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A B S T R A C T

The current framework of management of natural gas pipeline systems, based on off-line simulation, is facing
challenges because of the increasing complexity, uncertainty and a number of time-dependent factors. To be
effective, it requires comprehensive knowledge of system characteristics, accurate initial and boundary condi-
tions. In an attempt to circumvent these problems, in this work we propose to use the deep learning method in
the natural gas transmission system operation and management context. A data-driven prediction method is
developed from real-time data of operation pressure and gas consumption. Specifically, the deep learning
method is combined with the data window method and structural controllability theory to predict the conditions
of gas pipeline network components. The data window method is applied to reconstruct the data structure and
build a “memory” for the deep learning method. Structural controllability theory is applied to extract critical
parameters, for reducing the problem size. The developed method allows accurate and efficient predictions,
especially in abnormal conditions. For demonstration, the method is applied to a complex gas pipeline network.
The results show that the developed method can provide accurate real-time predictions useful for reducing
potential losses in operation, and perform efficient and effective management of the gas pipeline system. In the
case study, the average prediction accuracy is higher than 0.99.

1. Introduction

Natural gas travels a long distance, from sources through pipeline
networks to the different kinds of customers. Accurate and timely op-
erations ensure reliable supply to the customers. This requires timely
precise knowledges of conditions of the system and of its components
(Chertkov et al., 2015). Hence, it is crucial to use efficient and effective
methods for accurately predicting the system dynamic responses and
the components future conditions.

Off-line simulation is typically applied for the analysis, decision
support and optimization of pipeline networks (Fasihizadeh et al.,
2014; Zhang et al., 2016b). Many efforts have been made for the im-
provement of the numerical models (Wang et al., 2015; Pambour et al.,
2016a) and model solvers (Wang et al., 2018; Behbahani-Nejad and
Bagheri, 2010). Some unconventional off-line simulation methods have
also been developed (Madoliat et al., 2016; Uilhoorn, 2017). However,
an accurate simulation requires exact conditions, e.g., comprehensive

system characteristics, accurate initial states and imposed boundary
conditions. These are unfortunately difficult to obtain in practice.
Furthermore, off-line simulation has difficulties in accounting for the
time-dependent factors of the system dynamics and in treating the
uncertainties in the model and its parameters. Finally, the computa-
tional burden can be quite significant for complex pipeline networks.

Form a different context, we observe that the innovations brought
by artificial intelligence, machine learning and big data are changing
the vision of traditional energy industry. Many researches have been
carried out attempting to solve various challenges which energy sys-
tems are currently facing, e.g., system reliability and stability (Zio and
Di Maio, 2010; Fang and Zio, 2013; Zhang et al., 2016a), operation
efficiency and cost control (Hegde and Gray, 2017; Azadeh et al.,
2016), renewable energy management (Lou et al., 2016) and environ-
ment issues (Tan et al., 2016). The application of techniques of fore-
casting (Wang et al., 2016; Kalantari-Dahaghi et al., 2015), classifica-
tion (Hu et al., 2010; Pooyan et al., 2015) and optimization (Azadeh
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et al., 2016; Xiong et al., 2018) has been successfully explored in dif-
ferent energy systems, to the benefit of regulators, customers and op-
erators. Besides, recurrent and cascade neural networks are among the
best choices for dynamic system predictive modeling (Vaferi et al.,
2015; Lashkarbolooki et al., 2013; Güler and Übeyli, 2006; Güler et al.,
2005).

In natural gas pipeline network systems, large amounts and various
types of data of operation, device status and gas consumption are
generated and collected by SCADA (Supervisory Control and Data
Acquisition) systems. Based on these (big) data, some efforts have been
made for online dynamic state estimation and forecast of gas demand.
The online state estimators are mostly developed based on filter models
(Durgut and Leblebicioğlu, 2016), which are applied to estimate the
real time state of pipeline networks. Applications of machine learning
for forecasting natural gas demands have drawn great attention from
both research and practice perspectives (Panapakidis and Dagoumas,
2017; Yu and Xu, 2014). Many algorithms have been developed to
predict natural gas demand over different time horizons.

In natural gas pipeline networks, the future states of the components
and the system dynamics depend on the previous state history and
external disturbances. Because of the complex system structure of the
pipeline network and the complex transient process of gas flow in the
pipelines, traditional machine learning methods have difficulties in
accurately regressing the dynamic behaviors of complex gas pipeline
networks.

