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A B S T R A C T

In seismic risk assessment, the fragility curve is used to estimate the reliability of structures and equipment under seismic loads. The shape of fragility curves is
usually approximated by the cumulative distribution function of a lognormal distribution. The estimation of the parameters of the fragility curves requires gathering
different sources of information and quantifying the uncertainties coming from these sources. This paper proposes a methodology for the computation of fragility
curves for nuclear power plant equipment, based on a Bayesian updating framework that combines the results of numerical simulations and damage data. An artificial
neural network is trained iteratively by optimizing its prediction uncertainties over the ground motion sample space, and it is used to conduct numerical simulations.
The results of the numerical simulations provide a prior estimation of the seismic capacity of the equipment. The estimation of the uncertainty related to the
equipment capacity is taken from the literature. Damage data, collected from the in situ observation and the database of the seismic qualification utility group
(SQUG), are used to construct the likelihood function for the Bayesian updating. The posterior equipment capacity is evaluated by Markov chain Monte Carlo
simulation and posterior fragility curves are, then, obtained. The main contributions of the work are: (i) proposal of an adaptive training algorithm of artificial neural
networks to improve the design of experiments for finite element simulations; (ii) proposal of a two-step transformation method to construct the likelihood function
with existing damage data from the SQUG database. The methodology is applied to compute the fragility curves of a low-voltage switchgear of a nuclear power plant,
within the so-called KARISMA benchmark.

1. Introduction

Seismic probabilistic risk assessment (SPRA) is a widely applied
approach to estimate the seismic risk of critical structures, such as
nuclear power plants (NPPs). In the framework of SPRA, fragility ana-
lysis is conducted to evaluate the fragility curves, i.e. the conditional
probabilities of failure of structures or components at given values of
the seismic intensity measure (IM), e.g. the peak ground acceleration
(PGA). The computation of fragility curves is typically realized by sta-
tistical analysis based on different sources of information, including
expert judgments, numerical simulations, empirical damage data.

The safety factor method (Kennedy et al., 1980; EPRI, 1994), largely
used in nuclear engineering, depends on safety margins determined
from simplified structural analyses and experimental data. Un-
certainties are evaluated from expertise of engineers or results of qua-
lification tests. The safety margins and their associated uncertainties are
used to assess the seismic capacity of structures and equipment. This
method does not require numerical simulations. However, the safety
margins determined from the simplified approaches can be

conservative, and thus, cannot offer a best estimate of the fragility
curves.

Numerical simulations are commonly applied in the current practice
of fragility analysis, e.g. by the finite element method (FEM) (Padgett
and DesRoches, 2008; Ellingwood and Kinali, 2009; Zentner, 2010).
Different sources of aleatory and epistemic uncertainties can be mod-
eled and propagated through the numerical model. The conditional
probability of failure can be computed either by pointwise Monte Carlo
estimation or by assuming a parametric representation (e.g. lognormal)
of fragility curves. The underlying parameters of the fragility curves are
determined based on the results of the simulations. However, because
of the high complexity of numerical models, the computational cost of
the numerical analyses can be very high. One way to reduce the com-
putational burden is to use fast-running statistical metamodels. Various
types of metamodels have been tested and applied in fragility analysis,
such as Kriging (Gidaris et al., 2015), artificial neural networks (ANNs)
(Lagaros et al., 2009; Ferrario et al., 2017; Mangalathu et al., 2018;
Wang et al., 2018), quadratic response surfaces (Towashiraporn, 2004),
polynomial chaos expansion (Mai et al., 2016), among others.
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Nevertheless, due to the fact that a numerical model cannot contain all
the structural details and damage mechanisms, damage data of struc-
tures and equipment can be used for a more accurate computation of
fragility curves.

Damage data have been also widely used for seismic fragility ana-
lysis. The damage data are obtained either from post-earthquake ob-
servations or from qualification tests. They are used to describe the
performance of structures or equipment under real seismic excitations.
Fragility analysis is, then, conducted by statistical analysis of the da-
mage data. For example, fragility curves for European-type reinforced
concrete buildings are determined in Rossetto and Elnashai (2003) with
earthquake observational data. Using Italian seismic damage data,
fragility curves for different building typologies are built in Rota et al.
(2008) to provide a reliable estimate of the vulnerability of structures of
different classes. In these works, the fragility curves are obtained di-
rectly by fitting the damage data into a cumulative distribution function
(CDF) of the lognormal distribution. Other studies adopt Bayesian sta-
tistics to estimate the fragility parameters (Straub and Kiureghian,
2008; Gardoni et al., 2009). In the Bayesian framework, prior dis-
tributions of the fragility parameters are assumed. Then, damage data
are used to build the likelihood function. The fragility parameters can
be generated by Markov chain Monte Carlo simulation (MCMC)
(Hastings, 1970), based on the posterior distributions obtained from
Bayesian updating. The advantage of the Bayesian statistics method is
that it yields a probability distribution of the parameter to be estimated
(so the confidence intervals can be computed), rather than a single
value for the estimation of the parameter. Representative examples of
the application of Bayesian statistics in seismic risk assessment can be
found in Singhal and Kiremidjian (1998), Koutsourelakis (2010),
Jalayer et al. (2010), EPRI (2014), Jaiswal et al. (2011), Beck and
Taflanidis (2013), Buratti et al. (2017), Noh et al. (2017), Jeon et al.
(2017), EPRI (2017), among others.

The objective of this paper is to propose a framework to take into
consideration both numerical simulation results and damage data in the
computation of fragility curves. The methodology is divided into two
parts: (i) estimation of the prior parameters with numerical simulations:
to reduce the computational cost, an ANN metamodel is trained with an
iterative active learning algorithm to substitute the computationally
expensive FEM simulation; (ii) computation of the likelihood function
with the damage data and execution of Bayesian updating to obtain the
posterior distribution of the seismic capacity of the equipment.
Different sources of uncertainties (aleatory and epistemic) are quanti-
fied and integrated in the computation of the fragility curves. Critical
equipment of nuclear power plants are designed with high safety
standards. The low probability of failure of the equipment may lead to a
biased estimation of the fragility parameters, if the these parameters are
solely determined by the maximum likelihood estimation (Shinozuka
et al., 2000). This requires assessing the confidence associated to the
estimation, which can be achieved in the Bayesian framework.

This paper is organized as follows. Section 2 describes the global
methodology to account for different sources of information in the
computation of fragility curves. It consists of the determination of the
prior fragility curves with numerical simulations results and the Baye-
sian updating with damage data. In Section 3, the proposed metho-
dology is applied to evaluate the robustness of a low-voltage switchgear
located in the Kashiwazaki-Kariwa nuclear power plant in Japan. Final
conclusions are given in Section 4.

