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A Sequential Bayesian Approach for Remaining
Useful Life Prediction of Dependent Competing

Failure Processes
Mengfei Fan , Zhiguo Zeng , Enrico Zio , Senior Member, IEEE, Rui Kang, and Ying Chen

Abstract—A sequential Bayesian approach is presented for
remaining useful life (RUL) prediction of dependent competing
failure processes (DCFP). The DCFP considered comprises of
soft failure processes due to degradation and hard failure pro-
cesses due to random shocks, where dependency arises due to
the abrupt changes to the degradation processes brought by the
random shocks. In practice, random shock processes are often
unobservable, which makes it difficult to accurately estimate the
shock intensities and predict the RUL. In the proposed method,
the problem is solved recursively in a two-stage framework: in
the first stage, parameters related to the degradation processes
are updated using particle filtering, based on the degradation data
observed through condition monitoring; in the second stage, the
intensities of the random shock processes are updated using the
Metropolis–Hastings algorithm, considering the dependency be-
tween the degradation and shock processes, and the fact that no
hard failure has occurred. The updated parameters are, then, used
to predict the RUL of the system. Two numerical examples are con-
sidered for demonstration purposes and a real dataset from milling
machines is used for application purposes. Results show that the
proposed method can be used to accurately predict the RUL in
DCFP conditions.

Index Terms—Degradation, dependent competing failure pro-
cesses, Markov chain Monte Carlo, particle filtering, prognostics,
random shocks, remaining useful life.

NOMENCLATURE

ACRONYMS AND ABBREVIATIONS

AER Average error rate.
CDF Cumulative density function.
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DCFP Dependent competing failure processes.
HPP Homogeneous Poisson process.
MCMC Markov chain Monte Carlo.
MH Metropolis-Hastings.
PF Particle filtering.
PDF Probability density function.
RUL Remaining useful life.
TTF Time-to-failure.
TTSF Time-to-soft-failure.
TTHF Time-to-hard-failure.

Notation

x Natural degradation level.
z Cumulative degradation level.
y Observed degradation level.
η Degradation rate (unknown constant with time-

dependent noise).
S Shock damage (unknown constant with time-

dependent noise).
λ Shock intensity (unknown constant).
W Shock load (random variable).
D Load threshold of fatal shocks (constant).
ω Process noise (random variable).
ν Observation noise (random variable).
τ Testing period.
M Number of particles in the PF algorithm.
NS Number of MCMC samples.
NM Number of measurement points.

I. INTRODUCTION

SYSTEMS are often subject to multiple dependent compet-
ing failure processes (DCFP) [1]. In DCFP, a failure can be

either a soft failure, caused by gradual degradation processes,
or a hard failure, caused by catastrophic events [2], [3]. A key
feature of DCFP is that dependencies often exist among failure
processes. For instance, wear of metal components might in-
crease the likelihood of fracture, since structural strengths are
reduced by wear. When DCFPs exist, conventional reliability
assessment methods would produce over-optimistic results, as
they are based on assumptions of independence. For this rea-
son, modeling of DCFP has lately received attention in system
reliability analysis [4].

In literature, various models have been proposed for DCFP.
Peng et al. [4] developed a reliability model for DCFP where
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a shock brings a sudden increase to the degradation process.
Wang and Pham [5] considered a similar system and developed
a multiobjective optimization method to determine the opti-
mal imperfect preventive maintenance policy for such a system.
Wang et al. [6] considered another type of dependency where a
shock changes the failure rate. Jiang et al. [7] investigated relia-
bility and maintenance modeling for DCFP, where the threshold
of hard failures is shifted by random shocks. Rafiee et al. [8]
developed a DCFP model in which the degradation rates are
shifted by different shock patterns. In [9], three possible ef-
fects of nonfatal shocks, i.e., inducing degradation increments,
accelerating degradation rates, and reducing hard failure thresh-
olds, were considered in a comprehensive DCFP model. Lin
et al. developed a multistate physics model [10] for DCFP con-
sidering both extreme shocks, which lead to the hard failure,
and cumulative shocks, which affect degradation rates. Song
et al. [11] classified shocks into different sets and developed a
reliability model for multicomponent systems influenced by dis-
tinct shock sets. Jiang et al. [12] categorized shocks into safety,
damage and fatal shock zones based on their magnitudes, and
considered different effects of zone shocks on the degradation
process. In [13]–[15], models were developed for DCFPs where
the probability of hard failures is increased as the degradation
process progresses. Huynh et al. [16], [17] investigated main-
tenance strategies for DCFP where the intensity of the random
shock process is a piecewise function of the degradation magni-
tude. This type of dependency was also considered by Caballe
et al. [18] in their research on condition-based maintenance
planning for DCFP. Fan et al. [19] presented a reliability model
for sliding spools where the dependency between the intensity
of the random shock process and the degradation level is char-
acterized by a linear function. The same authors also developed
a stochastic hybrid systems-based modeling framework [20] for
multiple types of dependencies and efficient reliability evalu-
ation. Zeng et al. [21] developed a compositional method to
model the dependent behaviors among failure mechanisms, by
combining physics-of-failure models of the individual mecha-
nisms and models of interactions among the mechanisms.