Recently, deep learning, a type of machine learning algorithm, has
drawn a lot of interest from industry and academics. Deep learning has
already been successfully used in object detection (Kong et al., 2018;
Hu et al., 2017), dimensionality reduction (Turati et al., 2017), natural
language processing (Evermann et al., 2017) and other applications.
Deep architectures, or multiple layer architectures, are used to extract
features in data layer by layer, and the inherent features of the dy-
namics in a given pipeline system can be found from the data (Hinton
et al. 2006). Indeed, the complicated dynamic behaviors of a gas pi-
peline network can be “learned” by deep learning without prior
knowledge, and the system dynamics can be accurately predicted. Al-
though deep learning has been applied in the area of natural gas pi-
peline modeling and analysis, most of the works focus on the analysis of
single units (such as compressor stations) or pipelines (Qiu et al., 2015).
The application for the analysis of the dynamics of a complex pipeline
network needs to be further explored.

In this paper, we develop a deep learning-based method to predict
system dynamic behavior and component states in large, complex
natural gas pipeline networks. A stacked-auto-encoder model is trained
in the layerwise greedy fashion and applied for learning the system
dynamic features. The correlations of temporal and spatial factors are
inherently considered in the model. Network structural controllability
theory and the data-window method are integrated with the deep

learning method, for a more efficient use of the data.
The rest of the paper is organized as follows: Section 2 introduces

the development of the deep learning prediction model and the method
to train it; the data-window method is introduced in Section 2.4. The
data selection method, based on network structural controllability
theory, is introduced in Section 3. In Section 4.1, the accuracy of the
developed method is verified by benchmarking against shallow neural
networks and support vector machine (SVM), for a triangle pipeline
network; in Section 4.2, the deep learning model is applied to a com-
plex natural gas pipeline network in both normal and abnormal con-
ditions, and the results are discussed in detail.

The main contributions of this work include the following:

1 A method for natural gas pipeline dynamic behavior prediction is
developed. The deep learning method shows a stable performance
under different conditions and is able to provide effective informa-
tion for decision support. It can accurately predict the system re-
sponses under abnormal conditions without prior knowledge, which
can help to improve the efficiencies of preventive actions and to
reduce potential losses.

2 To some extent, this work paves the way for the application of deep
learning to complex gas transmission systems. Indeed, this work
shows that deep learning is very powerful in learning the complex
dynamic features of gas pipeline networks, which is crucial for de-
mand-side management, detection and early-warning, decision
support and so on.

2. The deep learning prediction method

Deep learning has multiple processing layers, which allow learning
features of data without prior knowledge (Hinton et al. 2006). In this
section, inspired by the work performed by (Lv et al., 2015), a stacked
auto-encoder (SAE) model is applied for learning generic features of
condition data in gas pipeline networks. A regression layer is stacked on
the top of the SAE to perform the prediction based on the learned
features. For completeness of the paper, the underlying principle of the
SAE and of the training process are recalled in what follows.

2.1. Auto-encoder

An auto-encoder is a neural network that attempts to reconstruct its
input at the output layer, after passing through intermediate, hidden
layers. A sample auto-encoder model, which has one input layer, one
output layer and a hidden layer, is presented in Fig. 1. Given a training
sample, x={x1, x2, …, xn}, an input x1 is firstly encoded by an auto-
encoder model to a hidden representation y(x1) based on Equation (1),
and then y(x1) is decoded back as z(x1) by Equation (2):

= +fy x W x b( ) ( )1 (1)

Fig. 1. A sample auto-encoder.
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= +x g xz W y c( ) ( ( ) )2 (2)

where W1 represents the weight matrix; b represents the vector of en-
coding bias; W2 is the decoding matrix; c is the vector of decoding bias.
In this paper, “logic sigmoid” functions of the type in Equation (3) are
applied for f and g:

=
+ −

f x
e

( ) 1
1 x (3)

By minimizing the error of reconstruction (E), the model parameters
θ can be obtained:
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Sparsity constraints are supplemented into the objective function,
considering that if the size of the input layer is no larger than that of the
hidden layer, the above method may potentially learn the identify
function. By this way, the auto-encoder becomes a spare auto-encoder,
and the reconstruction error minimization problem is transformed to:

∑= +
=
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j

H

j
1 (5)

where H is the number of hidden units; ϕ represents the weight of the
sparsity term; ρ represents the sparsity parameter, which is usually a
small value (close to 0); KL ρ ρ( ˆ )j is Kullback-Leibler (KL) divergence (in
Equation (7)); ρ̂j is the average activation of the hidden unit j (in
Equation (8)).
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2.2. Stacked auto-encoders

Recent works of machine learning have shown the great power of a
deep architecture to learn highly non-linear and complicated patterns
in data (Qiu et al., 2015). Inspired by these works, a SAE is developed in
this work, made of several auto-encoders stacked one on top of another,
in which the input of the upper layer is taken from the output of the
lower hidden layer. The SAE has a significant advantage for finding the
highly non-linear patterns between the collected data (current and
historical) and to extract the features of the dynamics (Lv et al., 2015).

