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Abstract

Data-driven methods for direct prognostic map the relationship between monitored parameters and equipment Remaining Useful 
Life (RUL). They typically require the availability of a set of run-to-failure degradation trajectories for model training. Yet, in many 
industrial applications, equipment is often replaced before they fail to avoid catastrophic consequences on production and safety. 
Then also, incomplete degradation trajectories are available. In this work, we develop a method for predicting equipment RUL, and 
the related uncertainty based on both complete and incomplete degradation trajectories. The method is based on the combined use 
of a similarity measure and Evidence Theory (EvT). Application of the method on two case studies shows that it provides accurate 
RUL predictions, also in comparison with a similarity-based regression method of literature.
© 2018 Elsevier B.V. All rights reserved.

Keywords: Evidence Theory (EvT); Incomplete information; Incomplete degradation trajectories; Fault prognostics; Remaining Useful Life 
(RUL); Evidential Similarity-based Regression (EvSR)

1. Introduction

Various data-driven methods have been proposed for predicting the Remaining Useful Life (RUL) of degrading 
equipment [1], i.e., the time before the piece of equipment stops fulfilling its design functions. Such data-driven 
methods rely on the availability of collected data in the field during equipment operation [1] and are of interest when an 
explicit model of the equipment degradation process is not available. Among data-driven methods one can distinguish 
(i) degradation-based approaches, which aim at modeling the future evolution of the equipment degradation, (ii) direct 
RUL prediction approaches, which attempt to directly predict the equipment RUL [2].
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Degradation-based approaches are based on statistical models that learn the equipment degradation evolution from 
time series of observations of the degradation state [3]. The predicted degradation state is, then, compared with a 
failure criterion (failure threshold) representative of the degradation state beyond the which the equipment fails per-
forming its required functions. Examples of modeling techniques used in degradation-based approaches are Wiener 
Processes (WP) [4], Gamma Processes (GP) [5], Inverse Gaussian Processes (IGP) [6], Semi-Markov Models (SMM) 
[7], Hidden Semi-Markov Models (HSMM) [8], General Path Models (GPM) [9] and fuzzy transition models [10]
based on Mamdani models [11].

Degradation-based approaches provide informative and transparent outcomes, giving the current prediction of the 
equipment RUL and the prediction of the entire equipment degradation trajectory. However, proper degradation state 
indicators and failure thresholds must be identified, which can be difficult tasks in some industrial applications, espe-
cially when the knowledge of the degradation process is limited and only few and/or irregular degradation trajectories 
are available.

Direct RUL prediction approaches typically resort to machine learning techniques that map the direct relationship 
between the observed signals and the equipment RUL, without passing through predicting the equipment degradation 
state evolution and setting a failure threshold [12]. When few degradation trajectories with no clear patterns of regu-
larity are available for model training, similarity-based (also known as instance-based) learning algorithms [13] have 
been proved to be effective given that they do not perform explicit generalization. Contrarily, non-linear regression 
methods such as those based on Artificial Neural Networks (ANN) [14,15], which are characterized by large numbers 
of parameters to be tuned, tend to underperform due to the scarcity of training examples [16]. Indeed, direct RUL 
prediction approaches assume the availability of a set of complete run-to-failure degradation trajectories for training. 
In industrial applications, these can be collected on components which are cheap and not critical from the point of 
view of production and safety. In some cases, they can even be collected in ad-hoc performed laboratory tests.

Condition monitoring data are typically collected between consecutive maintenance interventions which, in many 
industrial applications are conservatively periodically scheduled to avoid failures. As a consequence, since no or few 
failures are observed, the available data refer to degradation trajectories which are right censored or incomplete, i.e., 
they do not contain data collected in the last part of the component life.

Furthermore, performing experimental run-to-failure tests to collect condition monitoring data during the entire 
equipment life is impractible for safety-critical and high-value components such as those used by aerospace, nu-
clear and oil and gas industries characterized by very high reliability and unique or new designed components. In 
other industrial sectors, such as the automotive, the design and execution of test campaigns to collect run-to-failure 
degradation trajectories requires significant cost, time and resources. For example, in the automotive electronic [17]
a temperature cycling test designed to adequately represent the life of automotive electronic components can easily 
take 2–5 months [17]. In many practical cases, such stress tests have to be repeated multiple times, e.g., whenever new 
failure modes are discovered or design changes are introduced.

Also, for both degradation-based and direct-RUL prediction approaches, it is fundamental to provide an assessment 
of the expected mismatch between the ground truth and the predicted RUL. For this, all sources of uncertainty affecting 
the RUL prediction must be considered:

• the aleatory uncertainty caused by the variability of the degradation process itself (e.g., due to the micro-structural 
differences between pieces of the same equipment or to unforeseen future loads, operational settings, and external 
conditions) [17,18];

• the epistemic uncertainty due to imperfect knowledge of the equipment degradation process model and its param-
eters [19].

Uncertainty management, is thus, a fundamental task in prognostics [20], in order to allow them confidently planning 
maintenance actions [21].