2. Description of the methodology

2.1. Seismic fragility curves

Fragility curves compute the conditional probability that the en-
gineering demand parameter (EDP) exceeds a failure threshold, for a
given seismic IM:

= >P α P y y α( ) ( | )f crit (1)

where y is the EDP, such as inter-story drift, ycrit is the failure threshold
and α represents the seismic IM. The lognormal fragility model pro-
posed in Kennedy et al. (1980) and Huang et al. (2011) is often applied
in practice. In the lognormal assumption, the shape of the fragility
curve is approximated by the CDF of a lognormal distribution:


⎜ ⎟= ⎛
⎝

− ⎞
⎠

P α α A
β

Φ( ) ln ln
f

m

R (2)

where Φ(·) is the CDF of the standard normal distribution N A(0, 1), m

denotes the median capacity. The parameter βR represents the aleatory
uncertainty related to the inherent randomness. According to Kennedy
et al. (1980) and Basu et al. (2017), an epistemic uncertainty βU , re-
sulting from the lack of knowledge of the structural capacity, should be
also considered:

 ∼A LogN A β( , )m m U
2 (3)

where Am is the median of the lognormal distribution and LogN denotes
a lognormal distribution. Consequently, the ∈γ [0, 1] non-exceedance
confidence interval of the fragility curves can be computed (EPRI, 1994;
Kwag et al., 2014; Zentner et al., 2017)
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Eq. (4) allows computing the high confidence low probability of
failure (HCLPF), defined as the capacity where the probability of failure
reaches 5% with 95% confidence:

= − +A A em
β β

HCLPF
1.645( )R U (5)

The mean fragility curve, which considers both aleatory and epistemic
uncertainties, is defined by
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The objective of the subsequent subsections is to describe the
methodology to compute fragility curves for an equipment of interest
located in a specific NPP structure, which is named ‘target structure’ in
the sequel. The numerical model of the target structure is available. The
general workflow of the proposed methodology is illustrated in Fig. 1.
In this framework, reference values of βU

prior and ycrit are obtained from
the literature. To better explain the methodology, we start with the
determination of prior fragility parameters based on numerical simu-
lation results. Bayesian updating and MCMC are, then, executed with
damage data to obtain the posterior curves. The assumptions made in
this methodology are:

1. The fragility curves in this paper are all calculated under lognormal
distribution assumptions, namely (i) the fragility curves are com-
puted by the lognormal CDFs (Eq. (2)) and (ii) the epistemic un-
certainty is considered lognormally distributed (Eq. (3)), in order to
facilitate the application of the Bayesian theorem based on the da-
mage data.

2. The seismic record-to-record variability is considered as the only
source of aleatory uncertainty.

3. PGA is the IM parameter used to compute the fragility curves, since
most damage data are provided with given values of PGA.

4. Without different specification, the PGA used in the fragility curve
stands for the PGA value of the ground motion on the soil free
surface in the proximity of the target structure.

2.2. Determination of prior fragility curve parameters with adaptive ANNs

Prior fragility curve parameters are determined based on the results
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of numerical simulations. FEM is one of the most widely used numerical
methods for structural analysis. However, in case of a complex struc-
ture, the large number of degrees of freedom of the numerical model
makes the resolution process highly computationally expensive. In this
case, metamodels, calibrated from the existing simulation results, can
be used to substitute the mechanical model, in order to improve the
computational efficiency. The ANN is adopted in this paper because of
its excellent universal approximation capability (Reed and Marks, 1999;
Bishop, 1995).

In this subsection, the method to determine the parameters of prior
fragility curves is explained. In order to improve the computational
efficiency, ANNs are adopted in this paper to characterize the seismic
IMs-EDP relation. With the adaptive enrichment, the quality of the
training data is largely improved by reducing its scarcity in the design
space. Therefore, less FEM numerical simulations are needed for the
calibration of the ANN metamodel.

2.2.1. ANN training and prediction uncertainty
The objective of the application of adaptive ANNs is to establish a

non-linear statistical regression model relating the seismic inputs and
the EDP of interest:

̂ ̂= …y f (IM , , IM )k1 (7)

where the symbol ∧ used in this paper denotes all the computation re-
sults relevant to ANNs: the non-linear regression model ̂f constructed
by ANNs and the EDP ̂y computed with ANNs.

A classical feed-forward ANN consists of activation functions (linear
functions, or non-linear hyperbolic tangent functions) and a set of
weighting parameters w adjusted to minimize a cost function. The ac-
tivation functions are connected by the weighted links in a layered
structure. There are three types of layers: (i) input layer, which feeds
the variables from which the ANN model is constructed; (ii) hidden
layers, being single or multiple, to add parameters and nonlinearity;
(iii) output layer, which provides the results of the ANN. The cost
function E computes the square error between the ANN predictions ̂y
and the targets y (e.g. FEM simulation results), summed up over all
training examples. The training of ANNs is typically realized by

gradient-based algorithms to find the optimal weighting parameters.
The gradient vector = ∂

∂g E
w can be computed efficiently by the back-

propagation algorithm (Rumelhart et al., 1986; Bishop, 1995). One can
refer to Bishop (1995) and Reed and Marks (1999) for detailed ex-
planations on the basic theory about feed-forward ANNs. More details
on the applied approach are also given in Wang et al. (2018).

The prediction intervals (PIs) of ANNs are estimated by the delta
method (Chryssoloiuris et al., 1996; Zio, 2006). Assuming a normal
distribution of the ANN training error, the standard deviation (Std) s of
the ANN prediction is calculated (Rivals and Personnaz, 2000)

= + −h JJ hs σ 1 ( )T T
ANN test

1
test (8)

where σANN is the Std of the ANN training errors. The Jacobian matrix J
is constructed by the gradient vectors ̂= ∂

∂h w
i y i

of the training examples;
also hi can be computed based on the backward-propagation method
(Bishop, 1995). In Eq. (8), htest is the h vector for the test example, and
the upper index T denotes the matrix transpose. One can refer to Rivals
and Personnaz (2000) and Bishop (1995) for more details regarding the
computation of h and the delta method. An important property of the
prediction uncertainty computed by Eq. (8) is that it shows large un-
certainty at the locations where no enough training data are available.
This is originated from the term −h JJ h( )T T

test
1

test, in which the in-
formation of the training data is stored in the Jacobian matrix J . One
can refer to Fig. 5 of Wang et al. (2018) for an illustration example.