To use the SAE model for condition prediction in natural gas pipe-
line networks, a standard predictor is stacked on the top layer. In this
paper, a logistic regression layer is applied for supervised system con-
dition prediction. The predictor and the SAE model comprise the whole
deep learning model for condition prediction in natural gas pipeline
networks, as illustrated in Fig. 2:

2.3. Training process and algorithm

BP method can be directly used to train conventional neural net-
works, by gradient-based optimization. Unfortunately, deep neural
networks trained by BP method have bad performances. On the con-
trary, the greedy layerwise unsupervised algorithms have been devel-
oped with successful results (Bengio et al., 2007). The key points are:
firstly, the greedy layerwise unsupervised algorithm is used to pre-train
the deep network layer by layer, from the bottom to the top; then fine-
tuning based on BP is applied to tune the parameters in the model in a
top-down way, to improve performance (Hinton et al., 2006). The
training procedure is shown in Fig. 3.

We notice that the deep learning model needs to be adjusted and re-
trained with new data on a regular basis, to ensure the model is capable
to maintain a good performance under a changing environment.

2.4. Moving data window method and model updating

For a short-term condition prediction, the future evolution is

Fig. 2. Illustration of the deep learning model for on-line condition prediction
for natural gas pipeline networks.

Fig. 3. The flowchart of the training process.
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determined by the conditions of the recent past (depending on the scale
of the network system). Given that, we need to reconstruct the histor-
ical data for the prediction model in order to create a “memory” of the
effective data. Hence, in this paper, we apply a data-window method
(Zhou et al., 2017), which is illustrated in Fig. 4.

In Fig. 4, the length of a moving data window is made of two parts:
input (white region: data measured in the past) and prediction (dark
region: data predicted in the future). At every prediction step, the data
in the white region are used as input of the deep learning model and the
data in the dark region are the predicted future data. At each prediction
step, the overlapped previous prediction data (Prediction I) is replaced
by the new prediction results obtained (Prediction II), for improved
prediction performance.

A proper design of the length of the moving data window can
contribute to a good prediction performance, with lower computational
storage cost. Actually, the length of the white region works as the
“memory capacity” of the deep learning model. Hence, a well-designed
data window helps the deep learning model efficiently remember most
relevant data for prediction. In this paper, for convenience of illustra-
tion, we assume that the future condition of the natural gas pipeline
network is determined by the past system conditions (the internal
property) and the fluctuations of gas demands (the external influence),
based on which a criterion for the design of the input windows is de-
veloped as Equation (8):

= ⋯S T P P Pmax{ , max{ , , , }}n1 2 (8)

where S is the designed length of the input part; T is the longest time
that a disturbance takes to spread to the whole pipeline network
system; Pi is the shortest period that can influence the future demand
evolution of gas demand i. According to the works for demand pre-
diction, the demands of gas can be influenced by various of factors
(such as weather, demand history, population and so on) (Karadede
et al., 2017). In this work, without lack of generality, we only consider
demand history.

For the prediction part, the length of window is a trade-off between
accuracy and efficiency. A longer prediction contributes more to the
operation and management, but the accuracy of prediction will de-
generate due to the increasing uncertainties. Theoretically, the length
of prediction window should be within the value (S) calculated by
Equation (8), because of the prediction mechanism of the developed
method. However, in practice, it should be designed based on the needs
of the real world applications and the experience of the analysts. In
general, the deep learning model is pre-trained and the related collected
real-time data are organized by the data window as the input. The deep
learning model will be updated by new data collected in a specific time
interval. In the future, we will develop the deep learning model in se-
quential mode, which can further improve the ability of the model.

3. Data preprocessing for input to the deep learning model

Direct use of the sensor collected data may lead to high storage
burden and degenerated prediction (Xue et al., 2017). Valuable data
must be selected from the collected data, to reduce the problem size and
convert the “big data” to “wise data”.

The dynamic evolution of the gas pipeline system is driven by
pressure (Pambour et al., 2016b) and the control theory enables that
the system be fully controlled. Then, valuable data are the pressures of
these elements in the network which are most important for system
controllability, i.e. we can attempt to use the pressure data (historical
and current) of these elements to predict the condition of the overall
pipeline network.

In this paper, network structural controllability theory (Leitold
et al., 2017) is applied to identify the elements which can control the
overall gas pipeline network. This method has been used in real-world
complex network systems including gas pipeline networks (Han et al.,
2015). The results of the applications show the capability of effectively
identifying the driver nodes for the system structural control.

Generally, the natural gas pipeline network is driven by nonlinear
processes, but in many aspects, the controllability of nonlinear systems
is structurally similar to that of linear systems (Chiang and Zavala,
2016). Then, the canonical linear and time-invariant dynamics can be
used to identify the driver nodes:

= +
d t

dt
t tx Ax Bu( ) ( ) ( ) (9)

where the vector x(t) represents the states of the N nodes in the natural
gas pipeline network system at time t; the N×N matrix A describes the
interaction strengths between nodes on the connected structure of the
pipeline network; B is an input matrix identifying the driver nodes
controlled by the time dependent input vector u(t).