In this context, the objective of this work is twofold:

1) developing a prognostic method capable of exploiting all the available information, including data from right-
censored degradation trajectories and not only from complete, run-to-failure trajectories;

2) representing the uncertainty in the RUL prediction.
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For this, we propose a novel method called Evidential Similarity-based Regression (EvSR), which combines 
Similarity-based Regression (SR) with Evidence Theory (EvT). Similarity-based approaches have been successfully 
applied in fault prognostics. In [22], the authors have developed a fuzzy instance-based prognostic approach which 
builds local fuzzy models and applied it to engine RUL prediction. For a given test engine, the fuzzy model identifies 
a cluster of peers characterized by similar instances with comparable operational characteristics. The final RUL esti-
mate is, then, a similarity weighted average of the cluster instances. In [23], a library of degradation models has been 
created using linear regression and used to construct health indicators. The test component RUL is, then, estimated 
through a weighted sum of the RULs of the most similar instances. The method has been successfully applied to the 
PHM 2008 challenge turbofan data. In [13], a fuzzy point-wise similarity measure among degradation trajectories 
is defined to associate weights to the training trajectories. The test component RUL is, then, obtained as a weighted 
sum of RULs of the similar instances. Only run-to-failure degradation trajectories have been considered to train the 
prognostic model in all these works.

The use of EvT (also referred to as Dempster–Shafer theory, Belief Function Theory (BFT)) [24] in fault prog-
nostics, has been proposed in few works which typically rely on degradation-based approaches to forecast the future 
equipment degradation states. In [25], a trajectory similarity-based approach relying on the use of a K-Nearest Neigh-
bors (KNN) classifier based on the belief function is proposed to jointly predict observations and degradation states of 
aircraft engines. In [26], an evolving real-time neuro-fuzzy system is used to forecast future observation values and an 
evidential Markovian classifier based on EvT is trained to classify the turbofan degradation states using the predicted 
observations. In [27], an Evidential Hidden Markov Model (EvHMM), which combines probabilistic Hidden Markov 
Model (HMM) with EvT, is developed to estimate degradation states of turbofan engines. Notice that these works 
only exploit the information content of complete run-to-failure trajectories.

To the best of our knowledge, the only attempt to combine SR with EvT is given in [28]. SR is used to predict 
the RUL of sea water filters in an energy production plant and EvT is exploited to provide a left-bounded inter-
val [RULinf, +∞], which guarantees that the lower bound of the probability that the RUL of the test equipment is 
larger than RULinf is greater than a required confidence level. Yet, in [28] the use of EvT is limited by the facts that 
a) right-censored trajectories are not included in the training set, b) only a lower bound is provided for quantifying the 
uncertainty on the RUL prediction, c) EvT is not used to provide a RUL point prediction.

In this work, we overcome the limitations a), b) and c) of [28] by proposing a complete framework combining SR 
with EvT. We adopt the view of Smets’ Transferable Belief Model (TBM) [29], which is based on the assumption that 
beliefs manifest themselves at two mental levels: the “credal” level where beliefs are entertained and the “pignistic” 
level where beliefs are used to make decisions. At credal level, Smets proposed that beliefs are represented by belief 
functions [29]. When a decision must be made, the beliefs held at the credal level induce a pignistic probability 
function at the pignistic level. This probability function is called the pignistic probability function. The proposed 
EvSR method considers run-to-failure and right-censored degradation trajectories as agents whose state of knowledge 
on the actual RUL of the testing equipment is encoded in a Basic Belief Assignment (BBA). The construction of 
these BBAs is based on the estimation of the similarity between test and training trajectories. Then, Dempster’s rule 
of combination is applied to combine the BBAs corresponding to each training trajectory. The resulting combined 
BBA is, then, used to compute the corresponding pignistic distribution, from which one can derive: 1) the pignistic 
expectation, which represents the RUL point prediction and can be regarded as our decision point on the unknown RUL 
and 2) pignistic quantiles, which allow properly defining a two-sided prediction interval to quantify the uncertainty in 
the RUL prediction. The proposed EvSR approach is verified and compared with a SR-based approach with respect to 
two real case studies concerning the RUL prediction of turbofan engines and knives used in the packaging industry.

This work, is organized as follows: Section 2 states the assumptions on the available data and the problem. Section 3
recalls the method for RUL prediction based on SR and the basic concept of EvT. Section 4 describes the proposed 
EvSR for RUL prediction and uncertainty quantification. In Section 5, we discuss the metrics to quantitatively assess 
the performance and how to tune the hyperparameters of the proposed methodology. The case study and the application 
of the proposed method are reported in Section 6. Finally, Section 7 concludes the work.

2. Problem statement

The objective of this work is to estimate the RUL of a test component for which the degradation trajectories of 
N pieces of equipment similar to the one currently monitored have been observed. Among the available degradation 
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trajectories, NF < N are run-to-failure trajectories and the remaining NH = N − NF are right-censored degradation 
trajectories (i.e., trajectories corresponding to equipment replaced before failure). We refer to these two classes of 
trajectories as “complete and “incomplete” trajectories, respectively. We consider the case in which it is difficult to 
obtain complete trajectories, e.g., new or safety critical components for which running to failure can be lengthy, 
costly or dangerous. Therefore, to be realistic, we assume NF ≤ NH and a limited number of available degradation 
trajectories (e.g., N = NF + NH < 30).

