarding fuel costs
and load evolution trend. We, therefore, opt for exploring selected
scenarios representing a wide variation in those parameters, and in-
vestigating their effect on the operational flexibility levels of the plans
obtained. In this section two scenarios of fuel costs (coal and natural gas
costs) are explored: 50% increase and 50% decrease, to cover a wide
variation of the base case, and consistent with the percentages con-
sidered in the IEA report for sensitivity analysis [26]. For clarity, only
the results of the C-GEP model are reported for the median 35% RES
penetration level. However, all emission limit scenarios are in-
vestigated, since it is reasonable to assume that fuel costs could have a
higher impact on the plans obtained when combined with stringent
emission limits.

The installed capacities for all fuel cost and emission limit scenarios
are illustrated in Fig. 3. For the highest fuel cost scenario, much of the
coal and – to a lesser extent – CCGT capacities are substituted by the
less emitting nuclear units, more so as tighter emission limits are en-
forced. For the lower prices, the coal capacity is still substituted, but
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this time by the peaking CCGT and OCGT units. The lower emission
requirements are attained through progressive substitution of fossil
units by nuclear ones, as can be observed within each fuel cost scenario.
The total installed capacity across all scenarios, however, remain con-
stant.

In terms of operational flexibility, Fig. 4a and b illustrate the results

for the IRRE+ and EFS+, respectively. As can be expected, plans ob-
tained under the highest fuel cost have the highest expectation of up-
wards flexibility shortages. This is because much of the fossil units,
which possess better dynamic properties, are replaced by the less
flexible nuclear ones. The opposite is observed for the plans obtained at
the lowest fuel cost driven by the higher capacities of those peaking

Table 4
Results of the operational flexibility metrics for the plans obtained through the S-GEP and C-GEP models for the range of RES penetration and carbon
emission limits considered (worse performance highlighted).

Fig. 3. Total installed capacity as given by the C-GEP model under 35% RES penetration for the different fuel cost scenarios.
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units. Notice, again, that despite this significant variation in the capa-
city mix across the different fuel scenarios, the IRRE of the integrated C-
GEP model plans did not exceed 2.05% of the total number of upwards
ramps, with a quasi-linear decreasing trend as a function of less strin-
gent emission limits and decreasing fuel costs. This remains a very small
percentage point relative to any shortage value observed for the S-GEP
model under RES penetrations. The EFS+ confirms the trends observed
using the IRRE metric, however, at the highest fuel cost scenario it
signaled a relatively high shortage expectations that could go up to the

order of several GWs at the 99% confidence level. Such a magnitude is
significant and would be important to account for, and highlights the
complementarity of the two measurement approaches for giving an
accurate assessment.

4.3. Exploring the effect of load evolution on operational flexibility

The load evolution trends could be another source of influence on
the plans obtained. In this respect, in their 2016 “Generation Adequacy

Fig. 4. Results of operational flexibility assessment on the plans obtained through the C-GEP model under 35% RES penetration and for the different fuel cost
scenarios.
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Fig. 5. Total energy production per technology for the plans obtained by the C-GEP model under 35% RES penetration for the different load growth scenarios.
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Report”, RTE [30] presented future load projections for France and
Europe, with high and low growth scenarios of roughly +2% and
−1%, respectively, accounting for all different sectors. For the purpose
of sensitivity analysis, for the high an low load scenarios, we have
amplified these values considering a +20% and a −10% load growth
starting of the fifth year of the planning horizon. The negative scenario
being a proxy for stringent energy efficiency driven policies. For clarity,
only the results of the C-GEP model are reported for the median 35%
RES penetration level and for the no emission limit policy. It should also
be noted that no changes are assumed for the hourly load patterns
compared to the previous cases considered.

The total power generation per technology and per load evolution
scenario is illustrated in Fig. 5. The Figure shows that, overall, there are
no changes in the capacity mixes obtained, but that only the total ca-
pacities and production quantities vary per technology. Naturally, the
installed capacities and power generation decrease as the total system
load decreases. The reduction is mostly in the RES technologies
amounting to more than 50% of the total generation decrease across
scenarios. This can be explained through two effects: lower load means
that less RES is required to satisfy the 35% penetration requirement,
and it is more cost efficient (subject to the given assumptions) to reduce
the RES levels than to answer to the increased net load variability by
cycling thermal units.

Regarding how the load evolution trend affects the obtained plans,
Table 5a summarizes the results of some of the performance measures
previously considered. Overall, a gradual decreasing trend can be ob-
served in all measurements with respect to the decreasing load scenario.
This is also true for the operational flexibility results reported in
Table 5b. While the absolute difference in those results would be im-
portant to consider for actual system planning, the linear gradual trend
found suggests that the overall load evolution exhibits a less significant
effect on the operational flexibility of the plans than the variations in
the inter-temporal load patterns.