Most of the existing works on DCFP, as reviewed above, are
limited to offline analysis, assuming that the model parame-
ters are known a priori and fixed during the entire life cycle
of the system. There are two major shortcomings for the of-
fline analysis methods: first, to estimate the parameters a pri-
ori, large amount of empirical data are needed, which is, sel-
dom fulfilled in engineering practices; and second, the offline
analysis fails to capture any time dependence in the processes.
On the other hand, nowadays, the advancement of sensor sys-
tems [22] has enabled condition monitoring and data on the
degradation processes of mechanical equipment and electronic
devices have been made available for system reliability assess-
ment. With condition-monitoring data, system reliability, and
remaining useful life (RUL) [23], [24] can be assessed online
and predicted via data-driven or model-based approaches [25].

For DCFP, however, RUL prediction is challenging because
dependencies exist among failure processes and shocks are hard
to observe in practice. This is why only a few works in lit-
erature focus on RUL prediction in presence of DCFP. Wang
et al. [26] developed a prognostics framework for DCFP based

on particle filtering (PF), considering soft failures caused by
degradation, and hard failures resulting from random shocks.
Ke et al. [27] investigated RUL prediction for a nonstationary
degradation process with random shocks; a modified Kalman
filter model was developed to estimate the system hidden degra-
dation state and the degradation model parameters were esti-
mated by maximum likelihood estimation with the expectation
maximization algorithm; to apply the model, the shock arrival
time must be known. Zhang et al. [28] considered a system
subject to degradation and time-varying random jumps, and de-
veloped an approximated analytical solution for the predicted
lifetime, where a two-step expectation conditional maximiza-
tion algorithm was used for estimating model parameters.

In the existing methods, it is assumed that system failure can
only be caused by the degradation process. In practice, however,
hard failure can also be caused by random shocks. Besides, ex-
isting methods are based on a strict assumption that the arrival
time of the shocks need to be observed [27]. To overcome these
limitations, we propose a new sequential Bayesian approach for
RUL prediction in presence of DCFP. Compared to the exist-
ing methods, the main originalities of the proposed method are
as follows.

1) Hard failures are also considered for the RUL prediction
of DCFP.

2) Estimation of the parameters of the shock process is prop-
erly addressed.

The remainder of this paper is organized as follows. Section II
defines the DCFP model considered in this paper. In Section III,
a sequential Bayesian approach for RUL prediction is developed.
In Section IV, the performance of the developed method is
compared to existing methods through two numerical examples.
Then, the developed method is applied to a real case study of a
milling machine in Section V. Finally, the paper is concluded
with some discussion on the future work in Section VI.

II. SYSTEM DESCRIPTION

For illustrative purposes, we consider a DCFP model adapted
from literature [4], which comprises a degradation process x(t)
and a random shock process (W (t)) with dependencies. The
random shocks are further divided based on their magnitudes: a
fatal shock (the shock with a magnitude greater than a critical
level D) directly fails the system, while a nonfatal shock (the
shock with a magnitude less than the critical level D) brings an
additional damage S to the degradation process x(t), as shown
in Fig. 1 [4].

Assumptions of the DCFP model include the following.
1) The continuous degradation process follows a Brownian

motion with a linear drift

x (t) = ϕ + ηt + σxB (t) (1)

where η is the degradation rate, ϕ denotes the initial degrada-
tion level, assumed to be zero in this paper, B(t) is the standard
Brownian motion: B(t) ∼ Normal(0, t), and σx is the drift co-
efficient.

2) The arrival of the random shocks follows a homogenous
Poisson process (HPP) with a constant intensity λ.
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Fig. 1. DCFP model considered in this paper [4].

3) The magnitudes of the arrived shocks, denoted by Wi,
follow i.i.d. normal distributions Wi ∼ Normal(μW , σ2

W )
i = 1, 2, . . ..

4) Each nonfatal shock (i.e., Wi < D) brings an increment
S > 0 to the degradation process x(t).