2.2.2. Adaptive ANN algorithm
An ANN adaptive learning algorithm is proposed in this paper to

improve the design of experiments (DoEs) of FEM simulations. The al-
gorithm is based on the prediction uncertainty of ANNs computed with
the delta method. The algorithm adds iteratively in the training dataset
the points at the zone of interest (e.g., at the location where the per-
formance of the metamodel is limited, with a large prediction un-
certainty). The iterative training of ANNs is stopped when a certain
accuracy criterion is satisfied. The principle of such an algorithm has
been used in Kriging for fragility analysis in Gidaris et al. (2015), but it
is seldom used with ANNs. In fact, adaptive learning is widely used for
Kriging metamodels, e.g. in Jones et al. (1998), Echard et al. (2011),

Fig. 1. The Bayesian framework for fragility analysis.
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because the prediction uncertainty is directly provided in the output,
which is not the case for other metamodels, such as ANNs or support
vector machines. For this reason, the enrichment of new training
samples in most adaptive training procedures applied to ANNs is not
based on the prediction uncertainty. Rather, importance sampling, di-
rectional simulation or MCMC are typically used to create new samples
in the area of interest for an enriched adaptive training (Hurtado and
Alvarez, 2001; Papadopoulos et al., 2012; Pedroni and Zio, 2017).
However, these approaches cannot be easily applied in fragility ana-
lysis, since it is difficult to generate or to find an earthquake motion,
conditional on required values of multiple IMs (e.g. PGA and Irias in-
tensity). An alternative is to generate a large population of initial
samples and to enrich the DoEs with samples in the initial population
according to an enrichment criterion. Such a strategy has been studied
by Xiao et al. (2018) with ANNs, in which the computation of the
prediction uncertainty is based on cross-validations, requiring retrain-
ings of ANNs. In this paper, we quantify the uncertainty linked to ANN
predictions with the delta method, which can be directly obtained once
the ANN is trained, and integrate the prediction uncertainty in the
enrichment criterion of the DoEs, to ensure the performance of the ANN
on the whole input space, with less training data. The whole workflow
of the adaptive ANN algorithm is summarized in Fig. 2. Combined with
the FEM simulations, the ANN adaptive training algorithm is as follows:

1. Initialization of the DoEs. To prepare for the adaptive learning al-
gorithm, a population X composed of N seismic signals should be
generated. IMs are extracted for all N seismic ground motions. N0
seismic motions are randomly selected from X to carry out FEM si-
mulations. N0 should be larger than the total number of the ANN
parameters, including weights and biases.

2. Starting of the iterative ANN training. For iteration k ( ⩾k 0), the
ANN is trained with Nk IMs and EDP pairs in the current DoEs. Here
Nk is used to denote the number of IMs-EDP data in the DoEs at the
iteration k. The ANN is suggested to be trained in the log-log space,
i.e. with ln(IMs) and ln(EDP). ANN simulation is, then, carried out
for every IMs set in the total population X. Predictions ̂yk

i and the

associated prediction uncertainty sk
i can be obtained with the ANN

trained at the current iteration k.
3. Computation of the accuracy metric δk

i and the accuracy threshold
δk

crit:

∑= = …
=

s
N

s p p N1 , for in the training set ( 1, , )k
k p

N

k
p

kref,
1

k

(9)

=
−

= …δ
s s

s
i X i N

| |
, for every in ( 1, , )k

i k
i

k

k

ref,

ref, (10)

= = …δ δ p p Nmax( ), for in the training set ( 1, , )k
p

k
p

k
crit

(11)

The quantity s kref, is the mean value of the prediction uncertainty of
the training examples at the iteration k. It serves as the reference
value to compute the accuracy metric. The accuracy metric δk

i cal-
culates the relative deviation of sk

i with respect to sref,k. A large value
of δk

i indicates a large prediction uncertainty sk
i , so that the corre-

sponding ANN prediction is less reliable. The accuracy threshold δk
crit

is set as the maximal relative deviation of prediction uncertainty in
the training dataset.

4. Verification of the ANN accuracy. The set of test samples is defined
by all the samples in X which are not used to train the ANN. When δk

i

of every test sample is smaller than the accuracy threshold, i.e.
<δ δmax( )k k

test crit , it can be considered that the samples in the ANN
training set are enough to cover the whole input space of the po-
pulation X. So the ANN is accurate enough for X. The iterative
training can be, therefore, stopped. Otherwise, a further enrichment
of the training data is necessary.

5. Enrichment of the ANN training dataset. If the accuracy of the ANN
is not satisfied, M samples in the test set with the largest δk

i values
(i.e. with the largest prediction deviations) are selected to run the
FEM simulations. The results of the FEM simulations are added to
the ANN training data. Set = +k k 1, and go back to Step 2.

Fig. 2. Workflow of the adaptive training of ANNs.
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6. After being trained, the ANN is validated on another validation
dataset, which is different from the training dataset.

Due to the property of the prediction uncertainty s, some ground mo-
tions with high intensities, which are often outside the validity domain
of the ANNs in the first few iterations (so their prediction uncertainties
are very high), can be also automatically selected by the adaptive
training. With a reasonable number of FEM simulations, an ANN is
obtained at the end of the adaptive training. Then, ANN simulations can
be carried out for ground motions in the whole population X to predict
the structural EDPs ̂y .

2.2.3. Determination of prior fragility parameters
Prior fragility parameters βR and Am

prior can be estimated from the
ANN simulation results. The failure threshold ycrit, informed from the
reference value in the literature, provides an estimation of Am

prior. The
Std of the ANN training error is integrated in the computation of fra-
gilities to consider the metamodel uncertainty. Such an idea has been
used in Gidaris et al. (2015) and Wang et al. (2018) to account for the
metamodel error in the lognormal based fragility models. Since a set of
IMs, instead of the whole ground motion, is used as the input of the
ANN, there is a loss of information in the input. σANN is used to quantify
this loss of the ground motion randomness, which cannot be conveyed
by the IM set and therefore cannot be captured by the ANN. More de-
tails concerning the inclusion of σANN in the fragility analysis can be
found in Wang et al. (2018). More precisely, the determination of Am

prior

and βR is realized by:

1. Linear regression of the data cloud ( ̂α y, ) in log-log space (Cornell
et al., 2002; Ellingwood and Kinali, 2009; Zentner et al., 2017). In
the application of this paper, α denotes the PGA.

̂ = + +y c α b εln ln ln (12)

where b and c are regression parameters determined from the data
cloud ( ̂α yln , ln ) and the residual ε follows a normal distribution
N σ(0, )R IM|

2 .
2. Computation of the conditional probability of failure, considering

the Std of ANN training errors σANN.

=
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3. Reformulating Eq. (13) for coherence with Eq. (2).
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Therefore, =A y b/m
prior

crit
c and = +β σ σ c/R R IM|

2
ANN
2 .

The prior value of βU of the equipment capacity is chosen in
agreement with the literature, such as (EPRI, 2014). With the computed
value of Am

prior, the prior distribution of Am is determined:
 ∼f A LogN A β( ) ( , ( ) )m m U

prior prior prior 2 .

2.3. Bayesian updating of fragility curves with damage data

2.3.1. Damage database
The damage data z used in this study are taken from the seismic

qualification utility group (SQUG) database. The SQUG database (EPRI,
2016), built by the Electric Power Research Institute (EPRI), gathers
seismic experience data related to seismic capacity of equipment in
industrial facilities (not limited to NPPs) (Starck and Thomas, 1990).
The data in the SQUG database are mostly obtained from post-earth-
quake inspections of equipment in these industrial facilities. 32

earthquakes from 1971 to 2010 are registered in the SQUG database
with most of them taking place in the USA. Some strong earthquakes in
Chile, Japan, Turkey, etc are also included. The equipment in the SQUG
database is divided into 20 conventional classes, including switchgears,
batteries, motor control centers. A list of the 20 equipment classes is
summarized in Starck and Thomas (1990).