Let zi (τi) = [zi
1(τi) . . . zi

M(τi)] ∈ R
M , i = 1, . . . , N , τi = 1, . . . , ni , be the vector of M features extracted from 

signal measurements performed at time τi , on the ith component. The time ni corresponds to the failure time if the 
ith trajectory is complete (i = 1, . . . , NF ) or to the last observation performed on the component before replacement 
if the trajectory is incomplete (i = NF + 1, . . . , N ). We assume that an expert is capable of providing an upper bound 
Tmax > 0 on the equipment life duration. This implies that for the ith right-censored degradation trajectory the ground 
truth RUL at time τi , yi(τi), lies in the interval, I i(τi) = (yi

L(τi), yi
U (τi)], where

yi
L(τi) = ni − τi, i = NF + 1, . . . ,N; τi = 1, . . . , ni (1)

yi
U (τi) = Tmax − τi, i = NF + 1, . . . ,N; τi = 1, . . . , ni (2)

Instead, we exactly know the ground truth RUL of the ith complete degradation trajectory

yi(τi) = ni − τi, i = 1, . . . ,NF ; τi = 1, . . . , ni (3)

We consider a case in which the failure thresholds for the extracted features are not known. In this setting, fault prog-
nostics is framed as a regression problem: given a training set, U , formed by NF realizations of complete degradation 
trajectories {zi (τi), yi(τi), τi = 1, . . . , ni}, i = 1, . . . , NF and NH realizations of incomplete degradation trajectories 
{zi (τi), I i(τi), τi = 1, . . . , ni}, i = NF + 1, . . . , N of a stochastic process (Z(τ ), Y(τ)) ∈ R

Mx(0, +∞), our task is to 
find a function

f :RM×k → (0,+∞)

f = f (zτ−k+1:τ )
zτ−k+1:τ = [

z(τ − k + 1), . . . ,z(τ − 1),z(τ )
]
, k = 1, . . . , τ

(4)

that associates to a test pattern ztest
τest−k+1:τest

= [ztest(τtest − k +1), . . . , ztest(τtest −1), ztest(τtest)] ∈ R
M×k at the current 

time instant τtest, the corresponding output ytest(τtest). The regression curve f in Eq. (4) can depend on all degradation 
history up to time current time (i.e., k = τ ), or only on the last k observations (k < τ).

3. RUL estimation based on similarity regression and basic concepts of evidence theory

3.1. RUL estimation based on similarity regression

This Section briefly illustrates the similarity-based regression method for the prediction of the RUL of a test com-
ponent proposed in [13]. The distance δi(τtest, τi) between the test pattern ztest

τtest−k+1:τ and the training pattern zi
τi−k+1:τi

extracted from the ith complete training trajectories is defined by:

δi(τtest, τi)b = ∥∥ztest
τtest−k+1:τtest

− zi
τi−k+1:τi

∥∥
2, i = 1, . . . ,NF ; τi = k, . . . , ni (5)

where ‖z1 −z2‖2 is the Euclidean distance between vectors z1 and z2. The similarity measure μi(τtest, τi) between the 
test trajectory segment ztest

τtest−k+1:τtest
and the training trajectory segment zi

τi−k+1:τi
is defined by the Gaussian kernel 

function:

μi(τtest, τi) = exp

(
−δ2

i (τtest, τi)

2σ

)
, i = 1, . . . ,NF ; τi = k, . . . , ni; σ > 0 (6)

where the scale parameter σ is set by the analyst to shape the desired interpretation to proper similarity degree. This 
similarity has turned out to give robust results in similarity-based regression due to its gradual smoothness [13]. For 
each complete training trajectory, i = 1, . . . , NF , the segment of length k with largest similarity, zi

τ∗
i −k+1:τ∗

i
, is first 

identified

zi
τ∗
i −k+1: τ∗

i
: τ i∗ = argmax μi(τtest, τi) (7)
τi=k,...,ni
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Then, we associate to each training trajectory the normalized weight ω∗
i :

ω∗
i = ωi∑NF

e=1 ωe

(8)

with

ωi = μi

(
τtest, τ

∗
i

)
(9)

and the RUL:

yi
(
τ ∗
i

) = ni − τ ∗
i (10)

corresponding to that of the last pattern of the most similar segment. The RUL ytest(τtest) of test pattern ztest
τtest−k+1:τtest

is estimated as a similarity-weighted sum:

ŷtest(τtest) =
NF∑
i=1

ω∗
i y

i
(
τ ∗
i

)
(11)

The ideas behind weighting the individual yi(τ ∗
i ) is that: (i) all trajectories in the training set bring useful information 

for estimating the RUL of the test trajectory; (ii) those segments of the training trajectories which are most similar to 
the most recent segment of the test trajectory should be more informative in the prediction of the future behavior of 
the test trajectory. With respect to the assessment of the uncertainty affecting the RUL prediction, the Similarity-based 
Conditional Cumulative Distribution (SCCD) has been defined as [30]:

F
(
ytest(τtest)

∣∣ ztest
τtest−k+1:τtest

) =
NF∑
i=1

1ytest(τtest)∈(0,yi (τ∗
i )]

(
ytest(τtest)

)
ω∗

i (12)

where 1(·) denotes the indicator function of a set. Then, the (1 − ε) × 100 prediction interval, Îε(τtest) =
[ŷε,L(τtest), ŷε,U (τtest)], ε ∈ (0, 1), can be obtained as

ŷε,L(τtest) = inf

{
ytest(τtest) ∈ (0,+∞)

∣∣∣ F
(
ytest(τtest)

∣∣ ztest
τtest−k+1:τtest

)
>

ε

2

}
(13)

ŷε,U (τtest) = inf

{
ytest(τtest) ∈ (0,+∞)

∣∣∣ F
(
ytest(τtest)