5) Failures occur whenever one of the following two events
occurs:

a) the degradation process reaches the threshold H
(soft failure);

b) a fatal shock occurs (hard failure).
6) Condition-monitoring data y1:k = {yi, i = 1, . . . , k} are

collected periodically at t = t1 , . . . , tk , where tk −
tk−1 = tk−1 − tk−2 = · · · = t2 − t1 = τ and yi is the
degradation measurement at t = ti

yi = z (ti) + εy (2)

where εy ∼ Normal(0, σ2
y ) is the observation noise; z(ti) is the

overall degradation considering both the continuous degradation
process and the abrupt change brought by the random shocks

z (ti) = x (ti) +
N (ti )∑

j=1

I (Wj < D) · S (3)

where N(ti) denotes the number of arrival shocks prior to ti ,
I(·) is the indicator function and is defined by

I (A) =

{
1, if A is true

0, if A is false.
(4)

7) At most one shock can arrive in the inspection interval
(ti−1 , ti ], i = 2, . . . , k.

III. DEVELOPED METHODS

In this section, we present the developed approach for RUL
prediction of the DCFP. A state-space model is developed in
Section III-A to describe the DCFP. A sequential Bayesian ap-
proach is developed in Section III-B, C, and D to update the
estimated parameter values of the state-space model based on
the newly collected observation data. The RUL of the DCFP

is, then, predicted in Section III-E using the updated parameter
values.

A. State-Space Model for the DCFP

Let θk = [zk , ηk , Sk , λk ] denote the values of state variables
for the DCFP model at t = tk . The state-space model for the
DCFP comprises of a process model, which describes how the
state variables evolve over time, and an observation model that
relates the state variables to the observation data yk

{
θk = h (θk−1) + ω, (Process model)

yk = g (θk ) + ν, (Observation model)
(5)

where ω and ν are the process and observation noises,
respectively.

In this paper, we assume that η and S are subject to process
noises resulting from environmental and operation conditions.
Therefore, the time-varying process models for η and S are
assumed to be

ηk = ηk−1 + ωη (6)

Sk = Sk−1 + ωS (7)

where ωη ∼ Normal(0, σ2
η ) and ωS ∼ Normal(0, σ2

S ) are the
process noises for η and S, respectively. On the other hand, we
assume that the state variable λ is a constant (but unknown)
value, as by its definition, the intensity of an HPP is a constant
value over the given time horizon. Therefore, the process model
for λ is

λk = λk−1 = · · · = λ0 . (8)

Based on assumption (2), the number of shocks arrived prior
to t, denoted by N(t; λ0), follows the Poisson distribution

Pr {N (t; λ0) = n} =
(λ0t)

n · exp (λ0t)
n!

, n ∈ N. (9)

Let pf denote the probability that a shock is a fatal shock
and pd the probability that it is a nonfatal shock. According to
assumptions (3) and (4), pf and pd are

pf = 1− Φ
(

D − μW

σW

)
, pd = Φ

(
D − μW

σW

)
(10)

where Φ(·) is the cumulative distribution function (CDF) of
the standard normal distribution. Then, according to [29], the
shock process can be further split into two independent HPPs:
a fatal shock process {Nf (t; λf )} and a nonfatal shock process
{Nd(t; λd)}, where λf , λd are the intensities of the fatal shock
process and the nonfatal shock process and λf = pf λ0 , λd =
pdλ0 , respectively.

Then, considering the continuous degradation process defined
by assumption (1) and the dependency defined by assumption
(4), the process model for zk can be derived

zk = zk−1 + τ · ηk + Sk · I (N (t; pdλk ) = 1) + ωz (11)

where τ is the data collection interval defined in assumption (6).
From (3), the process noise ωz ∼ Normal(0, σ2

xτ).
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Fig. 2. Hybrid Gibbs-MH algorithm for parameter estimation at t = tk .

The observation model for the DCFP can be easily derived
from (2)

yk = g (θk ) + ν

= zk + εy (12)

where the observation noise ν = εy ∼ Normal(0, σ2
y ).

B. Sequential Bayesian Framework for Parameter Estimation

Based on the developed state-space model in (6)–(12), a se-
quential Bayesian framework can be developed to update the
estimated model parameter θ at t = ti , i = 1, 2, . . . , k, using
the observation data prior to t. Without losing generality, we il-
lustrate the framework at t = tk . According to Bayes’ theorem,
the posterior probability density of θk can be calculated by

p (θk |y1:k ) = p (zk , ηk , Sk , λk |y1:k )

=
p (y1:k |zk , ηk , Sk , λk ) · p (zk , ηk , Sk , λk )

p (y1:k )
.