For the data collected in the SQUG database, each observation
contains the information: (i) equipment description (size, manu-
facturer, etc); (ii) the earthquake and the PGA; (iii) the industrial fa-
cility where the equipment is located; (iv) the elevation h of the
equipment in the facility structure; (v) the description of the perfor-
mance of the equipment after the earthquake. It has to be mentioned
that no details on the supporting structures are provided in the data-
base, so that the FEM models for the structures in the SQUG database
are in general not available. The integration of the damage data in the
Bayesian updating depends also on these supporting structures. The
method to construct the likelihood function with the damage data is
explained in detail in Section 2.3.3. In our study, the damage data for
the low-voltage switchgear are collected from the SQUG database. They
are used in the Section 3 for the Bayesian updating of the fragility
curves.

2.3.2. Bayesian framework in fragility analysis
Given the damage data z, the posterior distribution of Am can be

computed by the Bayes’ theorem:

  =z zf A kL A f A( | ) ( | ) ( )m m m
post prior (15)

where zL A( | )m is the likelihood function determined by the observed
data, and k is a constant to normalize the posterior distribution. Every
observational data vector zi has two components: the PGA value αi of
the seismic excitation and the damage state xi of the equipment of in-
terest after the earthquake. This latter xi is modeled as a binary
Bernoulli variable: =x 0i if no failure occurs and =x 1i if the equip-
ment fails. According to Shinozuka et al. (2000), the likelihood function
with given z is written as:
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where nobs is the number of the empirical data. Substituting Eq. (16)
into Eq. (15), one can obtain the expression of the posterior distribution
of Am:

 ∏∝ −
=

−zf A P α P α f A( | ) ( [ ( )] [1 ( )] ) ( )m
i

n

f
i x

f
i x

m
post

1

1 priori i
obs

(17)

Knowing zL A( | )m and f A( )m
prior , the MCMC simulation allows sampling

efficiently the posterior distribution without computing explicitly the
constant k of Eq. (15) (Hastings, 1970). Therefore, the essential part of
the Bayesian updating is to determine the parameters in zL A( | )m to
construct the likelihood function.

It appears that the computation of zL A( | )m is straightforward.
However, different kinds of PGA values can be provided in the data-
base. Before computing the likelihood function, one has to ensure that
the PGA values to plug in Eq. (17) describe the free surface ground
motions near the target structure in which the equipment is located.

2.3.3. Determination of the likelihood function
Two groups of earthquake observational damage data are discussed

in this study:

1. In-situ earthquake observational data =z α x( , )t t of the equipment
of interest in the target structure, where αt denotes the PGA level
recorded on the free surface near the target structure (Let us recall
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that the FEM model of the target structure is available).
2. SQUG earthquake observational data =z α x( , )s s of a similar

equipment positioned in other civil structures in the database,
named SQUG structures in this paper. The quantity αs denotes the
PGA level recorded on the free surface near the SQUG structures.

The total workflow of the determination of the likelihood function
with damage data is summarized in Fig. 3.

Likelihood function for zt. Recalling that the PGA values in Eq. (17)
should be αt , data of the first category can be directly inserted into Eq.
(17).
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where nt is the number of the in-situ observational data.
However, the use of the SQUG data is not straightforward. The

purpose of the subsequent part is to propose a method to integrate
SQUG data in Eq. (17), i.e. a method to transform zs into zt with also
the quantification of the associated uncertainty in the transformation.
The essential idea of the assumption is that the damage state of the
equipment after the earthquake depends on the PGA value of the floor
acceleration.

Likelihood Function for zs. The transformation from zs into zt consists
of two steps:

1. Compute the PGA of the floor acceleration of the SQUG structure
given the PGA on the free soil surface.

2. Considering that the equipment is positioned in the target structure
with the same floor acceleration, compute the PGA of the free sur-
face ground motion of the target structure.

We start with the first step of the transformation. In general, the
numerical model of the SQUG structure is difficult to obtain, and only
the elevation h of the location of the equipment is provided in SQUG
data. Without any information on the SQUG structure, the simple am-
plification factor model used in EPRI (2014) is adopted in this study:

=α λ h α( ) sfl (19)

where λ h( ) is the amplification factor, which is a function of the ele-
vation. αfl denotes the PGA of the floor acceleration. The quantity λ h( )
contains a median value λ h( ) and a lognormal uncertainty

̃ ̃=ε λ h λ h ε: ( ) ( ) with ̃ ∼ ∼ε LogN β(1, )2
. Here, a linear relation is se-

lected for λ h( ):

= +λ h c h b( ) h h (20)

The parameters ch and bh are determined according to the amplifi-
cation factor values used in EPRI (2014):

= =λ h1 if 0 (21)

= =λ h1.5 if 12.192m (22)

So far, the floor acceleration αfl and its associated uncertainty ̃ε
have been computed. The second step of the transformation is ex-
plained in what follows. The transformation of αfl to αt is, in fact, the
transformation of the floor PGA of the target structure into the free
surface PGA. This transformation can be realized with a statistical
model established from the FEM simulation results, which are used to
train the adaptive ANN.

From the FEM simulation results of Section 2.2, PGA values of the
floor accelerations αf

FEM and the free surface ground motions αg
FEM of

the target structure can be extracted. Let us assume that both PGA
values are lognormally distributed. This assumption is checked later in
our specific case study. The lognormal assumption allows building a bi-
variate normal distribution of αln f

FEM and αln g
FEM. The marginal dis-

tributions of αln f
FEM and αln g

FEM are denoted by N μ σ(ln , ( ) )f
FEM

f
FEM 2 and

N μ σ(ln , ( ) )g
FEM

g
FEM 2 , respectively, with the correlation coefficient ρ.

According to the property of the conditional bi-variate normal dis-
tribution, it can be shown that the median value of the transformed free
surface PGA →α tfl and its uncertainty →β tfl are calculated by

= + −→α μ ρ α μ
σ
σ

ln ln (ln ln )tfl g
FEM

fl f
FEM g

FEM

f
FEM (23)

= −→β ρ σ(1 )( )tfl
2 2

g
FEM 2 (24)

Combining Eqs. (19), (23), (24) and considering the property of the
normal distribution, one can show that the median value of the trans-
formed PGA →αln s t on the free surface of the target structure is calcu-
lated by

= + −→α μ ρ λ h α μ
σ
σ

ln ln [ln( ( ) ) ln ]s t sg
FEM

f
FEM g

FEM

f
FEM (25)

and its related uncertainty is
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In the end, the likelihood function for data zs is derived:
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Fig. 3. The workflow to compute the likelihood function.
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It is worth mentioning that the interpretations of βR and →βs t are dif-
ferent: the former represents the record-to-record aleatory uncertainty
when the ground motion time history is characterized by a scalar PGA
value, whereas the latter expresses the uncertainty of the transformed
PGA value due to the underlying statistical modeling.