5. Conclusions

In this work, an integrated framework for the quantitative assess-
ment of operational flexibility in power systems planning has been
presented and a realistic size case study has been investigated under
several scenarios of renewable energy sources penetration levels and

carbon reduction targets. Moreover, an investigation of the effect of
varying the fuel costs and load growth has been conducted to com-
prehensively identify the most significant parameters that can affect the
system operational flexibility.

The application of the framework to the case studies has shown its
ability to provide transparent and objective results for obtaining and
assessing different expansion plans across a wide range of policy re-
quirements. The study has also allowed to highlight the importance of
integrating short-term technical constraints and chronological load
patterns, within long-term planning models and especially under sig-
nificant renewable energy penetration levels.

Through the analysis of the results of the case studies considered,
the following general conclusions can be drawn:

• The results confirm those presented in other works. Most notably,
that neglecting short-term constraints within long-term planning
leads to an underestimation of the investment required in peaking
fossil units, unrealistic production schedules with values of load not
served reaching unacceptable levels of up to 3%, and an under-
estimation of carbon emissions of up to 60%.

• Insights were gained by employing quantitative flexibility metrics
for the assessment, most notably that expansion plans obtained
through the integrated model are robust to the different renewable
energy penetration and emission scenario realizations, in terms of
flexibility shortage, i.e., they maintain a constant low shortage level
regardless of the different requirements imposed. For the case stu-
dies considered, these levels were shown not to exceed expected
shortage levels of 2% in frequency and several MWs in magnitude.

• On the other hand, flexibility-neglecting generation expansion
planning models have shown a linear and significant trend of flex-
ibility shortage under increasing renewable energy penetration re-
quirements (up to 50% in frequency and several GWs in magnitude),
enough to offset any computational advantage they have when such
requirements are binding.

• The complementarity of the two metrics considered, with regards to
the frequency of flexibility shortage and its magnitude, is high-
lighted. It is shown that the sensitivity of one with respect to the
different scenarios can be more significant than the other, which is
important to consider for real applications.

• Moreover, the results emphasize the importance of the use of

Table 5
Results of different performance measures and operational flexibility metrics for the plans obtained through the C-GEP models
under 35% RES penetration for the different load growth scenarios.
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suitable quantitative metrics for operational flexibility assessment,
as opposed to relying on other generic indicators, such as the gen-
eration mix or system costs, which are not capable of reflecting the
true flexibility levels of the obtained plans.

Finally, a limitation of the presented work lies in the mixed integer
linear optimization models considered. Indeed, the economic planning
parameters and the technical behavior of energy generation are affected
by nonlinear conditions. For instance, production costs and ramping

rates are nonlinear functions of the variations in partial-load levels,
while start-up costs and times are nonlinear functions of shut-down
duration. These conditions become particularly relevant when short-
term capabilities and operational flexibility are considered in the
model. In this regard, future work will be devoted to the extension of
the optimization model for accounting of nonlinearities in the system.
Moreover, the model can be further extended by considering muti-re-
gional planning, network representation and the uncertainties in the
load and renewable energy generation.

Appendix A. Models formulation

A.1. Long-term GEP model with no short-term constraints

The model is formulated as a mixed integer linear program (MILP), with the main characteristics that no hourly chronological order is considered
and demand is represented as load blocks derived from a load-duration curve with durations (Dury s, ) and levels (Ly s, ).

A.1.1. GEP objective function
The objective is the minimization of the total discounted costs over the planning horizon. Eq. (A.1) represents the total investment costs in new

units, Eq. (A.2) represents the total production costs calculated on the basis of the yearly load-duration curves, and Eq. (A.3) represents the fixed
operation and maintenance (O&M) costs:
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A.1.2. GEP constraints

1. Units commissioning and construction time:
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2. Annual budget constraint:
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3. Lifetime of new units:
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4. Supply-demand balance constraint:
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5. Maximum generation output levels:
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6. Adequacy reserve margin:
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7. Minimum annual renewable penetration:
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8. Renewable energy production: RES production is typically represented through an hourly availability or hourly capacity factor (CF). Since in the
S-GEP problem no chronological hourly representation is considered, an approximation method is used to obtain what we refer to as the RES
capacity factor duration curve (RES-CFDC), described in details in Appendix B:
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9. Allowable emission:
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A.2. Short-term operational model with no design variables (UC)

For the UC model, all the commissioning decisions are considered to have been taken beforehand (from the GEP model) and the model seeks only
to find the optimal short-term system operation.

