
HAL Id: hal-01988932
https://hal.science/hal-01988932v1

Submitted on 8 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reinforcement learning-based flow management of gas
turbine parts under stochastic failures

Michele Compare, Luca Bellani, Enrico Cobelli, Enrico Zio

To cite this version:
Michele Compare, Luca Bellani, Enrico Cobelli, Enrico Zio. Reinforcement learning-based flow man-
agement of gas turbine parts under stochastic failures. International Journal of Advanced Manufac-
turing Technology, 2018, 99 (9-12), pp.2981-2992. �10.1007/s00170-018-2690-6�. �hal-01988932�

https://hal.science/hal-01988932v1
https://hal.archives-ouvertes.fr


The International Journal of Advanced Manufacturing Technology (2018) 99:2981–2992
https://doi.org/10.1007/s00170-018-2690-6

ORIGINAL ARTICLE

Reinforcement learning-based flowmanagement of gas turbine parts
under stochastic failures

Michele Compare1,2 · Luca Bellani2 · Enrico Cobelli1 · Enrico Zio1,2,3

Received: 7 March 2018 / Accepted: 10 September 2018 / Published online: 18 September 2018
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
For maintenance of gas turbines (GTs) in oil and gas applications, capital parts are removed and replaced by parts of the
same type taken from the warehouse. When the removed parts are found not broken, they are repaired at the workshop and
returned to the warehouse, ready to be used in future maintenance. The management of this flow is of great importance for
the profitability of a GT plant. In this paper, we adopt a previously developed formalized framework of the part flow and
reinforcement learning (RL) to optimize part flow management. The formal framework and RL algorithm are extended to
account for the stochastic failure process of the involved parts. An application to a scaled-down case study derived from an
industrial application is illustrated.

Keywords Part flow · Reinforcement learning · Gas turbines · Stochastic failures

1 Introduction

Gas turbines (GTs) are complex systems composed by
several expensive capital parts (e.g., buckets, nozzles, and
shrouds). Degradation of these parts (e.g., by fracture and
fatigue [1–3], fouling [4–6], corrosion [7, 8], and oxidation
[9]) can lead the GTs to failure and, thus, to costly
forced outages (FOs) for performing corrective maintenance
actions, in which the failed parts are scrapped and replaced
by parts of the same type selected from those available at
the warehouse.

To avoid FOs, GTs undergo periodic maintenance
shutdowns (MSs), which restore the capital parts. At every
MS, capital parts are removed from the GTs and repaired at
the workshop, unless they are scrapped because they have
reached their pre-fixed maximum number of working hours.
The repaired parts are, then, put back at the warehouse,
for use in future maintenance. The parts removed from the
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GTs are replaced by parts taken from the warehouse, either
restored or newly purchased.

This brief description of GT maintenance brings out
the complexity of its management, which relies on a
specific expertise for performing the intricate procedures for
GT disassembling and re-assembling, an efficient logistic
organization for spares management (i.e., their ordering,
shipping, etc.), a deep knowledge about the degradation
processes affecting the parts for their effective repair,
etc. (see [10] for an overview). Differently from the GT
manufacturing companies, which are usually structured for
addressing these issues, their customers are generally not
fully qualified to do so. This situation has boosted the
diffusion of maintenance service contracts between the GT
manufacturers (i.e., the maintenance service providers) and
the GT owners (i.e., the recipients of the service) [11–14].

Service contracts yield new business opportunities to
GT manufacturers, who can sell the GT production
rates, instead of selling the GTs, with consequent added
values if they assume portions of the clients’ business
risks [11, 15]. For the service contract to be profitable,
however, GT manufacturers need to develop effective and
efficient maintenance strategies and spare part inventory
management policies [13, 15–17].

To manage the maintenance events (i.e, MSs and FOs),
decisions must be made on both the removed part (send
it to the workshop for repair or scrap it?) and the part
to be installed on the GT (new part or part taken from
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the warehouse?), which strongly impact on the profitability
of the GT maintenance service contract. For example, the
decision to repair the removed parts entails, on the one
hand, the possibility of re-using the part with consequent
reduction in the number of parts to purchase. On the other
hand, the repair actions entail both direct workshop costs
and indirect costs related to the increased risk of FOs, with
consequent penalties to the maintenance service provider
for business interruption: repaired parts have a failure
probability larger than that of new parts, as the risk of failure
generally increases with part age. Furthermore, unnecessary
repair actions at the end of the maintenance service contract
may lead to the warehouse containing parts ready for
installation, whose value is lost by the service provider. On
the contrary, scrapping old parts reduces the risk of failure
and workshop costs, but increases the number of purchase
actions taken by the maintenance service provider.