(13)

Directly solving (13) is often computationally intractable
due to the complexity in the involved distributions. A hy-
brid Gibbs—Metropolis–Hastings (MH) algorithm is, there-
fore, developed in Fig. 2, to generate NS samples θ

(i)
k =

[z(i)
k , η

(i)
k , S

(i)
k , λ

(i)
k ], i = 1, 2, . . . , NS to approximate the pos-

terior distribution of θk . The algorithm comprises two iterative
steps: in the first step, samples for z

(i)
k , η

(i)
k , S

(i)
k are generated

from the conditional distribution p(zk , ηk , Sk |λ(i−1)
k , y1:k ). In

this paper, as the explicit form of p(zk , ηk , Sk |λ(i−1)
k , y1:k ) is

too complex to be derived, we generate z
(i)
k , η

(i)
k , S

(i)
k recur-

sively, using particle filtering (see Section III-C). Then, in the
second step, MH sampling is used to generate a sample λ

(i)
k

from the conditional distribution p(λk |z(i)
k , η

(i)
k , S

(i)
k , y1:k ) (see

Section III-D). It can be shown that following the algorithm in
Fig. 2, the generated θ

(i)
k , i = 1, 2, . . . , NS comprise a Markov

chain whose stationary distribution is p(θk |y1:k ) [30]. There-
fore, after a large number of iterations, the generated sequence
θ

(i)
k , i = NBI + 1, 2, . . . , NS converges to samples from the

posterior distribution of the model parameters. It should be noted
that in practice, the first NBI samples in the generated sequence
are often discarded for burn-in purposes, to ensure that the sim-
ulated Markov chain enters the stationary period and that the
generated samples come from the stationary distribution of the
Markov chain.

C. Updating Degradation Parameters Using PF

As shown in Fig. 2, PF is used to generate z
(i)
k , η

(i)
k , S

(i)
k

from the conditional distribution p(zk , ηk , Sk |λ(i−1)
k , y1:k ). PF

is used, in this paper, for its capability to handle the nonlin-
earity of degradation processes for degradation state estimation
[31]–[34]. Conditioning on λ

(i−1)
k , the state-space model for the

DCFP reduces to (14), shown at the bottom of this page, where
ωη , ωS , ωz , and ν are process noises and observation noise that

are defined in (6), (7), (11), and (12), respectively; λ
(i−1)
k is ob-

tained from MH sampling in the second step of the algorithm.
Let Jk = [zk , ηk , Sk ]; in PF, the posterior density of Jk , de-

noted by p(Jk |y1:k , λ
(i−1)
k ), is recursively estimated based on

Bayes’ theorem [31], [35]:

p (Jk |y1:k ) =
p (yk |Jk ) p (Jk |y1:k−1 )∫

p (yk |Jk ) p (Jk |y1:k−1 ) dJk
. (15)

It should be noted that for simplicity of presentation and
without causing ambiguity, we drop λ

(i−1)
k in the conditional

probabilities in (15) and also in the remaining part of this section.
In (15), p(yk |Jk ) is determined by the observation model in (14)
and p(Jk |y1:k−1) is obtained by (16)

p (Jk |y1:k−1 ) =
∫

p (Jk |Jk−1) p (Jk−1 |y1:k−1 ) dJk−1 (16)

where p(Jk |Jk−1) is determined by the process model in (14)
and p(Jk−1 |y1:k−1) is obtained by the output of the PF at t =
tk−1 .

In PF, (15) is approximated by a sequential importance sam-
pling algorithm [31], where the posterior density p(Jk |y1:k ) is
approximated by a set of random samples (called particles) with
associated weights, denoted by {J(j )

k , w
(j )
k }, j = 1, . . . , M

p (Jk |y1:k ) ≈
M∑

j=1

w
(j )
k δ

(
Jk − J(j )

k

)
(17)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⎛

⎜⎝
zk

ηk

Sk

⎞

⎟⎠ =

⎛

⎜⎜⎝

zk−1 + ηk−1 · τ + Sk−1 · I
(
N
(
τ ; pdλ

(i−1)
k

)
= 1
)

ηk−1

Sk−1

⎞

⎟⎟⎠+

⎛

⎜⎝
ωz

ωη

ωS

⎞

⎟⎠

yk = zk + ν

(14)
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Algorithm 1: Generate z
(i)
k , η

(i)
k , S

(i)
k using PF.

Inputs: {J(j )
k−1 , w

(j )
k−1 , j = 1, . . . ,M}, yk

1
2

Outputs: z
(i)
k , η

(i)
k , S

(i)
k

1: for j = 1: M do
2: Sample J(j )

k by (18);
3: end for
4: Update w

(j )
k , j = 1, 2, . . . ,M, by (19);

5: Nef f = (
∑M

i=1 (wj
k )

2
)−1 ;

6: if Nef f < M/2 then
7: Resampling using the systematic

resampling algorithm [31]
8: end if
9: z

(i)
k , η

(i)
k , S

(i)
k ← Draw a sample from {J(j )

k }, where

Pr(J(j )
k is selected) = w

(j )
k

where δ(·) is the Dirac delta function. In this paper, at each
time t = tk , the particles are generated from a proposal density
p(Jk |Jk−1)

J(j )
k ∼ p (Jk |Jk−1 ) . (18)

Then, the associated weights w
(j )
k are updated by [31]

w
(j )
k =

w
(j )
k−1p

(
yk

∣∣∣J(j )
k

)

∑M
i=1 w

(j )
k−1p

(
yk

∣∣∣J(j )
k

) . (19)

Since {J(j )
k , w

(j )
k }, j = 1, . . . , M approximate the required

conditional posterior density through (17), z(i)
k , η

(i)
k , S

(i)
k can be

generated by drawing one sample from {J(j )
k }, j = 1, 2, . . . ,M

where the probability of drawing the jth particle J(j )
k is w

(j )
k .