In classical dynamic control theory, Kalman's rank condition can be
used as criterion of controllability and to identify the minimum number
of driver nodes (Kalman, 1963). However, the classical concept has
difficulties when dealing with complex pipeline networks and new
concepts of complexity are needed (Zio, 2016; Han et al., 2015): (1) the
classical method is usually applied to undirected networks, but natural
gas pipeline networks are directed; (2) to apply the Kalman's rank
condition, we need to know the weights of all links (i.e. the elements in
matrix A), which are usually unknown. (3) even if the weights can be
approximated, we need a brute-force search to compute the rank for 2N-
1 combinations, which is impossible for large pipeline networks.

To bypass the problem, the analytical methods in (Liu et al., 2011) is
applied here to identify the minimum set of the driver nodes. The so-
called structural controllability of a system (A, B) allows determining
the free parameters in A and B. A and B are structured matrices whose
elements are independent free parameters or zeros. In general, a
structural controllable network system is controllable for most of

Fig. 4. The schematic illustration of the moving data window method.
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weight combinations, except for several pathological cases with zero
measures (Shields and Pearson, 1976). Therefore, structural controll-
ability theory can help to solve the inherently incomplete information
of the elements in matrix A.

Based on the concepts of structural controllability theory, the
matching concept in graph theory (Leitold et al., 2017) is applied here
for finding the minimum set of driver nodes. A matching set is a set of
arcs without common vertices, in a directed graph G. A matched node is
an ending vertex of an arc in the matching; otherwise, the node is un-
matched (as shown in Fig. 5). The pipeline network can be fully con-
trolled if and only if all unmatched nodes are directly controlled and the
input signals can be transmitted to all matched nodes (Leitold et al.,
2017). Hence, we need to find a maximum match (maximum matching
may be not unique in a given network), which corresponds to a
minimum set of driver nodes, which represents a minimum but effective
set for prediction. In a given directed graph, the maximum matching
can be determined in at most O(N1/2L) steps, where L represents the
number of arcs.

According to the inherent concept of structural controllability and
the properties of the gas transportation process, the evolution of the
overall gas pipeline network is determined by the pressure changes of
the driver nodes. Hence, we can use the current and historical pressure
data of these driver nodes to predict the system evolution. For a com-
plex pipeline network, this method is capable to significantly reduce the
problem size, while still achieving a good prediction performance.

4. Application

The deep learning model is applied to a simple triangle pipeline
network and a part of a real-world pipeline network. The fluctuations in
the natural gas market are not completely random and are driven by
nonlinear dynamics, e.g., chaos. In this application, the gas demand
fluctuations are generated by Mackey-Glass model (Equation (10)), a
periodic and chaotic time-series model which is typically used to test
the performances of predictive models because of its chaotic behavior
(Sharma et al., 2016):

=
−

+ −
−

dx t
dt

ax t τ
x t τ

bx t( ) ( )
1 ( )

( )M
c

M (10)

where τM is the time delay parameter (> 16.8), which determines the
chaotic behavior of the time series. In this case, the value of τM is set to
be 20. The parameters i.e., a, c and b are constants: a=0.2, b=0.1,
c=10. The 4th Runge-Kutta method is used here to generate the time
series data and then the data is sampled at a given interval. In this
chaotic times series, current data values are dependent on those of the
past, which is similar with gas demands fluctuations. Further, a random
term (of 1% of the nominal value of the generated gas demands) is
introduced, to make the application more realistic.

The network “real-time” operation data are generated by TGNET.
Developed by Energy Solution, TGNET is a commercial software for
steady state and transient thermal-hydraulic simulation of gas pipeline
networks (Faertes et al., 2010). This software has been widely used in
many areas, such as, pipeline design, risk assessment, contingency
planning and so on. The simulation is carried out based on the following
principles and assumptions:

(1) The active components are set at specific control modes, with de-
sired set values;

(2) In the normal scenario, the system condition changes along with the
fluctuations of demands;

(3) System conditions data are collected at given time intervals (each
15min in the case) by pressure sensors and flow rate sensors.

In practice, the situation is more complex but in this work we
mainly focus on deep learning and its ability to predict the nonlinear
evolution process of gas pipeline networks.

The size of the input layer of the deep learning model is determined
by the input data, selected by the structural controllability and re-
constructed according to the data-windows. The structure of the hidden
layers (i.e. the number of hidden layers and the numbers of each nodes
in each hidden layer) is founded based on the prediction performances,
by “try and error” based on grid search (Lv et al., 2015). The system
conditions which are predicted as output are the pressures of the net-
work nodes, the average flow rates in the pipelines and the amount of
gas supplied by the suppliers.