∣∣ ztest
τtest−k+1:τtest

)
> 1 − ε

2

}
(14)

3.2. Basic concepts of Dempster–Shafer evidence theory

To overtake the limitation of the methodology discussed in Subsection 3.1, which exploits only the information 
provided by complete degradation trajectories, we propose a novel approach for RUL prediction, which will be re-
ferred to as Evidential Similarity Regression (EvSR), and combines Similarity-based Regression (SR) with Evidence 
Theory (EvT) (also known as Dempster–Shafer theory or Belief Function Theory (BFT)) [24]. Adopting the view of 
Smets’ Transferable Belief Model (TBM) [29], we assume that beliefs manifest themselves at two mental levels: the 
“credal” level where beliefs are entertained and the “pignistic” level where beliefs are used to make decisions. At 
credal level, beliefs are represented by belief functions [29], whereas, when a decision must be made at the pignistic 
level, the beliefs held at the credal level induce a probability function which is called the pignistic probability function. 
In what follows, we briefly introduce the necessary notions of EvT.

3.2.1. Mass functions
Let X denote a variable taking values in a domain � called the frame of discernment. A discrete mass function m

with focal sets A1, . . . , Ag is a function from 2� to [0, 1] verifying m(Ag) = mg > 0 for all g ∈ {1, . . . , G}, m(A) = 0
for all A /∈ {A1, . . . , AG}, and:

G∑
mg = 1 (15)
g=1
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Mass function m is called Basic Belief Assignment (BBA) and each number mg is interpreted as a degree of 
belief attached to the proposition X ∈ Ag , and no more specific proposition, based on some evidence. The triplet 
(�, {Ag}g=1:G, m) is called Dempster–Shafer Belief Structure (DSBS) [31].

Given a normal mass function m, i.e., such that m(∅) = 0, with focal sets A1, . . . , AG, the corresponding belief 
and plausibility functions are defined, respectively, as:

bel(A) =
∑

{g:Ag⊆A}
mg (16)

pl(A) =
∑

{g:Ai∩A�=∅}
mg (17)

for all A ⊆ �. These two functions are linked by the relation Pl(A) = 1 − Bel(A) for all A ⊆ �. Bel(A) can be 
interpreted as the degree to which the evidence supports A, and Pl(A) as the degree to which the evidence is not 
contradictory to A.

According to Dempster interpretation [32], the mass function m defines a set of probability measures P(m) on the 
measurable space (�, B(�)), where B(�) denotes the Borel σ -algebra on �, such that:

bel(A) ≤ P(A) ≤ pl(A), ∀P ∈P(m) (18)

for any measurable subset A of �. A probability measure P satisfying the above inequalities is said to be compatible 
with m [33]. Therefore, the mass function provides information about the probability of a set in an imprecise manner 
by giving the interval in which the probability lies [34].

The mass functions, m1 and m2, induced by two distinct pieces of evidence, can be combined using Dempster’s 
combination rule [33–35]:

m1,2(A) = m1 ⊕ m2(A) = 1

1 − χ

∑
B∩C=A

m1(B)m2(C) (19)

for all A ⊆ �, A �= ∅, m1 ⊕ m2(∅) = 0, where:

χ =
∑

B∩C=∅
m1(B)m2(C) (20)

is the degree of conflict between m1 and m2. If χ = 1, there is a logical contradiction between two pieces of evidence 
and they cannot be combined. Dempster’s rule is commutative, associative, and it admits as neutral element the 
vacuous mass function defined as m(∅) = 0.

It may occur that one doubts the reliability of a source inducing the BBA m. In this case, the discounting operation 
can be used to reduce by a factor γ ∈ [0, 1] the belief assigned by m to the evidence conveyed by the information [35]:

m̃(A) = (1 − γ )m(A), ∀A ⊆ �, m̃(�) = γ + (1 − γ )m(�) (21)

The mass assigned to the frame of discernment � in Eq. (7) represents the ignorance about the value of X, because it 
indicates the absence of evidence that the value of X belongs to any subset A of �.

3.2.2. Pignistic probability distribution
Since the use of probabilities in a decision context is strongly supported by rationality arguments [29], a belief 

function has to be transformed into a probability function for decision making at pignistic level. One example of 
probability measure compatible with m (i.e., such that Eq. (18), holds) is the pignistic probability measure Pbet with 
corresponding pignistic probability distribution pbet [33,34]:

pbet(x) =
∑

A⊆�,A�=∅
m(A)

1A(x)

|A| (22)

where 1A(·) denotes the characteristic function of A and |A| its cardinality. For each focal element A, the pignistic 
probability distribution is bound between the belief and plausibility functions:

bel(A) ≤ pbet(A) ≤ pl(A) (23)
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3.2.3. Evidence theory for continuous bounded frame of discernment
The frame of discernment � is assumed to be finite in Subsections 3.2.1 and 3.2.2. If � is a continuous bounded 

interval on the real line and the focal are a finite number of intervals on the real line, all the expressions defined 
above are unchanged [35]. For the sake of simplicity, we set � = [xL, xU ] and we represent our state of knowledge 
regarding a quantity X by a mass function m : 2[xL,xU ] → [0, 1] with g interval focal sets Ag = [ag, bg] ⊆ [xL, xU ], 
g ∈ {1, .., G}. In particular, considering measurable subset A of [xL, xU ] of the form A = (xL, x], x ∈ [xL, xU ], 
Eq. (18) becomes:

bel
(
(xL, x]) ≤ P

(
(xL, x]) = F(x) ≤ pl

(
(xL, x]) (24)

where F(x) is the Cumulative Distribution Function (CDF) corresponding to the probability measure P ∈ P(m)

compatible with m [31,33]. In this case, the cardinality of a given set A in Eq. (22) is replaced by its Lebesgue 
measure:

|A| =
∫

A(x)dx (25)

and the pignistic probability function pbet is [31]:

pbet
X (x) =

G∑
g=1

m
([ag, bg]