The algorithm for generating z
(i)
k , η

(i)
k , S

(i)
k is summarized

in Algorithm 1.

D. Updating Shock Intensity Using MH Sampling

MH algorithm [30] is used to generate λ
(i)
k from the condi-

tional posterior distribution p(λk |z(i)
k , η

(i)
k , S

(i)
k , y1:k ). It should

be noted that apart from the condition-monitoring data y1:k ,
system operation time tk can also be used to update the poste-
rior distribution, as it implies that no fatal shock occurs prior to
tk : Nf (tk ) = 0 (otherwise the system should have failed before
tk ). For simplicity of presentation and without causing ambi-
guity, we drop the z

(i)
k , η

(i)
k , S

(i)
k in the conditional probability

and denote it by p(λk |y1:k ,Nf (tk ) = 0) in the remaining part
of this section.

From Bayes’ theorem, the posterior density is derived as

p (λk |y1:k ,Nf (tk ) = 0)

∝ p (y1:k ,Nf (tk ) = 0|λk ) p (λk )

= p (y1:k |λk ) · p (Nf (tk ) = 0|λk ) · p (λk ) (20)

where the prior distribution p(λk ) is assumed to be a uniform
distribution Uniform(λ, λ̄) in this paper, and p(Nf (tk ) = 0|λk )

is calculated by

p (Nf (tk ) = 0|λk ) = e−λk ·pf ·tk (21)

where pf is calculated by (10).
To simplify the computation of p(y1:k |λk ), we neglect the

observation noise ν and the process noise ωη , ωS in the state-
space model (14). Therefore, p(y1:k |λk ) can be approximated
by (22), where ϕ(·) is the standard normal density function; σx

is the process noise of the degradation levels defined in (14); η(i)
k

and S
(i)
k are the MCMC samples generated from the first step in

Fig. 2. It should be noted that in (22), p(zi |zi−1) is determined
by the process model defined in (11)

p (y1:k |λk ) = p (z1:k |λk )

= p (z1 |z0 ) ·
∏k

j=2
p (zj |zj−1 , λk )

= p (z1 |z0 ) ·
∏k

j=2

×
(

p (zj |zj−1 , Nd (τ) = 1) · Pr (Nd (τ) = 1)
+p (zj |zj−1 , Nd (τ) = 0) · Pr (Nd (τ) = 0)

)

= ϕ

(
y1

σx

)

∏k

j=2

⎛

⎜⎜⎝
ϕ

(
yj −yj −1−η

( i )
k τ−S

( i )
k

σx

)
· (pdλk τ) · exp (−pdλk τ)

+ϕ

(
yj −yj −1−η

( i )
k τ

σx

)
· exp (−pdλk τ)

⎞

⎟⎟⎠.

(22)

The MH algorithm generate samples from the posterior dis-
tribution in an iterative way: in each iteration j, a candidate
point λ∗k is first generated from a proposal density g(·). In this
paper, we use the prior distribution Uniform(λ, λ̄) as the pro-
posal density. Then, the acceptance probability, denoted by r, is
calculated by

r = min

⎛

⎝1,
p (λ∗k |y1:k ,Nf (tk ) = 0)

p
(
λ

(j−1)
k |y1:k ,Nf (tk ) = 0

) ·
g
(
λ

(j−1)
k |λ∗k

)

g
(
λ∗k
∣∣∣λ(j−1)

k

)

⎞

⎠

= min

⎛

⎝1,
p (y1:k |λ∗k ) · p (Nf (tk ) = 0 |λ∗k )

p
(
y1:k

∣∣∣λ(j−1)
k

)
· p
(
Nf (tk ) = 0

∣∣∣λ(j−1)
k

)

⎞

⎠ .

(23)

The candidate point is accepted with probability r and re-
jected with probability (1− r). This process is repeated un-
til enough samples are generated to approximate the posterior
density. Usually, it takes the MCMC algorithm several iter-
ations to converge to the stationary distribution. For a more
accurate approximation of the posterior density, a “burn-in”
stage is conducted to exclude samples from the beginning of
the MCMC, which are far away from the stationary distribution
[36]. It should be noted that for systems not influenced by hard
failures, like those in [27] and [28], generally no catastrophic
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Algorithm 2: Generate λ
(i)
k using MCMC [30].