Consequently, the total likelihood function for the two categories of
data is computed by

  =z z zL A L A L A( | ) ( | ) ( | )m s m t m (28)

3. Case study: Application to KARISMA benchmark

This section is dedicated to apply the proposed methodology to an
industrial case study. Moreover, a sensitivity analysis is conducted at
the end with respect to some uncertain parameters. The equipment of
interest is a low-voltage switchgear (LVSG) in the Kashiwazaki-Kariwa
NPP (K-K NPP). In NPPs, the LVSG is a combination of electrical control
units such as circuit breaks and relays, etc, whose function is to ensure
and protect the performance of 480V-AC (alternative current) electrical
systems. K-K NPP experienced the strong Niigataken-Chuetsu-Oki
(NCO) earthquake with magnitude =M 6.6w in 2007. In this context,
the KAshiwazaki-Kariwa Research Initiative for Seismic Margin
Assessment (KARISMA) benchmark was organized by the International
Atomic Energy Agency (IAEA). The objective of this benchmark is to
compare seismic responses calculated by numerical simulations to re-
gistered responses of K-K NPP Unit 7 (IAEA, 2013). In addition, a post-
earthquake inspection was carried out in order to check the perfor-
mance of the equipment in K-K NPP after the earthquake (EPRI, 2007).

3.1. KARISMA numerical model

The FEM model of the K-K NPP Unit 7 is shown in Fig. 4. The model
consists of 92,000 degrees of freedom with 10,700 nodes and 15,600
elements, including bars, beams, and different shell elements. The
constitutive law of the materials is considered linear. The NPP model is
embedded 23 meters in the soil, which is accounted for in the soil-
structure-interaction (SSI) analysis. The LVSG of interest is located on
the -1 floor of the K-K NPP building. The structural analyses are carried
out with the Code_Aster, an open-source FEM software developed by
Electricity of France (Code_Aster), while the soil part is solved with
MISS based on the boundary element method (BEM) using MISS3D
(Clouteau, 2005) available with Code_Aster via Salome_Meca platform
(Salome_Meca).

Two strong earthquake scenarios, which have affected the area of
Kashiwazaki and Kariwa, are considered in this study: (i) the 2007 NCO
earthquake scenario with =M 6.6w and source-to-site distance

=r 16 km; (ii) the 2004 Chuetsu earthquake with =M 6.8w and source-

to-site distance =r 29 km. Given the NCO and Chuetsu scenarios, the
generation of the synthetic ground motions at the bedrock with

=Vs 720 m/s30 is based on the median and σ1 spectra given by the
Campbell-Bozorgnia 2008 (C&B 2008) ground motion prediction
equations (Campbell and Bozorgnia, 2008). 250 triplets of 3D synthetic
ground motions are generated for each scenario (so 500 triplets in total)
and used for the uncertainty propagation. The generated 3D ground
motions of each scenario have the median and 84% percentile in
agreement with the spectra provided by C&B 2008, using the operator
GENE_ACCE_SEISME in Code_Aster (Zentner, 2014). A correlation
coefficient of 0.2 is assumed for the two horizontal components (in X
and Y), according to Zentner et al. (2017). The vertical component is
not correlated to the horizontal ones. A vertical-to-horizontal ratio of 2

3
is applied in the generation procedure, as suggested by Newmark and
Hall (1978). The generated motions in X direction for the NCO scenario
are shown in Fig. 5. To obtain enough failure counts for the fragility
analysis, the synthetic seismic motions at the bedrock are scaled with a
factor of two for the NCO scenario and a factor of three for the Chuetsu
scenario.

500 bedrock motions are convoluted on the free surface based 1D
soil column reconvolution with the equivalent linear method (ELM)
(Yoshida et al., 2002). Meanwhile, 500 degraded soil profiles are ob-
tained. In order to reduce the computational cost, the impedances of the
soil and the seismic forces have not been computed for each soil profile
using BEM. The 3D seismic signals at the bedrock are regrouped into
four soil classes according to their PGA values: (i) PGA∈[0, 0.3g); (ii)
PGA∈[0.3g, 0.5g); (iii) PGA∈[0.5g, 1.0g); (iv) PGA∈[1.0g, +∞). The
degraded soil profiles are averaged within each class and 4 soil profiles
are obtained to represent four different degradation levels. The 500
ground motions on the free surface, as well as the impedances and
seismic forces calculated from the four soil profiles, are used as inputs
of the SSI analyses to compute the floor accelerations of the K-K NPP.

In this paper, the failure is described by the non-operational state of
the LVSG after the earthquake. Reparation of the equipment is neces-
sary. It can be caused by the fact that (i) relays or breakers cannot
return to their operational state after the earthquake or (ii) structural
damage has occurred to the equipment, for example anchorage failure
at its base (EPRI, 1991). The capacity of the switchgear is given by the
average floor spectral acceleration in 5-9Hz, which covers the first
natural frequency of the LVSG. The maximum value of the floor spectral
accelerations in the two horizontal directions, averaged over 5-9Hz is
defined as the EDP y:

∫=
− =

y S f f1
9. 5.

max ( )d
i X Y

a i
e

, 5Hz

9Hz
, (29)

where Sa i
e
, denotes the floor spectral acceleration of the LVSG in the i-thFig. 4. FEM model of the K-K NPP Unit 7.
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Fig. 5. Generated motions for NCO earthquake scenario and comparison with
the spectra predicted by C&B 2008.
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direction. A value of 1.8g is selected for ycrit according to EPRI (1991),
in which the failure threshold of the floor spectral acceleration S f( )a i

e
, of

the LVSG is a constant value 1.8g for the frequency range [3Hz, 16Hz]
(so its average for the frequency range [5Hz, 9Hz] is also 1.8g).

3.2. Prior fragility parameters

An ANN is trained iteratively with the algorithm explained in
Section 2.2.2. The IMs of the 500 convoluted seismic motions on the
free surface of the K-K NPP can be extracted. Three IMs are used as the
inputs of the ANN: (i) PGA, which is widely used in fragility analysis;
(ii) ASA (Biasio et al., 2015), the average spectral acceleration in 5-9Hz;
(iii) PGV (peak ground velocity), a classical IM for the mid-frequency
range. The geometric means of IMs in the two horizontal directions are
used as scalar IMs for 3D ground motions. The number of the neurons in
the hidden layer of the ANN is 4. In this way, the architecture of the
ANN is determined: 3 input parameters (PGA, ASA, PGV), 4 hidden
layer nodes and 1 output parameter (the EDP defined by Eq. (29)).

=N 300 seismic motions from the total 500 signals are randomly se-
lected for the initialization of the adaptive ANN training. =M 4 data
are added in the DoE in every iteration. The ANN is trained in log-log
space, i.e. with ln(IMs) as inputs and ln(EDP) as outputs.