The parts installed on the GTs are no longer available
at the warehouse for replacement at the next MS and when
they return to the warehouse, they do so with a reduced
number of remaining working cycles. Thus, the decisions at
every MS influence the decisions at the next MSs: in this
sense, the part flow management (PFM) can be framed as
a sequential decision problem (SDP) [18], seeking for the
sequence of future maintenance decisions (i.e., the optimal
policy) which entails the smallest expected maintenance
costs over the duration of maintenance service contract. This
requires the decision maker (DM) to consider variables such
as the remaining time up to the end of the service contract,
the availability of spares, the costs related to the repair
actions, etc.

Despite the relevance of PFM for the profitability of
the maintenance service contracts, to the authors’ best
knowledge, systemic approaches to address it are still
lacking. Although the literature on maintenance service is
very vast [12, 17], it covers issues different from that of
optimizing the part flow. For example, methods for setting
the optimal price of service contracts are proposed in [11,
12, 14], within the game theory framework. The same
issue, i.e., contract pricing optimization, is investigated
in [19] in combination with the optimization of logistics
(i.e., facility locations, capacities and inventories with
given service level), and in combination with the issue
of optimally scheduling preventive maintenance in [16,
20]. Other optimization objectives are the minimization
of the warehouse costs through the reduction of the
average number of parts sojourning therein (e.g., [16]),
the identification of the optimal times for performing
maintenance actions and ordering parts (e.g., [21, 22]), the
level of repair [13, 23], the number of maintenance jobs that
can be completed in each maintenance period [24], etc.

The focus of this paper is on the search of the best
PFM strategy that minimizes the service contract costs for

the GT manufacturer over a finite time horizon. Currently,
the management of the part flow is dealt with experience-
based rules, such as the most residual cycles (MRC) one:
the removed parts are always repaired and the part with the
largest residual life among those available at the warehouse
are installed on the GT; a new part is purchased only when
the warehouse is empty. Although MRC ensures at the
smallest failure probability, nonetheless, we have shown in
[25] that MRC does not necessarily yield optimal policies
on a finite time horizon in which the sequence of MSs is a
priori known.

In this work, we extend the modeling and optimization
framework developed in [25] to account for part failure
stochastic processes and FOs, which change the pre-
scheduled sequence of MSs. In particular, we formalize the
PFM problem as a SDP in a stochastic environment and
propose the use of Reinforcement Learning (RL, [18, 26,
27]) for its solution. RL is a machine learning technique
suitable for addressing SDPs in stochastic environments
[26] and widely applied to decision-making problems in
diverse industrial sectors, such as the electricity market
[28, 29], military trucks [30], process industry [31],
supply chain and inventory management [21, 32–34], and
operations in port container terminal [35, 36], to cite a
few.

The problem formulation and solution framework pro-
posed in this paper is applied to the same case study as that
of [25], although here, we take into account the failure of
the parts and the FOs. In the case study, it turns out that also
when considering the part failures, the solution given by the
MRC rule is not optimal, being outperformed by the pol-
icy found by RL. Moreover, we compare the optimal policy
provided by our RL algorithm in case there are no FOs with
that presented in [25].

The original contributions of this paper are:

• The further development of a new problem (i.e.,
optimization of PFM), which has never appeared in the
literature. Given its relevance for maintenance service
contract management and profitability, it is expected to
give rise to a dedicated line of research.

• The formalization of the PFM problem as a SDP, which
allows taking into account the dependency between
consecutive decisions and the uncertainty in the part
failure.

• The proposal of a RL algorithm to find the optimal PFM
policy. The algorithm can be applied to medium-small,
real applications and improve the current experience-
based practice.

The structure of the paper is as follows. In Section 2, we
introduce the extended mathematical formulation of the
considered SDP. In Section 3, details about the extended RL
algorithm used for optimizing the part flow management are
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provided. In Section 4, the case study is discussed. Finally,
conclusions are drawn in Section 5.

2 Problem setting

Consider an oil and gas plant in which a number G of GTs
are operated (Fig. 1). A scheduled preventive maintenance
policy is defined, whereby every GT is maintained every
H hours. We assume the maintenance staggering so that
two MSs are never performed simultaneously and that the
sequence of G MSs is shorter than H hours.