A.2.1. UC objective function
The objective is the minimization of the total discounted operating costs of the systems, including variable production cost, start-up cost and LNS

cost:
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A.2.2. UC constraints

1. Only units commissioned can be operated: this constraint represents the link between the long-term investment and the operating decisions:
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2. Supply-demand balance constraint:
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3. Unit-commitment constraint:
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4. Minimum up-time (A.17) and down-time (A.18) of generation units:
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x u v i I j J y Y, ,i y i y j
τ j M

j

i y τ
th

, , , , ,

i
d (A.18)

5. Upwards (A.19) and downwards (A.20) ramping capabilities of generation units:

− ⩽ + ∀ ∈ ∈ ∈− −p p u R z P i I j J y Y· · , /{1},i y j i y j i y j i
Umax

i y j i
start th

, , , , 1 , , 1 , , (A.19)

− ⩽ ∀ ∈ ∈ ∈− −p p u R i I j J y Y· , /{1},i y j i y j i y j i
Dmax th

, , 1 , , , , 1 (A.20)

6. Maximum (A.21) and minimum (A.22) output levels of generation units:

+ + ⩽ − ∀ ∈ ∈ ∈p pr sr EFOR P u i I j J y Y(1 )· · , ,i y j i y j i y j
up

i i
max

i y j
th

, , , , , , , , (A.21)
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⩾ + ∀ ∈ ∈ ∈p u P sr i I j J y Y· , ,i y j i y j i
min

i y j
dn th

, , , , , , (A.22)

7. Operating reserves: three types of operating reserves are considered, according to a defined percentage of hourly load and of renewable gen-
eration: those are primary reserve (A.23), secondary upwards reserve (A.24), and secondary downwards reserve (A.25):

∑ ⩾ ∀ ∈ ∈
∈

pr Prr L j J y Y· ,
i I

i y j y j, , ,
th (A.23)

∑ ∑⩾ + ∀ ∈ ∈
∈ ∈

sr Srr L a p j J y Y· ( · ) ,
i I

i y j
up up

y j
i I

res
i y j, , , , ,

th res (A.24)

∑ ∑⩾ + ∀ ∈ ∈
∈ ∈

sr Srr L a p j J y Y· ( · ) ,
i I

i y j
dn dn

y j
i I

res
i y j, , , , ,

th res (A.25)

8. Renewable energy production:

⩽ ∀ ∈ ∈ ∈p x P CF i I j J y Y· · , ,i y j i y i
max

i y j
res

, , , , , (A.26)

Appendix B. RES-CF approximation for the long-term GEP model

One way to approximate the RES-CF is to re-order the chronological CF values in descending order and divide them into CF-blocks, each having a
level and duration. A fundamental problem with this approach is that it presumes that the highest RES-CF is concurrent with the highest load level
and, analogously, the lowest RES-CF is concurrent with the lowest load level. This imposes a significant and unrealistic bias in the results. We, thus,
propose to approximate the RES capacity factor duration curve (RES-CFDC) in a way that maintains the real hourly correlation between the load and
the RES availability, when both chronological time-series are available.

This can be best illustrated by means of an example: consider a 6 weeks representation of hourly load and solar CF time series, such as that shown
in Fig. B.6. This can be a forecasted time-series or historically monitored data. Each hourly load level corresponds to a specific solar CF for the same
hour. When the load is re-ordered in descending order into a LDC, the solar-CF is re-ordered by maintaining each CF respective value relative to its
original hourly load level. When the LDC is, then, approximated by a step-function to obtain average load levels and durations, the same duration
blocks are used to segment and find corresponding average values for the solar CF time-series.

0

20

40

60

80

100

120

0 168 336 504 672 840 1008

G
W

h

Hour

Re-ordered Demand

0

20

40

60

80

100

120

0 168 336 504 672 840 1008

G
W

h

Hour

Re-ordered Demand Step Aproxima on

0

20

40

60

80

100

120

0 168 336 504 672 840 1008

GW
h

Hour

Demand

(a) LDC step function approximation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 168 336 504 672 840 1008

rotcaF yticapaC

Hour

Solar-CF

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 168 336 504 672 840 1008

Ca
pa

ci
ty

 F
ac

to
r

Hour

Re-ordered Solar-CF Step Aproxima on

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 168 336 504 672 840 1008

Ca
pa

ci
ty

 F
ac

to
r

Hour

Re-ordered Solar-CF

(b) Solar-CF step function approximation

Fig. B.6. 6 weeks representation of load and Solar CF yearly data and their step function approximation.
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Appendix C. Load profiles

See Fig. C.7.
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