The adaptive training of the ANN is stopped after 62 calls of FEM
simulations. To visualize the DoEs determined by the proposed ANN
algorithm, we plot the data cloud in PGA-EDP space in Fig. 6. The PGA
used in the horizontal axis is PGA on the free surface. The convergence
curve of the adaptive ANN training is shown in Fig. 7. In this figure, the
maximum value of δ of the test dataset is plotted against the iteration
number k. At iteration 8, the stopping condition is satisfied and the
ANN iterative training is stopped.

In order to show the advantage of the adaptive algorithm, 62
seismic motions are randomly selected from the total 500 signals. FEM
simulations are conducted for the 62 randomly selected signals and the
corresponding data cloud is plotted in PGA-EDP space in Fig. 8. From
Fig. 6 and Fig. 8, one can clearly observe the improvement of the DoEs
with the ANN adaptive training algorithm. The data in Fig. 6 are better
distributed in the PGA-EDP space than the data in Fig. 8: too many data
are concentrated in low PGA range in Fig. 8, with only one point ex-
ceeding the failure threshold. On the contrary, more failures are con-
tained in the dataset obtained by the ANN adaptive training, which is
more convenient for the accuracy of the fragility analysis.

The training results of the ANN are shown in Fig. 9a. The ANN
predictions of the training dataset are compared to the real FEM results
(target output) in log space. From Fig. 9a, one can conclude that the
training results are satisfactory. Most of the results in the ‘prediction-
target’ space are located in the proximity of the dashed diagonal line.

Another 60 ground motions, which are different from the training da-
taset determined by the adaptive algorithm, are selected to validate the
constructed ANN model. FEM and ANN simulations are performed for
the 60 validation seismic signals, respectively. The validation results
are plotted in Fig. 9b: the validation results are also satisfactory.

A total of 500 ANN simulations are conducted for the whole ground
motion population with the constructed ANN metamodel: 500 pairs of
PGA-EDP are, then, obtained. The values of βR and Am

prior are estimated
from the ANN simulations results with the method explained in Section
2.2.3, with =A g2.46m

prior and =β 0.145R . According to EPRI (2009,
2014), a reasonable estimation of βU

prior concerning the uncertainty of
the equipment capacity is 0.4. Consequently, the prior distribution of
Am follows LogN g(2.46 , 0.4 )2 .

3.3. Determination of the likelihood function

The LVSG damage data can be divided into two groups: one in-situ
observation zt for K-K NPP and 78 post-earthquake inspection data zs
for the LVSG in the SQUG structures. Regarding the in-situ observation,
the LVSG in the K-K NPP Unit 7 was not damaged after the NCO
earthquake with PGA = g0.69 near the Unit 7. As no detailed in-
formation on the performance of the K-K NPP equipment has been
found after the 2004 Chuetsu earthquake in the SQUG database, the in-
situ observational data contain only the one from the 2007 NCO
earthquake. On the other hand, the total number of SQUG damage data
for the LVSG is 78, with only one failure observed in the El Centro
Steam Plant after the 1979 Imperial Valley Earthquake with local PGA

Fig. 6. Data determined by the adaptive algorithm from 500 seismic ground
motions plotted in PGA-EDP space.

Fig. 7. Convergence curve for the adaptive ANN training.

Fig. 8. Data randomly selected from 500 seismic ground motions plotted in
PGA-EDP space.
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value of 0.43g. After the earthquake, it has been noticed that circuit
breakers of the LVSG had refused to close. However, according to the
inspection report, it is not clear that the failure of the LVSG is caused by
the earthquake. It can be also due to the corrosion in the mechanical
linkages, which is not earthquake-related. Therefore in the present
paper, we set =x 0.5i for this potential failure, meaning that with a
probability of 50% the LVSG failed during the Imperial Valley
Earthquake. The local PGA values measured at different industrial
structures are plotted in Fig. 10. A summary of the SQUG data for the
low voltage switchgear is given in Table 1.

The likelihood function zL A( | )t m for the K-K NPP in-situ observation
is straightforward with Eq. (18). We focus on the computation of

zL A( | )s m in what follows.
We follow the two-step method described in Section 2.3.3 to cal-

culate zL A( | )s m :

1. Step 1: computation of the PGA value of the floor acceleration of the
SQUG structures with the amplification factor model, given the PGA
on the soil free surface. The median values λ h( ) for the amplifica-
tion factors can be obtained by Eqs. (20)–(22) with the elevation
values h provided in the database. The uncertainty

∼β of the ampli-
fication factors is assumed to be 0.2, so that the true values of the
amplification factors λ h( ) have a probability of 95% to lie ap-
proximately between λ h( )2

3 and λ h1.5 ( ). Therefore, the median PGA

value of the floor acceleration and its uncertainty can be de-
termined.

2. Step 2: transformation of the PGA of the floor acceleration to the K-K
NPP free surface PGA with the bi-variate normal distribution model
established from the 62 FEM simulation results.
First, the lognormal assumption of the marginal distributions of the
PGA values is checked for both floor accelerations and free field

(a) ANN training results (b) ANN validation results
Fig. 9. Comparison of ANN results with FEM results. The comparison is conducted for ̂yln and yln .

Fig. 10. PGA values of the SQUG data for the LVSG.

Table 1
Summary of the SQUG data for the LVSG

Earthquake Number of the inspected
LVSGs

Number of failures

1971 San Fernando Earthquake 9 0
1973 Point Mugu Earthquake 1 0
1975 Ferndale Earthquake 1 0
1979 Imperial Valley

Earthquake
5 0.5

1983 Coalinga Earthquake 1 0
1984 Morgan Hill Earthquake 1 0
1985 Chile Earthquake 4 0
1985 Mexico Earthquake 1 0
1986 Adak Earthquake 2 0
1986 Chalfant Valley

Earthquake
1 0

1987 Bay of Plenty Earthquake 3 0
1987 Superstition Hills

Earthquake
1 0

1987 Whitter Earthquake 7 0
1989 Loma Prieta Earthquake 7 0
1992 Cape Mendocino

Earthquake
2 0

1992 Landers/Big Bear
Earthquake

3 0

1993 Guam Earthquake 3 0
1994 Northridge Earthquake 19 0
1995 Manzanillo Earthquake 4 0
1999 Kocaeli Turkey Earthquake 1 0
2010 Baja California Earthquake 2 0

Table 2
Summary of parameters used in the transformation of PGA values.

ch bh ∼β μg
FEM σg

FEM μf
FEM σf

FEM ρ

0.041 1 0.2 0.846 0.746 0.354 0.743 0.924

Z. Wang et al. Nuclear Engineering and Design 338 (2018) 232–246

240



accelerations of the K-K NPP. The values of PGAs are obtained from
62 FEM simulation results. The medians μ and logarithmic Stds σ of
the assumed lognormal distributions are computed and listed in
Table 2. The ln(PGA) values are normalized with respect to the
medians and Stds and compared with N (0, 1) in Fig. 11 to verify the
lognormal assumption.
From the results of the probability plots, it can be concluded that the
lognormal assumption for both αg