Inputs: λ, λ̄,J(i)
k , y1:k , tk

Outputs: λ
(i)
k

1: Sample λ∗k from Uniform(λ, λ̄);
2: Compute r by (23);
3: Sample u from Uniform(0, 1);
4: if u ≤ r then
5: Set λ

(i)
k = λ∗k ;

6: else
7: Set λ

(i)
k = λ

(i−1)
k ;

8: end if

shock strikes the system and (23) can be simplified to

r = min

⎛

⎝1,
p (y1:k |λ∗k )

p
(
y1:k

∣∣∣λ(j−1)
k

)

⎞

⎠ . (24)

A summary of the MH algorithm is given by Algorithm 2.

E. RUL Prediction

Using the algorithm developed in Fig. 2, NS samples θ
(i)
k =

[z(i)
k , η

(i)
k , S

(i)
k , λ

(i)
k ], i = 1, 2, . . . , NS can be generated to ap-

proximate the posterior distribution p(θ|y1:k ) at t = tk . The
distribution of RUL can, then, be predicted based on these
samples.

Since in the DCFP model of Section II, hard failures are
random, the RUL should be predicted in terms of its probability
density function. Let RULk denote the predicted RUL at t = tk
and TTFk denote the updated time-to-failure at t = tk . It can
be seen that RULk is a conditional random variable [37] in the
form of RULk = (TTFk − tk |TTFk > tk ), which defines the
remaining lifetime of the system given that it has survived up to
time tk , and

(TTFk |TTFk > tk )

= min {(TTSF |y1:k ,TTSF > tk ) , (TTHF |TTHF > tk )}
(25)

where TTSF and TTHF represent the time to soft failure and
time to hard failure, respectively.

In (25), the conditional random variable (TTSF|y1:k ,
TTSF > tk ) is derived by the first passage time of the degra-
dation process

(TTSF| y1:k ,TTSF > tk ) = inf{tk+ l : zk+ l

≥ H|zk , zk < H} (26)

where zk+ l is predicted according to (14).
From Assumption (2), the hard failure process is a Pois-

son process with a rate parameter pf λ. Therefore, TTHF
is a random variable following an exponential distribution
with rate pf λk , i.e., TTHF ∼ exp(pf λk ). The CDF of

Algorithm 3: Algorithm for RUL Estimation.

Inputs: θ
(i)
k = [z(i)

k , η
(i)
k , S

(i)
k , λ

(i)
k ], i = 1, 2, . . . , NS

Outputs: {RUL
(j )
k , j = 1, . . . , Ns}

1: for j = 1 : Ns do
2: l = 1;
3: while 1 do
4: Calculate z

(j )
k+ l by (14) with θ = θ

(j )
k

5: if zk+ l ≥ H then
6: RUL

(j )
S,k = l; break

7: else
8: l = l + 1;
9: end if

10: end while
11: Sample RUL(j )

H,k from exp(pf λ(j )
k

)

12: RUL(j )
k = min(RUL(j )

S,k ,RUL(j )
H,k );

13: end for

TTHF|TTHF > tk can, then, be calculated

P (TTHF ≤ t |TTHF > tk ) =
P (tk < TTHF ≤ t)

P (TTHF > tk )

= 1− exp (−pf λk (t− tk )) .
(27)

Therefore, we have

(TTHF− tk |TTHF > tk ) ∼ exp (pf λk ) . (28)

The distribution of RULk can, then, be derived by substituting
(28) and (26) into (25). In this paper, due to the complexities in
(26) and (28), we develop a simulation-based method for RUL
prediction, as shown in Algorithm 3.

It should be noted that Algorithm 3 also applies for DCFPs in
which only soft failures lead to system failures: in these cases,
RULH,k is not considered and system RUL is only determined
by RULS,k .

IV. NUMERICAL EXAMPLE

A similar RUL prediction method has been developed by Ke
et al. [27] for the DCFPs considered in this paper. In this section,
the performances of the two methods are compared through two
numerical examples. In Section IV-A, the numerical case from
[27] is directly used to test the developed method, where the
dependency between shocks and degradations are considered
without further considering the possibility of hard failures. Then,
in Section IV-B, a more complete model involving hard failures
is considered.

A. Example 1

A system subject to degradation and nonfatal shocks is con-
sidered in this numerical example. The system failure process is
the same as that in Section II, except that, in this case, we do not
consider hard failures. Therefore, we have pf = 0. Degradation
data and shock arrival time data (required by Ke’s method [27])
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TABLE I
TRUE VALUES OF PARAMETERS USED TO GENERATE SIMULATION DATA

TABLE II
PARAMETERS FOR SIMULATION WITH THE DEVELOPED METHOD

are generated using Monte Carlo simulation with the parameters
in Table I.