For effective learning, the range of input data are normalized within
[0, 1]. Considering the big differences between the data sets collected
from different parts of the pipeline network, the normalizations are
performed separately for each data set.

The parameters of the equations in Section 2.1 and of the training
process are: the weight of the sparsity term is 0.75; the average acti-
vation is 0.6; sparsity parameter is 0.0004.

To present the way to use the developed method, the flowchart of
the whole process is showed in the following Fig. 6:

4.1. Triangle pipeline network

We consider the simple triangle pipeline network in Fig. 7 and
benchmark the developed deep learning model against two conven-
tional machine learning methods-support vector machine (SVM) and BP
neural network. We choose the simple network so as to eliminate the
inherent advantage of the deep learning model in processing big data.
To prove the advantage of the deep learning model over the shallow
neural network and the classical machine learning model, the shallow
BP network only has one layer. But the parameters of the shallow BP
network and the SVM model have been well designed by “trial and
error”, to make sure the results can represent their best abilities. Node 1
is the supplier and Nodes 2, 3 are the customers. The control mode of
the supply node is pressure-controlled (maintaining constant pressure
of 5MPa) and the control mode of the customers is flow rate-controlled
(the boundary conditions of the flow rates are shown in Fig. 8). The
diameters of the three pipelines are 0.6m and lengths of pipelines 1–3,
1–2 and 2–3 are 80 km, 90 km and 100 km, respectively. The para-
meters and the algorithm of the T-H simulation are chosen according to
the default settings of the TGNET software.

In this case, the size of the input window is 10 h and sizes of the
prediction window are selected as 3 h, 5 h and 9 h, in order to test the
prediction performances under different lengths of prediction time. For
the simple network, we assume that the loads at the two demand sites
and the pressure of Node 3, which are used as the input of the pre-
diction model, can be collected. Therefore the input size for the

Fig. 5. Structural controllability of simple networks.
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prediction problem of the triangle network is 120 (the length of the
input window is 10 h and the sampling frequency is every 15min). The
T-H dynamic simulation is carried out for 1000 h and the results are
organized by the data window as data sets (with the size of 4900) for
model training, adjusting and testing, following a “50%-30%-20%”
partition (50% data for training the model, 30% for adjusting the model
and 20% for testing the prediction performance). The model optimi-
zation and validation are performed based on different data sets, to
make sure the model is generalized. The structures and settings of the
deep learning model will change along with the length of prediction
time. In the “trial and error” optimization, the sizes of the hidden layers
are chosen from 2 to 6, and range of the number of the units in the
hidden layers is [300, 250, 200, 150, 50]. For the 3 h prediction, the
best architecture is a two-layer with hidden units of {200, 150}; for the
5 h prediction, the best architecture is a two-layer with hidden units of
{250, 100}; for the 10 h prediction, the best architecture is a three-layer
with hidden units of {250, 150, 150}.

Portions of the generated demands at customer Nodes 2–3 are
shown in Fig. 8, from which we can see that the generated chaotic
demand data are to some extent periodical, but not completely cycling,
like the changes of demands of gas in real world.

The prediction performance is measured by three indices: mean
absolute error (MAE), root-mean-square error (RMSE) and mean re-
lative error (MRE). In Tables 1 and 2, the performances of different
methods are compared. Table 1 presents the results of pressure pre-
diction of customer Node 2 and Table 2 presents the results of gas flow
rate prediction at Supply node 1. From the Tables, we see that the deep

Fig. 6. The flowchart of the application process of the whole method.

Fig. 7. Layout of the triangle gas pipeline network.

Fig. 8. The generated demands at customer Nodes 2–3 (0–200 h).

Table 1
Prediction performance comparison of the deep learning model, the BP Neural
Network and the SVM, based on the results of pressure prediction of customer
Node 2 (×103 Pa).

Task The deep learning model BP Neural Network SVM

MAE RMSE MAE RMSE MAE RMSE

3 h prediction 2.90 3.45 12.63 17.22 17.11 22.30
5 h prediction 3.92 4.69 16.99 21.72 19.39 22.98
9 h prediction 4.58 5.67 25.78 27.23 27.18 31.10
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learning model is more accurate than the other competing methods, for
the different lengths of prediction time. From Tables 1 and 2, we can
observe that the accuracy decreases with increasing prediction time.
Generally, this is because the strength of the relationship between the
current condition and the future condition decreases as the prediction
time horizon increases, and accordingly increases the difficulty for the
neural networks to learn such relationship. To overcome this issue
controlled recursive processes that make use of the predictions can
enhance the ability of the deep learning model.

The visual displays of the results of MRE are given in Figs. 9–11 in
terms of the Empirical CDF, which describes the variability of the
predictions of the system conditions due to the stochasticity of the
demands. Also these results show that the deep learning model out-
performs the BP neural network and SVM. For the pressure prediction,
the deep learning model has an accuracy of more than 99% at any
length of time, and most of its flow rate predictions have an accuracy of
more than 98%.