)I[ag,bg](x)

|bg − ag| , x ∈ [xL, xU ] (26)

3.2.4. Pignistic expectation and quantiles
The pignistic probability function defined in Eq. (26) allows defining some summary statistics, such as the pignistic 

expectation Ebet
X and the pignistic quantiles qbet

X (ε) of order (1 − ε), ε ∈ (0, 1). The pignistic expectation Ebet
X :

E
bet
X =

xU∫
xL

xpbet
X (x)dx =

G∑
g=1

m([ag, bg])
|bg − ag|

xU∫
xL

xI[ag,bg](x)dx =
G∑

g=1

m
([ag, bg]

) (ag + bg)

2
(27)

can be regarded as the decision point on the unknown quantity X. The pignistic quantiles qbet
X (ε) are defined as

qbet
X (ε) = inf

{
x ∈ [xL, xU ] ∣∣ F bet

X (x) ≥ 1 − ε
}
, ∀ε ∈ (0,1) (28)

where F bet
X is the pignistic cumulative distribution:

F bet
X (x) =

∫
x̃<x

pbet
X (x̃)dx̃, x ∈ [xL, xU ] (29)

By choosing xε,L = qbet
X (ε) and xε,U = qbet

X (1 − ε), the interval I bet
X (ε) = [xε,L, xε,U ], satisfies:

P
bet
X

(
X ∈ I bet

X (ε)
) = 1 − ε (30)

i.e., I bet
X (ε) is a (1 −ε) ×100% prediction interval for X and it can be regarded as the decision interval on the unknown 

quantity X.

4. Evidential similarity-based regression

The key idea of the proposed method is to consider complete and incomplete training trajectories as agents whose 
state of knowledge regarding the unknown RUL of a test trajectory at current time τtest, X = Y test(τtest), is represented 
by a mass function m̃i

τtest
, i = 1, . . . , N . This latter is defined by the similarity measure between the trajectory segment 

containing the last k measurements extracted from the test trajectory ztest
τtest−k+1:τtest

and the segment zi
τi−k+1:τi

extracted 
from the ith training trajectory. Then, the weights ωi , associated to each training trajectory, i = 1, . . . , N , are assigned 
by applying Eqs. (7) and (9), and the discount factor γi (Eq. (21)):

m̃i
τtest

(
I i

(
τ ∗
i

)) = γiωi

m̃i (� ) = 1 − γ ω
i = 1, . . . ,N; γi ∈ [0,1) (31)
τtest τtest i i
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where �τtest is the frame of discernment, i.e., the domain [0, Tmax − τcurr] ⊂ R of the unknown quantity RULτtest with 
Tmax representing the maximum life duration of the equipment provided by an expert (see Section 2). Parameter γi

represents the analyst prior opinion about the maximum information that can be derived from the ith training trajectory 
with respect to the estimation of the test trajectory RUL [28]. Notice that γi < 1 implies that a part of belief is assigned 
to the ignorance represented by �τtest , even in the unrealistic case of a reference trajectory exactly identical to the test 
one [28]. When no prior knowledge is available on parameter γi , this can be set through cross-validation.

The definition of the quantity I i(τ ∗
i ) in Eq. (31), which indicates the uncertain interval of the component RUL, 

depends on whether the index i refers to a complete or a right-censored training trajectory. In case of complete 
degradation trajectories, i ∈ {1, . . . , NF },

I i
(
τ ∗
i

) = [
ni − τ ∗

i , ni − τ ∗
i + 1

)
, i = 1, . . . ,NF (32)

since we only know that at time τ ∗
i − 1 the component was working and at time τ ∗

i it was failed, whereas in the case 
of incomplete degradation trajectories, i ∈ {NF + 1, . . . , N},

I i
(
τ ∗
i

) = (
ni − τ ∗

i , Tmax − τ ∗
i

]
, i = NF + 1, . . . ,N (33)

since we know that the component failure would have been after time τ ∗
i , which corresponds to the time at which the 

component was preventively replaced, but before time Tmax, which, according to the expert is an upper bound of the 
component life duration.

Once the mass functions m̃i
τtest

associated to each training trajectories have been computed, they are combined into 
the BBA m̃τtest by applying Eqs. (19)–(20). The BBA m̃τtest represents our state of knowledge on the unknown compo-
nent RUL at time τtest, Y test(τtest). From m̃τtest the pignistic probability density function and the pignistic cumulative 
distribution function can be derived using Eqs. (26) and (27), respectively.

The bounds of a (1 − ε) · 100% prediction interval Îε(τtest) = [ŷε,L(τtest), ŷε,U (τtest)] such that P(Y test(τtest) ∈
Îε(τtest)) = 1 − ε, ε ∈ (0, 1) are obtained by applying Eqs. (29)–(30) and the pignistic expectation ŷtest(τtest) by 
Eq. (28). We consider ŷtest(τtest) and Îε(τtest) as our “decision” point and interval, respectively.