Both the developed method and Ke’s method are applied
to estimate the model parameters and predict the RUL based
on the generated data. A major difference between the two
methods is that Ke’s method requires to observe the precise
shock arrival time, which is hard to achieve in practice. In
this example, we also test the performance of the two meth-
ods when the shock arrival time data are not precise. To do this,
the shock arrival time data are recorded as a binary variable
sequence {Is(tk ), k = 1, . . . , NM }, where Is(tk ) = 1 implies
that a shock arrives in time interval [tk−1 , tk ) and Is(tk ) = 0
means that no shock arrives in the time interval. To generate
the imprecise shock arrival time data, given an error rate q,
a random number r is generated from Uniform(0, 1) at each
time point tk : if r < q, Is(tk ) is replaced by the imprecise data
Ic
s (tk ) = 1− Is(tk ); otherwise, Is(tk ) takes the correct value.

In the developed method, the prior distributions for z, η, S
are Normal(0, 0.05), Uniform(0.4, 0.6), and Uniform(0.4, 0.6),
respectively. Parameters used in the state-space model are given
in Table II. In this case, we set the sample sizes to be M =
100, Ns = 500. In general, the more samples we select, the
more accurate the parameter estimation and RUL prediction
are. The computational complexity of the developed method is
proportional to M ×NS . Therefore, tradeoffs need to be made
to determine the optimal sample sizes.

The updated parameters z, η, S and the predicted system RUL
from the developed method and Ke’s method are compared in
Figs. 3–5 and 8. Estimates of the shock intensity λ obtained
from the developed model are shown in Fig. 7. For the results
from the developed method, as shown in Fig. 4(a), Fig. 5(a), and
Fig. 6, we show both the mean and 90% credibility interval of
the posterior distribution, while for Ke’s method, we only show
the posterior mean as only the posterior mean is discussed in
their paper.

Fig. 3. Estimates of the degradation level. (a) Developed model. (b) Ke’s
model with accurate shock records. (c) Ke’s model with imprecise shock records,
error rate q = 70%.

As shown in Fig. 3, both models produce accurate estimates
of the system degradation level, given the observed degradation
data. However, in Figs. 4, 5, and 8, it is shown that Ke’s model
can generate accurate estimates of the degradation model param-
eters and system RUL only if the shock arrival time are precisely
observed. On the contrary, if the shock arrival times are impre-
cise (70% wrong data for example), Ke’s method fails to provide
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Fig. 4. Estimates of the degradation rate. (a) Developed model. (b) Ke’s model
with accurate shock records. (c) Ke’s model with imprecise shock records, error
rate q = 70%.

accurate parameters estimation and RUL prediction. The aver-
age error rates of parameter estimations with Ke’s method in
presence of imprecise shock data are listed in Table III. The
results show that the accuracy of the estimation degrades as the
increase of shock data error rate q.

Fig. 5. Estimates of the shock damage. (a) The developed model. (b) Ke’s
model with accurate shock records. (c) Ke’s model with imprecise shock records,
error rate q = 70%.

On the other hand, Fig. 7 shows that the developed model
performs well to estimate the shock intensity, without observing
the arrival time of shocks. From the comparisons Figs. 4–8, it is
shown that the developed model outperforms the Ke’s method
when observations of the shock arrival times are not precise,
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Fig. 6. Estimates of the shock intensity with the developed model.

Fig. 7. Convergence analysis of the MCMC.

since the developed method does not require shock arrival data
for parameter estimation and RUL prediction.

It should be noted that in the developed method, the conver-
gence of the MCMC is monitored by checking the trace plots
at each measurement point. For example, the trace plots for λ

at t = t200 and t = t450 are shown in Fig. 7(a) and (b). It can

Fig. 8. Predicted RUL (a) the developed model; (b) Ke’s model with accurate
shock records; (c) Ke’s model with imprecise shock records, error rate q = 70%.

TABLE III
AVERAGE ERROR RATES OF PARAMETER ESTIMATIONS WITH KE’S METHOD IN

PRESENCE OF IMPRECISE DATA
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Fig. 9. Estimates of the degradation rate. (a) Developed model. (b) Ke’s model.

be seen from the figures that the MCMC samples converge to
the true value. Further, as more and more degradation data are
collected and used in the estimation of the shock intensity, the
variance of the MCMC samples is significantly reduced.

B. Example 2

In this numerical example, the performance of the two meth-
ods previously considered is tested with respect to predicting
RUL considering hard failures. The system defined in Section II
is considered with μw = 1.2, σw = 0.2 and D = 1.5. Then, pf

is calculated by (10). Using the parameters in Table I, degrada-
tion data and shock arrival time data are simulated. In this case,
the simulated true TTF is t158 , which is due to a hard failure.