4.2. Complex gas pipeline network

The deep learning model is applied to a relatively complex gas pi-
peline network, which comprises two pipeline importers, 37 pipelines
(total length of approx. 1100 km, diameters ranging from 950mm to
1014mm), 23 demand sites (including city gates, factories, power
plants and export stations), seven regulation stations, two compressor
stations (pressure ratios ranging from 1.02 to 1.18), one LNG terminal
and one UGS. The control modes of the two pipeline importers are
pressure-controlled, while the LNG terminal and the UGS are set at flow
rate-controlled modes. The boundary conditions of the flow rates at the
demand nodes are generated by the model of Equation (10). The supply
pressures provided by the two compressor stations are maintained at
the set points of 7MPa (Importer 1) and 6.5MPa (Importer 2), re-
spectively. The regulation stations are set as inactive Modes. The gas
pipeline network system is presented in Fig. 12. In the Figure, the
customers are represented by the polygons and the nodes selected by
structural controllability are at the nodes linked to Customer 6, Cus-
tomer 13, Customer 10 and Customer 8.

The size of input data window is chosen to be 12 h and the input size
is 1200 (including 21 customer demands and 4 selected nodes). The T-H
dynamic simulation is carried out for 2000 h and the results are orga-
nized by the data window and used as data sets with the size of 7900,
for model training, adjusting and testing, following the same “50%-
30%-20%” principle. In the “trial and error” optimization for the con-
dition of input of demands and selected nodes, the sizes of the hidden
layers are chosen from 2 to 6, and the range of the number of the units
in the hidden layers is [2000, 1750, 1500, 1250, 1000, 750, 500]. For
the 5 h prediction (the benchmark in this case), the best architecture is
a three-layer with hidden units of {1750, 1250, 1250}. The prediction
performances are measured by MAE, RMSE and MRE.

Firstly, to verify the effectiveness of the data selection method
proposed in Section 3, comparisons are made of the predictions based
on three different sets of input data:

A Pressure data of all nodes and demands data;
B Pressure data of only the nodes selected based on the structural

controllability and demands data;
C Only demands data.

The MAE and RMSE results of the three prediction performances are
presented in Tables 3 and 4, with reference to gas flow rate predictions
and node pressure predictions. In these Tables, we can see that the
predictions based on input sets A and B have similar accuracy, and
definitely superior to that based on input set C. This is also shown by
the empirical CDF of the relative error values shown in Fig. 13.

To test the capacity of the developed model on different time
lengths of predictions, the predictions are performed for 2 h, 5 h, 8 h,
10 h and 15 h. The MAE and RMSE results are presented in Table 5 and
the empirical CDFs of the relative error values are shown in Fig. 14.
From these results, we can see that the deep learning model gives good
performances for predictions upto10 h and the values of MAE and
RMSE in Table 5 double from 2 h to 15 h. In Fig. 14, the gap between
the empirical CDFs of 15 h and 10 h is larger than that of 5 h and 10 h.

From Tables 4–6, we can observe large errors in the pressure pre-
dictions due to the normalizing and de-normalizing processes. How-
ever, the relative errors (presented in Figs. 12–14), which reflect the
true prediction ability of the model, are maintained at a relatively low
level (10−4-10−3). Besides, an accuracy improvement can be observed
by comparing the results in Section 4.2 and those in Section 4.1, which
means that the prediction performance can be enhanced by increasing
the size of data, even if the complexity of the network has significantly
increased.

Generally, the data collected by sensors are noisy. The prediction
model should, then, be capable of making accurate predictions with
noisy data. Thus, five levels of artificial noises are introduced (i.e.±
0.5%,±1.0%,±1.5%,±2.0%,±2.5% of the nominal values of

Table 2
Prediction performance comparison of the deep learning model, the BP Neural
Network and the SVM, based on the results of gas flow rate prediction of supply
Node 1 (Nm3/s).

Task The deep learning model BP Neural Network SVM

MAE RMSE MAE RMSE MAE RMSE

3 h prediction 0.88 1.04 3.63 4.91 5.00 6.32
5 h prediction 1.15 1.37 5.06 6.43 5.73 6.75
9 h prediction 1.31 1.43 6.00 6.32 7.94 9.71

Fig. 9. Performance comparison based on the empirical CDF of the relative error of prediction results (3 h prediction).
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input data). In this case, the artificial noises are added on the numerical
simulation results, to analyze the robustness of the deep learning model
under the noises from the data collection process. The corresponding
empirical CDF results of the predictions are shown in Fig. 15. In the

Figure, we can observe that the predictions are accurate with the dif-
ferent levels of noise considered. However, there is a relatively sig-
nificant jump of the results from 1.0% noise to 1.5% noise, so that to
reduce noise below the level of 1.0% could be effective for prediction

Fig. 10. Performance comparison based on the empirical CDF of the relative error of prediction results (5 h prediction).