The GTs are operated for T hours each, T being a
multiple of H . For generality, the time horizon is made
dimensionless through division by H and it is discretized
into time channels of length �t . These are short enough
that the probability of having multiple failures in the same
channel is negligible.

To formalize the part flow management in a stochastic
environment, the model proposed in [25] must be modified
to allow decisions to be taken upon FOs, which occur at
time instants different from those initially scheduled for
the MSs. In fact, any failure event requires a re-scheduling
of the maintenance activities, which entails a variability
in both the number of events over the GT plant operation
horizon and their timing and sequence. To consider this
uncertain dynamic aspect of the SDP, the GT plant operation
time horizon is partitioned into time channels, which are
identified by the instants t ∈ � = {0, �t, 2�t, ..., T /H+1}
(Fig. 1 in dashed line), where t = 0 corresponds to the
first MS, T/H is the time instant of the last MS of the
GT maintained at t = 0, according to the initial schedule;
the last time instant, t = T/H + 1, dimensionless, is the
upper bound of the time instant of the last scheduled MS,
as the maintenance cycle determines the maximum distance
between the G MSs. For brevity, we indicate the θ − th time
instant of �, in ascending order, by tθ , θ = 1, ..., |�|, where
|�| indicates the cardinality of its argument set �.

Given the discretization of the time horizon, we assume
that if a failure occurs at time tθ + τ, τ ∈ [0, 1] on the
GT that has been maintained at the θ − th time instant,
tθ , then the FO is performed at the θ∗ − th time instant
θ∗ = argminη∈�abs[tθ + τ − tη] (e.g., Fig. 1, the FO is
performed at the time instant tθk+2 ).

In case any GT experiences a FO at a time τ after its last
MS, τ ∈ [0, 1], then all its future MSs are shifted by τ , as
maintenance is always intended to allow the GT working
continuously for H hours. For example, Fig. 1, bottom,
shows the original sequence of MSs of GT G, which is
shifted forward by the FO event originating a different MS
sequence. Notice that we assume that the end of the plant
operational time horizon does not change even when the
actual MS and FO sequence change due to random failures.

In regard to the time to repair the parts removed from the
GT, we assume that this is negligible with respect to �t ,
whereby the parts repaired are immediately available at the
next event. Every part is assigned a maximum number of
remaining cycles (MNRC), indicated by r , which ranges
between r = 0, in case of parts that must be scrapped and
r = R, for new parts. The MNRC is reduced by 1 upon the
installation of the part on a GT: if the GT is stopped, the part
will no longer be able to re-perform the entire started cycle.

The failure times of the parts obey the exponential
distribution with failure rate, λr , depending on the MNRC

value r ∈ {1, ..., R}. To have dimensionless time channels,
the values of the failure rates are scaled on the duration of
the H hours cycle.

The cumulative distribution function (CDF) of the failure
time reads:

Fr(τ) = 1 − e−λrτ (1)

where τ is the time since the installation of the part on the
GT. Notice that the choice of describing the part failure
behavior by the exponential distribution with failure rate
depending on the MNRC value allows modeling the part
degradation mechanism as a Markov process. The resulting
step-wise, monotonously increasing behavior of the failure
rate can be thought of as a rough approximation of a
continuously increasing hazard rate [37].

At any shutdown, the DM has to take the following
decisions:

• If the maintenance event is a MS, decide whether to
repair or scrap the part removed from the maintained
GT. Crep(r) is the cost of repairing a part with r ∈
{1, ..., R} remaining cycles, whereas Cscrap is the cost
of scrapping a part.

• If the maintenance event is a FO, then the part must be
scrapped, and a penalty Cf ailure must be paid, which
also encodes the extra costs related to the management
of an unplanned event.

• To replace the removed part, decide whether to buy
a new part or select one from those available at the
warehouse, if any. Cpur is the cost of purchasing a
new part, whereas the cost of selecting a part from the
warehouse is zero, as the repair costs have already been
accounted for.

To simplify the notation, we define two indicator functions:

1|FO
θ =

{
1 if a FO occurs at time tθ , θ = 1, ..., |�|
0 otherwise

(2)

1|MS
θ =

{
1 if a MS occurs at time tθ , θ = 1, ..., |�|
0 otherwise

(3)

To keep track of the shutdown temporal sequence, we
introduce set θθθ = {θ1, ..., θK} encompassing the indexes of
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Fig. 1 Summary of the model setting

the time instants tθ ∈ � at which a shutdown event occurs,
where K is a random variable indicating the last shutdown
within the operational time horizon: if there are no failures,
then K = T/H · G. Notice that the time index θ ∈ θθθ if
1|FO

θ + 1|MS
θ = 1, θ = 1, ..., |�|.