FEM and αf
FEM can be considered

acceptable. Additionally, from Table 2 it can be observed that the
median of the soil PGA μg

FEM is larger than the median of the floor
PGA μf

FEM: this is due to the fact that the LVSG is located on the -1
floor (7.2m below the ground level) in the K-K NPP.
Furthermore, the transformed PGA values →αs t on the K-K NPP free
surface and the relevant uncertainty →βs t due to the transformation
are computed with Eqs. (25) and (26). The transformed median PGA
values →αs t are plotted in Fig. 12. We can see an increase of the PGA
values after the transformation process due to the low elevation of
the target LVSG in the K-K NPP. In Fig. 12, a linear tendency can be
observed for some ( →α α,s t s) data values. This is because their cor-
responding LVSGs have the same elevations h (in particular =h 0),
so that their amplification factors in the transformation step 1 are
the same. In addition, as →βs t calculated with Eq. (26) is in-
dependent of αs, it stays the same for all 78 zs data, with

=→β 0.299s t .
In the end, the transformed →αs t are plugged into Eq. (27) to com-
pute the likelihood function zL A( | )s m . We also justify the

application of the fractional xi value 0.5 for the potential failure
case of El Centro steam plant. It can be regarded as two realizations
of earthquake observations, with one failure and one survival. Then,
the likelihood function established by the two realizations should be
normalized to one observation by the square-root operation:

 = −

= −

− − −

− −

zL A P α P α

P α P α

( | ) [ ( )][1 ( )]

[ ( )] [1 ( )]

m f f

f f

El Centro El Centro El Centro

El Centro
0.5

El Centro
0.5 (30)

The same procedure is also used by EPRI (2017). As a result, the
total likelihood function is computed:   =z z zL A L A L A( | ) ( | ) ( | )m t m s m

3.4. Posterior fragility curve

The posterior distribution  zf A( | )m
post is obtained based on the prior

distribution and the likelihood function, which are calculated in Section
3.2 and Section 3.3, respectively. MCMC is used to generate 10,000
samples from  zf A( | )m

post . A lognormal distribution is approximated for
 zf A( | )m

post with the median and logarithmic Std of the generated
10,000 samples. The MCMC sampling of  zf A( | )m

post and the approxi-
mated lognormal distribution are shown in Fig. 13. The posterior dis-
tribution of Am has the median =A g2.70m

post and the associated un-
certainty =β 0.176U

post . The comparison of fragility parameters of the
LVSG before and after Bayesian updating is reported in Table 3.

The posterior median and mean fragility curves are computed with
Eqs. (2) and (6), respectively. The 0.05 and 0.95 non-exceedance

(a) Probability plot of the PGA values of the -1 floor of

the K-K NPP

(b) Probability plot of the PGA values of the soil free

surface of the K-K NPP

Fig. 11. Probability plot of the normalized PGA values of the −1 floor and the normalized PGA values on the soil free surface of the K-K NPP.

Fig. 12. PGA values →αs t after the transformation into K-K NPP free surface.
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confidence intervals are calculated with Eq. (4). The computed fragility
curves and the associated confidence intervals are shown in Fig. 14.
Compared to the prior fragility parameters, the median capacity Am
increases after Bayesian updating, because few failure cases (only one)
have been observed in the post-earthquake inspection for the LVSG. The
epistemic uncertainty βU is reduced due to the supplementary in-
formation from the observational data. Relatively large confidence
bounds have been shown in Fig. 14, since despite the Bayesian up-
dating, the value of βU

post (0.176) is still larger than the aleatory un-
certainty =β 0.145R . Nevertheless, the HCLPF capacity, computed by
Eq. (5), is largely increased after the Bayesian updating, mainly due to
the reduction of the epistemic uncertainty.

Furthermore, the influence of the selected value of βU
prior on the

posterior fragility curve is investigated. Different values of βU
prior

varying from 0.1 to 0.4 are taken for the prior Am distributions. With
the same SQUG observational data, the likelihood function remains the
same. Posterior distributions of Am are computed and plotted in Fig. 15.
It can be observed from Fig. 15 that =β 0.4U

prior reveals in fact a rela-
tively large uncertainty of the median capacity compared to the like-
lihood function zL A( | )m provided by the observational data. Therefore,
the contribution of zL A( | )m to the posterior distribution is dominant if

=β 0.4U
prior . On the other hand, if one is very certain about the median

capacity estimated from the numerical simulations (i.e. =β 0.1U
prior ), the

influence of zL A( | )m on the posterior distribution is not that evident:
the posterior median increases slightly in comparison with the prior
median, whereas the value of βU is hardly modified. For =β 0.2U

prior and
0.3, the posterior distribution is a trade-off between the prior distribu-
tion and the likelihood function, which is a reasonable outcome from
the Bayes’ theorem.

Finally, we study the influence of the uncertain observational data
of the El-Centro steam plant. Other than the observational value

=x 0.5i applied in the previous sections, the likelihood function is also
computed with =x 0i and =x 1i for the El-Centro steam plant. The
posterior distributions with different levels of uncertainty on the El-
Centro observational data are plotted in Fig. 16. From the results of
Fig. 16, a complete failure of the LVSG =x 1i in the El-Centro steam
plant makes decrease the posterior Am, since the equipment is more

fragile according to the observational results. On the contrary, the LVSG
is more resistant if =x 0i for the El-Centro steam plant, so that an in-
crease of the posterior Am can be observed.

3.5. Discussion

The proposed Bayesian framework has been applied to the K-K NPP
to compute the fragility curve of a low-voltage switchgear. Some as-
sumptions made in the methodology and in the application are dis-
cussed as follows:

1. As a first application of the proposed Bayesian framework, the as-
sumption of linear material constitutive law has been applied in the
FEM simulation of the K-K NPP model, since the building reveals to
be very rigid and response remains mainly linear under the NCO
earthquake (IAEA, 2013). However, it should be noted that the re-
sults computed from the linear material assumption do not provide
best estimates of the structural responses for the higher load levels.
A further step is to apply the proposed method to a nonlinear
structure model but with a smaller number of degrees of freedom.

2. The derivation of the likelihood function using the two-step trans-
formation depends on the assumptions of normality or lognormality.
These assumptions are applied so that an analytical form of the final
likelihood function can be derived. In real applications, if synthetic
ground motions are generated from an earthquake scenario, the IMs
at the free surface can be considered lognormally distributed.
Nevertheless, when the ground motions, which are used to perform
FEM simulations, are selected by the adaptive training, the initial
lognormal distribution is disturbed. Therefore, one should be careful
to check the lognormality of the free surface PGA and the floor PGA
from FEM simulations for the joint lognormal model in the second
stage of the PGA transformation.
Despite this fact, it should be mentioned that, theoretically, any
analytical statistical distributions can be used to compute the
transformed free surface PGA value and to quantify the uncertainty
in the two-step transformation. However, no analytical solution
exists and Monte-Carlo simulations are needed to calculate the
transformed PGA value and its uncertainty. In addition, the value of
P α( )f cannot be computed from a CDF of a normal distribution, if
the uncertainty of the two-step transformation is not assumed log-
normally distributed. Again, in this case, the only way to evaluate
this P α( )f is the Monte-Carlo simulation combined with the Nataf
transformation (Eq. (7.2.2) in Ditlevsen and Madsen (2005)).