5. Performance metrics and hyperparameter tuning

In this Section, we briefly describe the metrics used to quantitatively assess and compare the performance of 
prognostic models SR and EvSR and how to tune the models hyperparameters. Considering a generic test trajectory 
(z(τ ), y(τ)), τ = 1, . . . , n, we refer to ŷ(τ ) and Îε(τ ) = [ŷε,L(τ ), ŷε,U (τ )] as a generic point estimate and an (1 −ε) ×
100% prediction interval of the test component RUL at time τ, y(τ), respectively.

5.1. Performance metrics for complete test degradation trajectories

1) The Root Mean Square Error (RMSE) metric [28] is used to assess the quality of the point RUL prediction ŷ(τ )

provided by a prognostic model. It is defined as

RMSE =
√√√√1

n

n∑
τ=1

(
ŷ(τ ) − y(τ)

)2 (34)

The RMSE measures the accuracy of the estimated RUL ŷ(τ ) and is desired to be as small as possible.
2) The Interval Score ISε metric [36] is used to assess the quality of the RUL prediction interval Îε(τ ) provided by 

a prognostic model. It is defined by:

ISε =
n∑

τ=1

(
ISε,A(τ ) + ISε,B(τ )

)
(35)

with

ISε,A(τ ) = 2

1 − ε

(
ŷε,L(τ ) − y(τ)

)
1{y(τ)<ŷε,L(τ)}

(
y(τ)

) + 2

1 − ε

(
y(τ) − ŷε,U (τ )

)
1{y(τ)>ŷε,U (τ)}

(
y(τ)

)
ISε,B(τ ) = ŷε,U (τ ) − ŷε,L(τ ) (36)
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where 1(·) denotes the indicator function of a set. The metric considers a trade-off between the desiderata of producing 
prediction intervals which contain the target ground truth RUL (first addend ISε,A(τ ), in Eq. (36)) and which are 
narrow (second addend ISε,B(τ ) in Eq. (36)) [36]. Smaller is the ISε , more satisfactory the prediction intervals are.

5.2. Performance metrics for incomplete degradation trajectories

Since metrics 1) and 2) require the knowledge of the ground truth RUL of the test trajectory, they cannot be 
applied in case of incomplete test degradation trajectories. Therefore, we introduce two additional prognostics metrics 
that exploit the only information available about y(τ) for incomplete degradation trajectories, i.e., y(τ) ∈ I (τ ) =
(yL(τ), yU (τ)] = (n − τ, Tmax − τ ].

3) The Prediction Interval Coverage PICε [37] measures the accuracy of the prediction interval Îε(τ ) when only 
the interval I (τ ) to which the ground truth RUL belongs is known. It is defined by:

PICε = 1

n

n∑
τ=1

PICε(τ ) (37)

with

PICε(τ ) =

⎧⎪⎨
⎪⎩

1 I (τ ) ⊆ Îε(τ )
diam(I (τ )∩Îε (τ ))

diam(I (τ ))
I (τ ) ∩ Îε(τ ) �= ∅

0 I (τ ) ∩ Îε(τ ) = 0

(38)

where diam(I (τ )) and diam(I (τ ) ∩ Îε(τ )) refer to the width of intervals I (τ ) and (I (τ ) ∩ Îε(τ )), respectively. Eq. (39)
implies that if the target I (τ ) is entirely contained within the estimated prediction interval Îε(τ ), then PICε(τ ) is 
equal to 1. If the estimated prediction interval does not contain the entire target I (τ ), but the intersection of the two 
is nonempty, then PICε(τ ) is equal to the ratio between the width of the interval I (τ ) ∩ Îε(τ ) and the width of the 
interval I (τ ), diam(I (τ )). Finally, if the intersection between the estimated prediction interval and the real target I (τ )

is empty, then, the coverage PICε(τ ) is 0. This metric is desired to be close to 1.
4) Inside metric D:

D = 1

n

n∑
τ=1

1ŷ(τ )∈I (τ )

(
ŷ(τ )

)
(39)

The inside metric D measures the percentage of times that the point estimate of the predicted RUL is greater than the 
period of time in which the component has not failed, i.e., the condition ŷ(τ ) ∈ I (τ ) holds. The metric is desired to 
be closer to 1.

5.3. Hyperparameter tuning

The proposed EvSR method is characterized by the presence of three parameters, which should be properly tuned:

• the Gaussian kernel scale β used in Eq. (9);
• the segment length k ∈ {1, 2, . . .} used in Eqs. (4)–(7);
• the discount factors γi used in Eq. (31), i = 1, . . . , N .

We assume that γi , has the same value γF for all the complete training trajectories, i.e., γi = γF , i = 1, . . . , NF and 
the same value γH for all incomplete training trajectories, i.e., γi = γH , i = NF +1, . . . , N . Notice that a SR approach 
requires the setting of parameters β and k. Hyperparameter tuning is performed by optimizing the prediction accuracy 
metrics for complete and incomplete degradation trajectories. To this purpose, the RMSE and the PIC are computed 
on a validation set of complete and incomplete degradation trajectories, respectively, considering different values of 
the parameters to be set. Then, a trade-off solution among those belonging to the Pareto optimal set is chosen by 
resorting to the TOPSIS method [38], giving equal importance to the two considered objectives.