We also introduce the integer variables dg,θ and wr,θ

to indicate the MNRC of the capital part on the g-th GT
at the θ − th time instant and the number of parts with
MNRC equal to r available at the warehouse at the θ − th

time instant, respectively, θ = 1, ..., |�|, g ∈ {1, ..., G},
r ∈ {1, ..., R}, w ∈ {0, ..., W }, where W is the maximum
number of parts that can be stored in the warehouse for each
MNRC value (Fig. 1). The index of the GT maintained
at the k-th shutdown, i.e., at time tθk

is traced by δθk
∈

{1, ..., G}.
Finally, the Boolean variable aθk,ρ ∈ {0, 1} indicates the

action ρ ∈ {0, ..., 2R + 1} taken at the k − th maintenance
event at time tθk

∈ �, θk ∈ θθθ :

• aθk,0 = 1 when a new part is purchased and installed
and the removed part is scrapped.

• aθk,ρ = 1, ρ ∈ {1, ..., R}, when a part with MNRC =
ρ is installed and the removed part is scrapped.

• aθk,R+1 = 1 when a new part is purchased and installed
and the removed part is repaired.

• aθk,ρ = 1, ρ ∈ {R + 2, ..., 2R + 1}, when a part with
MNRC = ρ − R − 1 is installed and the removed part
is repaired.

The boolean variable aθk,ρ is such that only one action can
be taken at the k-th shutdown:
2R+1∑
ρ=0

aθk,ρ = 1 (4)

From the above, the cost incurred at the k-th shutdown is:

Ck = (aθk,0 + aθk,R+1) · Cpur +
R∑

ρ=0

aθk,ρ · CScrap

+
2R+1∑

ρ=R+1

aθk,ρ · CRep(dg,θk
) + Cf ailure · 1|FO

θk
(5)

The objective is to minimize the value of the expected
maintenance expenditures incurred in the whole time
horizon, which is given by the sum of the costs of all
shutdowns within the time horizon:

V = E

[
K∑

k=1

Ck

]
(6)

Notice that the total maintenance expenditures within the
operational time horizon is a random variable depending
on both the number of failures in the time horizon and
their occurrence time. For simplicity, this sum is considered
undiscounted.

Notice also that in real industrial applications, the failures
of the capital parts mounted on the same GT are dependent
on each other, as failures can originate cascading effects.
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Nonetheless, we track a single capital part, only. The
object of future research work will be the extension of the
developed framework to applications in which the flows of
different capital parts are considered as a whole for a global
optimization.

3 Algorithm

In this section, we provide some insights about the RL
algorithm developed to address the part flow management
issue. To develop the RL algorithm, we need to define the
environment state, the actions available at each state and the
corresponding rewards [18].

The state at the shutdown occurring at time tθk
is defined

by vector Sθk
∈ N

R+G+2, whose j -th element is:

Sθk,j =

⎧⎪⎪⎨
⎪⎪⎩

wj,θk
if j ∈ {1, ..., R}

dj−R,θk
if j ∈ {R + 1, ..., R + G}

δθk
if j = R + G + 1

θk if j = R + G + 2

(7)

In words, the first R entries of the state vector define the
number of parts with the different MNRC values available
at the warehouse; the G entries from R + 1 to R + G

indicate theMNRC of the parts installed on the GTs at their
corresponding last MS; the (R + G + 1)-th entry points to
the GT maintained at time instant tθk

; the last entry encodes
the time of the shutdown. This definition of the environment
state entails that its size is equal to (W + 1)R · RG · G ·
(T /H +1) · (H/�t). For a medium scale problem in the oil
and gas industry, with G = 6, R = 6, W = 6, H = 10 · �t

and T = 8 · H , this corresponds to 3 · 1012 states.
Notice that the state definition in Eq. 7 differs from that

given in [25], which encodes only two variables: the number
of parts with the different MNRC values available at the
warehouse and the index of the MS (in place of the index of
the time channels). As shown in [25] for the deterministic
environment (DE) case, i.e., without stochastic failures, the
other variables entering (7) contain redundant information
and, thus, can be neglected: this strongly reduces the
dimension of the state space and the computational burden.