The same parameters as in Section IV-A are set for the im-
plementation of the developed method. In this case, we set the
sample sizes to be M = 100, Ns = 500. In general, the more
samples we select, the more accurate the parameter estimation
and RUL prediction are. The computational complexity of the
developed method is proportional to M ×NS . Therefore, trade-
offs need to be made to determine the optimal sample sizes.

The updated parameters η, S and predicted system RUL with
the developed method and with Ke’s method are compared in

Fig. 10. Estimates of the shock damage. (a) Developed model. (b) Ke’s model.

Figs. 9, 10, and 11. Estimates of the shock intensity λ obtained
from the developed model are shown in Fig. 12. For the re-
sults from the developed method, we show the mean and 90%
credibility interval of the posterior distribution, while for Ke’s
method, we only show the posterior mean as only the posterior
mean is discussed in their paper.

As shown in Fig. 3 and 10, both models produce accurate
estimates of the degradation rate η and the shock damage S.
Fig. 12 shows that the developed model performs well to esti-
mate the shock intensity, without observing the arrival time of
shocks. However, in Fig. 11, it is shown that the PDF of sys-
tem RUL is better predicted by the developed model than Ke’s
method, which yields an over-optimistic estimation of the RUL.
The over-optimistic result of Ke’s method is caused by the fact
that it neglects the possibility of hard failures. In fact, in this
case, the system fails at the early stage of its life cycle due to
hard failure, even though the degradation level is still quite low
and far less than the threshold of soft failures.

It should be noted that in the developed method, the con-
vergence of the MCMC is monitored by checking the trace
plots at each measurement point. For example, the trace plots
for λ at t = t50 and t = t150 are shown in Fig. 13(a) and
(b). It can be seen from the figures that the MCMC samples
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Fig. 11. Comparison of estimated RUL at (a) t = t25 ; (b) t = t75 and
(c) t = t150 .

converge to the true value. Further, as more and more degra-
dation data are collected and used in the estimation of the
shock intensity, the variance of MCMC samples is significantly
reduced.

V. APPLICATION

In this section, the developed model is applied on a real dataset
of a milling machine from [38]. The original dataset contains

Fig. 12. Estimates of the shock intensity with the developed model.

Fig. 13. Convergence analysis of the MCMC.

wear data of 16 different working conditions. The data from
case 11 with 20 measurement points are used in this paper for
state estimation and RUL prediction. As in [27], the threshold
for soft failure is set to 0.42. No hard failure data are considered
in the milling machine case.
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Fig. 14. Estimates of (a) the degradation rate, (b) the shock damage and
(c) the shock intensity.

The results of the estimated model parameters are presented
in Fig. 14. The estimated system degradation state and RUL
are shown in Fig. 15. Due to the limited amount of degradation
measurement data, the estimates of the model parameters are
not as robust as the results of the numerical examples, but are
still able to support a good fitting of the degradation path.

It is also worth noting that the estimate of system RUL has
an increasing trend at the beginning of observation, as shown

Fig. 15. Estimates of (a) the degradation level and (b) system RUL.

in Fig. 15: this is mainly because the degradation path shows
an extremely low slope between the second and the sixth mea-
surement points, which implies an optimistically estimated RUL
compared to the true value. Also, due to the abnormal degrada-
tion trend between the second to the sixth measurement points,
the corresponding 90% confidence intervals of RUL are rela-
tively wide, which indicates a large variance in the samples.

VI. CONCLUSION

In this paper, a sequential Bayesian approach is developed for
model parameters estimation and RUL prediction in presence
of DCFP. In the developed model, the system degradation state
and degradation model parameters are estimated by a PF algo-
rithm and the shock process intensity is estimated by a MCMC
algorithm using the MH sampler. With the MCMC algorithm,
the posterior density of the system degradation state and model
parameters are obtained using three types of data and knowl-
edge: degradation observation data, prior knowledge of shock
intensity, and system operation time. Considering the influence
of both soft failures and hard failures, the system RUL is pre-
dicted by the minimum of system remaining TTSF and TTHF, in
terms of probability density function. A comparison to an exist-
ing model in literature shows that the developed model provides
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an efficient approach to estimate system state and RUL when
shocks are unobservable, and generates more accurate results
when systems are subject to hard failure.

In practice, estimation errors exist due to both measurement
noises and the possible discrepancy between the state-space
model used and the true physical failure process. To improve the
accuracy of the prediction, developing more robust algorithms
under the influence of the measurement noises is valuable work
to be conducted in the future. In this paper, we only consider
the dependency in the form that random shocks bring additional
damage to the degradation process. In the future, the developed
method can be extended to consider DCFPs with other types of
dependencies. Moreover, dynamic reliability analysis consider-
ing large-scale failure dependencies such as propagative effects
of failures [39] can be investigated.
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