JID:FSS AID:7511 /FLA [m3SC+; v1.289; Prn:22/10/2018; 15:36] P.10 (1-15)

10 F. Cannarile et al. / Fuzzy Sets and Systems ••• (••••) •••–•••
Fig. 1. Time evolution of the extracted 6 relevant features during the entire life of a turbofan engine.

Table 1
Considered hyperparameter values.

Hyperparameter Considered values

β {20,21,22,23,24,25,26,27,28,28,29,210}
γF , γH {0.05,0.15,0.25,0.35,0.45,0.55,0.65,0.75,0.85,0.95}
k {1,2,3,4,5}

6. Case studies

The proposed EvSR prognostic method has been verified with respect to data extracted from a well-known bench-
mark and an industrial case study.

6.1. Case study 1: RUL prediction of turbofan engines

We consider simulated degradation trajectories of a heterogeneous fleet of N = 218 turbofan engines operating 
under variable operational conditions. The data are taken from the NASA Ames Prognostics CoE Data Repository 
[39] and have been preprocessed as in [15], obtaining M = 6 relevant features describing the component degradation 
evolution. Fig. 1 shows the evolution of the six extracted features during the life of a turbofan engine.

The 218 trajectories have been randomly divided into 11 folds: 10 folds formed by 20 degradation trajectories and 
one-fold containing the remaining 18 degradation trajectories. A condition in which the failure time of some turbofan 
engines is unknown has been artificially created by applying a right-censoring mechanism to 50% of the trajectories in 
each fold. To this aim, we have randomly selected the trajectories and randomly sampled from a uniform distribution 
with support [0.5n, n] (where n is the ground truth time to failure of a randomly selected turbofan engine), the time 
at which the observation of the component life is interrupted. This particular setting has been designed for emulating 
the real industrial applications, where few complete degradation trajectories (e.g., N < 30) are available and many of 
them are right-censored (NH ≥ NF ). Further within each fold, Principal Component Analysis (PCA) has been first 
applied to reduce the dimensionality of the feature vector. The number of principal components to retain has been 
set by identifying in the scree plot the “elbow” point where the slope changes from steep to shallow, in this way, we 
have found that independently from the considered fold, only the first principal component has been selected, i.e., the 
dimension of the feature vector has been reduced from M = 6 to M = 1. The performance of SR and EvSR methods 
are evaluated within each fold resorting to a twice nested Leave-One-Out Cross Validation (LOOCV): the outer loop 
has been used to compute the metrics, whereas the inner loop has been used to set the hyperparameters, as discussed 
in Subsection 5.3. Table 1 reports the considered values of the parameters β , γH , γF and k.

Since no prior knowledge is available on the maximum life duration of turbofan engines, the variable Tmax has been 
set equal to 266.2 (cycles): this value corresponds to the 110% of the longest life duration among the 218 available 
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Table 2
Prognostic performances evaluated considering complete test degradation trajectories.

Metric
(complete test trajectories)

SR
(training set: only complete 
degradation trajectories)

EvSR1
(training set: only complete 
degradation trajectories)

EvSR2
(training set: complete and 
right-censored degradation trajectories)

RMSE (to be minimized) 37.14 ± 6.32 35.19 ± 5.75 33.63 ± 4.39
IS0.90 (to be minimized) 186.31 ± 55.67 166.55 ± 44.02 135.52 ± 18.94

Fig. 2. Predicted RUL by SR (hexagram), EvSR1 (square) and EvSR2 (triangle) on a complete test degradation trajectory.

degradation trajectories (i.e., Tmax = 242 ∗ 11
10 = 266.2). Notice that the training of the SR method uses only the 

complete degradation trajectories, i.e., 9 for folds 1–10 and 8 for folds 11, whereas, the EvSR uses all the available 
degradation trajectories, i.e., 19 for folds 1–10 and 17 for folds 11.

6.2. Results

Table 2 compares the performances of the developed EvSR method with those of the SR method considering 
complete degradation test trajectories. Table 2 reports the average of the performance metrics over the 11 folds and its 
standard deviation. With respect to the EvSR, we have considered the cases in which the model is trained with only 
complete degradation trajectories (EvSR1) and with complete and incomplete degradation trajectories (EvSR2).

EvSR2 performs significantly better than SR from the points of view of prediction accuracy, being the RMSE of 
EvSR2 9.46% lower than that of SR and of prediction interval quality, being EvSR2 IS(0.90) 27.25% lower than that 
of SR. Since the performance of EvSR1 is almost comparable with that of SR, we can conclude that the inclusion 
of the right-censored degradation trajectories in the training set for model training, allows increasing the EvSR2 
performance, which distinguishes EvSR1 from EvSR2. Fig. 2 shows an example of RUL point predictions obtained 
by the considered methods applied on a complete degradation trajectory. The lower RMSE of EvSR2 is mainly due to 
more accurate predictions at the beginning of the life of the considered test trajectory.

Fig. 3 shows an example of RUL prediction intervals obtained on a different test trajectory. Also in this case, the 
inclusion of right-censored degradation trajectories in the training set allows improving interval predictions quality, 
especially at the beginning of the component life.
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Fig. 3. Interval predictions provided by SR, EvSR1 and EvSR2 on a complete test degradation trajectory.

Table 3
Prognostic performance for right-censored test degradation trajectories.