Fig. 11. Performance comparison based on the empirical CDF of the relative error of prediction results (9 h prediction).

Fig. 12. Layout of the complex natural gas pipeline network system.
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accuracy in this case.
The deep learning model is also capable to effectively predict the

system conditions in abnormal scenarios. In general, crises of natural
gas supply security result from abnormal increases of demands and/or

decreases in the capacity of sources. To analyze this, predictions for 5 h
are performed under three abnormal scenarios:

Scenario 1: Abnormal demands increases at Customers 4 and 23.

Table 3
Prediction performances comparison for the three different sets of input data and with reference to pipeline average gas flow rates predictions (Nm3/s).

Task Not-preprocessed data Preprocessed data No pressure input

MAE RMSE MAE RMSE MAE RMSE

5 h prediction 0.3107 0.4520 0.3076 0.4499 1.1463 1.9510

Table 4
Prediction performances comparison for the three different sets of input data and with reference to pressures predictions (Pa).

Task Not-preprocessed data Preprocessed data No pressure input

MAE RMSE MAE RMSE MAE RMSE

5 h prediction 1290.74 1606.79 1254.31 1579.92 7349.60 8597.88

Fig. 13. Performances comparison based on the empirical CDF of the relative error of the prediction results, based on different sets of input data.

Table 5
Prediction performances comparison based on different time lengths of pre-
diction.

Task Pressure (Pa) Flow rate (Nm3/s)

MAE RMSE MAE RMSE

2 h prediction 1145.42 1462.24 0.2340 0.3622
5 h prediction 1254.36 1579.88 0.3076 0.4499
8 h prediction 1571.41 1984.27 0.3527 0.5188
10 h prediction 1662.94 2108.31 0.3656 0.5373
15 h prediction 2843.90 3664.89 0.5828 0.8656

Fig. 14. Performances comparison based on the empirical CDFs of the relative error values of the predictions, based on different time lengths of predictions.

Table 6
Prediction performances analysis for Scenarios 1–3.

Task Scenario 1 Scenario 2 Scenario 3

MAE RMSE MAE RMSE MAE RMSE

Pressure
prediction
(Pa)

3380.55 4509.76 2792.36 3571.59 3633.47 4519.46

Flow rate
prediction
(Nm3/s)

1.09 1.67 0.72 1.00 1.03 1.49

Supply prediction
(Nm3/s)

2.41 3.02 1.93 2.43 2.14 2.47
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The demand of Customer 4 suddenly increases to 250% (from 1720 to
1740 h) and the demand of Customer 23 suddenly increases to 300%
(from 1820 to 1850 h).

Scenario 2: Sudden pressure decrease at Pipeline Importer 1. The
pressure of Importer 1 suddenly degenerates to 6.9 MPa, from the
normal value of 7MPa (from 1820 to 1870 h).

Scenario 3: Sudden supply capacity degeneration of the UGS. The
supply capacity of the UGS suddenly decreases to 20% (from 1720 to
1770 h).

Considering the learning principles of the deep neural network, we
introduce two changes when generating the training data sets for each
abnormal scenario. For example, in Scenario 2, two pressure drops of
Pipeline Importer 1, namely a 50 h' pressure drop to 6.89MPa and a
50 h' pressure drop to 6.92MPa, are introduced in the system simula-
tion.

The results of predictions of the system conditions are illustrated
from the different perspectives, i.e. gas flow rates of the main suppliers

(pressure controlled), pressures at demand sites, pressures of the sup-
pliers (flow rate controlled), flow rates of important pipelines, which
managers and operators are more concerned with in practice (Pambour
et al., 2016b). For every perspective, typical results are analyzed in
detail below.

The results of Scenarios 1–3 are presented in Figs. 16–20.
We observe that the evolution of the pressures and loads for the

suppliers, delivery point and the important connection pipeline are
accurately predicted, which means that the deep learning model is able
to provide timely information to support operation and management in
abnormal conditions.

Figs. 15 and 16 show that the deep learning is able to predict the
responses of the two suppliers in abnormal scenarios. For intuitive
application in practice, the concept of capacity buffer area is introduced
in the Figs. By comparing the predictions and the maximal capacities,
supply security can be predicted, which can be helpful to operators to
respond in time and make efficient use of supply capacities.

Fig. 15. Performances comparison based on the empirical CDFs of the relative error values of the predictions, based on under different levels of noises.