3. It is worth mentioning that the likelihood function computed from
Eq. (27) is, in fact, the ‘mean likelihood’ considering the PGA
transformation uncertainty →βs t , analogue to the capacity in the

Fig. 13. MCMC sampling of the posterior distribution of Am.

Table 3
Posterior fragility parameters for the LVSG in K-K NPP and comparison to the
prior parameters

βR Am
prior βU

prior AHCLPF
prior Am

post βU
post AHCLPF

post

0.145 2.46g 0.4 1.00g 2.70g 0.176 1.59g

Fig. 14. Posterior fragility curves and its confidence intervals.
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Fig. 15. Influence of the choice of βU
prior on the posterior fragility curve. Upper: prior distributions of Am with different βU

prior. Middle: likelihood function. Lower:
posterior distributions of Am with different βU

prior.

Fig. 16. Influence of observational data of El-Centro steam plant. Upper: prior distributions of Am. Middle: likelihood function with different xi values for the El-
Centro steam plant. Lower: posterior distributions of Am.
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mean fragility curve of Eq. (6). In a similar way of defining the non-
exceedance confidence interval of fragility curves (Eq. (4)), the
confidence interval of the likelihood function ∼L can also be ob-
tained:
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where ′ ∈γ [0, 1] is the confidence level related to the transformed
PGA value. This latter modeling leads to the definition of a two-level
confidence interval of the posterior fragility curves. The first level is
linked to the uncertainty βU of the capacity, whereas the second

level is associated to the uncertainty →βs t of the PGA transformation.
Further explorations are necessary for this two-level confidence in-
terval modeling.

4. In the Bayesian updating, as the prior lognormal distribution of the
capacity is not a conjugate prior of the likelihood function computed
by Eq. (28), the posterior distribution  zf A( | )m

post cannot remain
lognormal. A lognormal fit is, thus, applied to  zf A( | )m

post , to be able
to provide the values of Am

post and βU
post, which are widely used in

engineering practice. In order to quantify the quality and the in-
fluence of the lognormal fit, firstly, the probability plot of the true
posterior distribution against the fitted lognormal distribution is
plotted. The probability plot, shown in Fig. 17, compares the
quantiles between the true posterior and the fitted lognormal dis-
tribution. It can be observed that the quality of the fitting, in terms
of the quantile, is acceptable for Am

post
between 2g and 4g. But the

fitting quality is not very satisfactory at the two ends of the dis-
tribution. Furthermore, we investigate the influence of the log-
normal fitting on the final fragility curves and the confidence in-
tervals. The posterior fragility curves and the confidence intervals
can be computed with the true posterior distribution. The compu-
tation of the confidence intervals is achieved by identifying the
quantiles of the true distribution of Am

post
:
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where ∼A γ( )m
True

denotes the −γ(1 ) quantile of the true Am
post

. As for
the mean fragility curve, no analytical form can be derived when the
lognormality of Am

post
is not satisfied. Monte-Carlo simulation has to

be used to sample the aleatory uncertainty term εR. The computation
of the mean fragility curve with the true posterior distribution is as
follows:
(i). Sample N post aleatory uncertainty term εR, following
LogN β(1, )R

2 , where N post is the number of the MCMC samples of
Am

post
.

(ii). Evaluate the probability of failure with a given value of α:

= >1P α
N

α A ε( ) 1 [ ]f m R
mean,true

post
post

(33)

where 1[·] is the indicator function.
(iii). Select another value of α and return to the step (i).

Fig. 17. Probability plot of the true posterior distribution against the fitted
lognormal distribution.

Fig. 18. Comparison of fragility curves computed by the true posterior distribution and the fitted lognormal distribution.
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The posterior fragility curves computed by Eqs. (32) and (33),
shown in Fig. 18, are compared to the ones obtained with the log-
normal fitting. It can be observed that the fragility curves do not
show evident differences when γ is between 25% and 75%. How-
ever, when γ becomes very low (<5%) or very high (>95%), dis-
crepancies start to appear. This phenomenon is due to the difference
of the quantiles at the two ends of the two distributions. Never-
theless, good coherence is obtained for the mean fragility curves: the
influence of the lognormal fitting on the mean fragility curve can be
neglected in the considered case study.

4. Conclusion

In this paper, a Bayesian updating framework is proposed for con-
sidering different sources of information, including numerical simula-
tions, damage data and reference critical values informed from the
literature, in the computations of seismic fragility curves. In the fra-
mework, the results from numerical simulations are used to determine
the prior parameters of the fragility curves. Damage data are, then,
integrated to compute the likelihood function for the Bayesian up-
dating. Finally, MCMC is applied to sample the posterior distribution of
the updated equipment capacity.

The main contributions of the work are: (i) An ANN adaptive training
algorithm is proposed for a more intelligent experimental design to con-
duct FEM simulations. The adaptive training is based on the prediction
uncertainty computed by the delta method. Relying on a relatively large
initial population of ground motions, the adaptive ANN aims to select a
representative subset of ground motions, which can ensure the perfor-
mance of the ANN over the whole population; (ii) A method to construct
the likelihood function is proposed to deal with existing damage data from
the SQUG database. For post-earthquake observational data, the compu-
tation of the likelihood function is achieved by estimating an amplifica-
tion factor and by assuming a joint lognormal distribution between floor
PGA values and free surface PGA values. This latter lognormal assumption
allows providing an analytical form of the final likelihood function.

The methodology is applied to evaluate the fragility curve of a low-
voltage switchgear in a Japanese nuclear power plant Kashiwazaki-
Kariwa. The application of the adaptive ANN training provides an im-
proved design of experiments, in which more failure cases have ap-
peared in the FEM simulation results. Then, the construction of the
likelihood function with SQUG damage data is realized by the proposed
two-stage PGA transformation. The uncertainty related to the trans-
formation is also quantified and integrated in the computation of the
likelihood function. Compared to the prior fragility parameters, the
posterior capacity of the low-voltage switchgear has increased due to
few observed failure cases, whereas the epistemic uncertainty is largely
reduced with the additional information from the damage data. These
two aspects give rise to a higher value of the high confidence low
probability of failure capacity of the studied low-voltage switchgear.
The sensitivity analysis has shown that, in this case study, the con-
tribution of the likelihood function to the posterior estimations is pre-
dominant, if the assumed value of βU

prior is larger than 0.2.
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