Metric
(right-censored test trajectories)

SR
(training set: only complete 
degradation trajectories)

EvSR1
(training set: only complete 
degradation trajectories)

EvSR2
(training set: complete and 
right-censored degradation trajectories)

D (to be maximized) 0.58 ± 0.15 0.62 ± 0.16 0.62 ± 0.10
PIC0.90 (to be maximized) 0.46 ± 0.11 0.47 ± 0.09 0.51 ± 0.05

Table 3 compares the performances of the developed EvSR2 algorithm with those of SR and EvSR1, for right-
censored degradation test trajectories.

Although the results are more uncertain, being the test set less informative than that used for the computation of 
the RMSE and IS0.90 metrics (Table 2), they lead to similar conclusions.

6.3. Case study 2: prediction of the RUL of knives used in the packaging industry

We consider a heterogeneous fleet of N = 23 knives used in the manufacturing industry to cut packaging material. 
The prognostic task is complicated by the fact that few run-to-failure degradation trajectories are available and a 
failure threshold is not available. These data contain NF = 10 and NH = 13 complete and right-censored degradation 
trajectories, respectively. To deal with this type of data, we have applied a pre-processing procedure followed by a 
feature extraction step, which has allowed the identification of M = 2 relevant features describing the component 
degradation evolution. More details on the dataset and feature extraction procedure can be found in [15,40]. Fig. 4
shows the evolution of the two extracted features during a run-to-failure trajectory of a knife.

The performance of SR and EvSR are evaluated resorting to a twice nested Leave-One-Out Cross Validation 
(LOOCV) in which the outer loop has been used to compute the metrics, whereas the inner loop to set the hyper-
parameters, as discussed in Subsection 5.3. Table 4 reports the considered values of the parameters β , γH and γF .

Since no prior knowledge is available on the maximum life duration of knives, the variable Tmax has been set equal 
to 25.3 (time units): this value corresponds to the 110% of the longest life duration among the 23 available degradation 
trajectories (i.e., Tmax = 23 ∗ 11

10 = 25.3). Notice that the training set is formed by 9 trajectories for the SR and EvSR1 
and by 20 for the EvSR2 method.
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Fig. 4. Time evolution of the M = 2 relevant features from one knife.

Table 4
Considered hyperparameter values for grid search.

Hyperparameter Considered values

β {2−3,2−2,2−1,20,21,22,23,24,25}
γF , γH {0.05,0.15,0.25,0.35,0.45,0.55,0.65,0.75,0.85,0.95}
k {1,2}

Table 5
Prognostic performance evaluated considering complete test degradation trajectories.

Metric
(complete test trajectories)

SR
(training set: only complete 
degradation trajectories)

EvSR1
(training set: only complete 
degradation trajectories)

EvSR2
(training set: complete and 
right-censored degradation trajectories)

RMSE (to be minimized) 1.74 ± 1.20 1.79 ± 1.05 1.56 ± 0.80
IS0.90 (to be minimized) 14.85 ± 8.18 14.38 ± 4.17 13.94 ± 2.09

Table 6
Performance metrics for right-censored test degradation trajectories.

Metric
(right-censored test trajectories)

SR
(training set: only complete 
degradation trajectories)

EvSR1
(training set: only complete 
degradation trajectories)

EvSR2
(training set: complete and 
right-censored degradation trajectories)

D (to be maximized) 0.44 ± 0.41 0.47 ± 0.33 0.47 ± 0.33
PIC0.90 (to be maximized) 0.20 ± 0.15 0.72 ± 0.13 0.81 ± 0.13

6.4. Results

Tables 5 and 6 compare the performances of the developed EvSR methods with those of the SR method for complete 
degradation test trajectories. The averages of the performance metrics over the LOOCVs and its standard deviation 
are reported.

We can conclude that the better performance provided by the EvSR2 model with respect to that of the SR are 
due to the use of incomplete degradation trajectories in the training set. This is confirmed by the fact that the EvSR2 
outperforms the EvSR1 considering the RMSE, IS0.90 and IPC0.90 metrics.
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7. Conclusions

In this work, we have developed a novel method for estimating the RUL of industrial equipment based on SR mea-
sure and EvT. This method allows exploiting all available information, including that contained in the right-censored 
degradation trajectories. Furthermore, the method is able to properly represent the uncertainty in the RUL prediction 
by means of pignistic quantiles. The method has been shown able to outperform a similarity-regression based method 
on two case studies. The developed method is expected to be useful for the prediction of the RUL of components which 
undergo periodic maintenance, are safety critical or high-value, and, therefore, for which few run-to-failure degrada-
tion trajectories are available. Furthermore, the method can be easily extended to more general applications beyond 
PHM, for which time-to-event analysis is required. In these cases, the proposed method can manage left-censored or 
interval censored time series data.

One limitation of the developed method is the computational complexity of the Dempster’s rule of combination, 
which grows exponentially in the number of evidential sources [41]. Thus, the use of the proposed method when 
many sources of evidence are available and real-time RUL predictions are required can be critical. This problem can 
be partially overcome by reducing the number of evidences to be aggregate, for example, limiting the combinations to 
the K-nearest training points or by using some approximation method based on Monte Carlo simulations [42]. Another 
issue of the proposed method concerns the fact that it requires some prior knowledge of the maximum life duration 
of the equipment under investigation. Since this quantity is typically known with uncertainty during the equipment 
design phase, future works will be devoted to properly take into account this additional source of uncertainty in the 
developed methodology.
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