Fig. 16. Predictions of flow rate of Importer 1 (Scenarios 1–3): Fig. a represents the results in Scenario 1; Fig. b represents the results in Scenario 2; Fig. c represents
the results in Scenario 3.
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Fig. 17. Predictions of flow rate of Importer 2 (Scenarios 1–3): Fig. a represents the results in Scenario 1; Fig. b represents the results in Scenario 2; Fig. c represents
the results in Scenario 3.

Fig. 18. Predictions of pressure of the UGS (Scenarios 1–3): Fig. a represents the results in Scenario 1; Fig. b represents the results in Scenario 2; Fig. c represents the
results in Scenario 3.
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Fig. 19. Predictions of pressure of Customer 1 (Scenarios 1–3): Fig. a represents the results in Scenario 1; Fig. b represents the results in Scenario 2; Fig. c represents
the results in Scenario 3.

Fig. 20. Predictions of the flow rate of connection pipeline (Scenarios 1–3): Fig. a represents the results in Scenario 1; Fig. b represents the results in Scenario 2; Fig. c
represents the results in Scenario 3.
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Fig. 18 presents the predictions of the pressure values of the UGS. In
the Figs, we can observe that the pressure drops, which help main-
taining stable supply of gas under abnormal conditions, are effectively
captured by the deep learning model. This type of ability is important
for estimating the conditions of critical components and making timely
preventing decisions, to ensure the reliability of supply of natural gas.

Pressure buffer, which is defined as the difference between the
pressure of the real-time delivery pressure and the contractual delivery,
is one of the most concerned issues of natural gas supply security.
Fig. 19 shows that the transient behaviors of the pressure buffer under
different abnormal scenarios are captured by the deep learning model.
Hence, this can provide a powerful method to predict security of supply
of the customers and to guarantee a high level of customer satisfaction
with a low consumption of energy.

The profiles in Fig. 20 represent the flow rate through the connec-
tion pipeline between Customer 11 and the multi-junction node, which
is important for the supply security considering congestion problems.
By comparing the true and predicted flow rates, we find that the pre-
dictions can effectively reflect the true future trends of gas flows, which
indicates that the deep learning model can be used to optimize the plan
of gas transmission according to changing conditions and ensure a more
reliable operation and supply.

However, by comparing the prediction performances in Table 6 and
Tables 3–5, we can observe a degeneration of accuracy after abnormal
changes occur. This is because only two similar changes are introduced
in the training data and the features of the complicated dynamic system
properties under these abnormal conditions have not been learned well
enough. In practice, more data can be used as training data and the data
sets can be continuously updated from the fault.

5. Conclusion

In this paper, we have presented a framework based on deep
learning, for the prediction of the operation conditions of natural gas
pipeline networks. A prediction model, based on real-time data, is de-
veloped by combining a SAE model with a regression layer. To reduce
the problem size, structural controllability theory has been applied for
selecting the input data most relevant for prediction, and a data
window has been used to create a proper “memory” for the deep
learning model.

The accuracy of prediction of the deep learning model has been
verified by benchmarking against BP neural network and SVM, on a
case of a triangle gas pipeline network. The effectiveness of the pro-
posed framework has been analyzed and verified from multiple per-
spectives, i.e. type of input, length of prediction time and level of noise,
with respect to a relatively complex gas pipeline network. To analyze
the deep learning method for abnormal conditions, three scenarios have
been considered. The results show that the proposed deep learning
model is able to accurately capture the evolution of system conditions
under different abnormal changes. The average accuracy of prediction
of the working condition within 15 h is higher than 0.99. Besides, the
deep learning model presents robust performances and is able to
maintain the high level of accuracy even under a relatively high level of
noises (from±0.5% to±2.5% of the nominal values of input data).
Also, the case study includes the compressor stations, the LNG terminals
and the UGS, whose working conditions are changing according to pre-
defined rules, and the results show that the developed method can
make good predictions with changing working pressures of the LNG
terminals and the UGS.

In future work, we will further improve the deep learning model,
considering other relevant factors in input and perspectives, e.g., un-
certainty management, demand response, dynamic programming, etc.
Also, some other powerful intelligence methods, such as ANFIS, ad-
vanced genetic programming, RNN-structured neural networks and so
on, will be considered in our future work, and their performance will be
compared with the proposed deep learning method. The relatively large

errors in pressure prediction, caused by the de-normalizing process,
calls for a more effective data-processing method.
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Nomenclature

a, b, c constants of Mackey-Glass model SAE stacked auto-encoder
BP backward propagation SVM support vector machine
B vector of encoding bias UGS underground gas storage
C vector of decoding bias W1 weight matrix
E error of reconstruction W2 decoding matrix
H number of hidden units x input vector of an auto-encoder
KL Kullback-Leibler divergence y vector of the hidden re-

presentation
LNG liquified natural gas z output vector of an auto-encoder
MAE mean absolute error θ model parameter
MRE mean relative error φ weight of the sparsity term
RMSE root-mean-square error τM time delay parameter
S designed length of the input part
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