Notice also that the definition of the environment state
in Eq. 7 does not fully satisfy the Markov property [18],
as the state vector does not include the time up to the
next MS. This time interval determines the probability of
moving from one state to another, as parts have higher
chances of failing when operated for longer time periods.
Then, omitting the information about the remaining time
up to the next scheduled event undermines the knowledge
about the probabilistic behavior of the future evolution of
the state. However, the state definition completely satisfying
the Markov property turns out into a very large state
space, thus requiring a much larger computational effort.

Then, our state definition seems the best compromise
between an accurate description of the environment and a
computationally manageable number of states.

The action taken at the shutdown occurring at time tθk
is

indicated as:

Aθk
=

2R+1∑
ρ=0

(aθk,ρ · ρ) (8)

The base reward of the shutdown at time tθk
is the

opposite of the maintenance cost −Ck , as RL is usually
addressed as a maximization task (i.e., minimizing cost is
equal to maximizing its opposite). In the RL framework,
each state-action pair is described by Qπ(Sθk

, Aθk
), which

measures the expected return starting from state Sθk
, taking

action Aθk
and thereafter following the policy π [18]:

Qπ(Sθk
, Aθk

) = Eπ

[
K∑

k=k∗
(−Ck)|Sθk

, Aθk

]
(9)

where π = π(ε) is the ε-greedy policy [18], which
selects with probability ε an action uniformly among the
available ones; with probability 1 − ε, the action with
largest expected return is selected on each state, i.e. Aθk

=
argmaxA∈{A0,...A2·R+1} Qπ(Sθk

, A).
Note that ε = εn decreases at each episode, as the first

episodes require a large exploration rate to rapidly move
from the initial values assigned to the state-action function.
As the simulation proceeds, more state-action pairs are
visited, whereby the values of Qπ(Sθk

, Aθk
) become more

accurate. This allows selecting the optimal action in every
state, as the epsilon-greedy exploration policy converges
to the optimal (greedy) policy (for further details, see
exploration-exploitation dilemma, e.g., [18]). To properly
set the value of the exploration rate and its evolution over
time, we have applied a trial-and-error procedure.

In this work, we use the SARSA(λ) algorithm (e.g.,
[18, 25, 38]) to find the best approximation of the values
of Qπ(Sθk

, Aθk
), which relies on the following updating

formula:

Q(Sθz , Aθz ) ←− Q(Sθz , Aθz ) + (λ)(k−z)αn

·[−Ck + Q(Sθk+1 , Aθk+1 ) − Q(Sθk
, Aθk

)] (10)

where z ∈ {1, ..., k} is the MS counter, k is the actual MS,
λ ∈ [0, 1] is the eligibility trace and αn ∈ [0, 1] is the
learning rate at the n-th episode. According to [27], we
have applied a trial-and-error procedure to set the value of
λ = 0.8.

Notice that the eligibility trace λ is different from the
failure rate, λr (i.e., with subscript), although we indicate
them with the same letter. This is due to the large use of this
letter in the respective fields.
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Table 1 Initial scenario and model parameters

G H T �t W R CScrap Crep (r = 1) Crep (r = 2) Cpur Cf ailure λr=1 λr=2 λr=3

2 24 000 216 000 0.1 3 3 0 50 50 100 200 0.06 0.03 0.01

The choice of using SARSA(λ) among the available RL
algorithms (e.g., [27]) is justified by the fact that within
the family of value-based RL algorithms, SARSA(λ) has
been shown to be a very effective on-policy method [27].
This makes it simpler to extend it to the eligibility trace
paradigm, which guarantees fast and robust convergence,
especially in case of finite time horizon SDPs [18, 38].
On the contrary, off-policy RL algorithms such as Q(λ)
need to be finely set to avoid biased estimations of the
state-action values. Further research work will focus on the
comparison of SARSA(λ) with policy-based and actor-critic
RL algorithms [27].

Other optimization algorithms such as dynamic program-
ming algorithms [18] could also be used for the specific
setting considered in this work. However, in this respect the
choice of RL has a twofold justification. On one side, RL
algorithms allow encoding the aleatory uncertainty in the
failure times of the GT parts more easily than the other algo-
rithms. On the other side, although here not considered, the
complexity of the real industrial applications requires that
the SDP encode many additional GT operational aspects,
such as the possibility of inspecting the parts without per-
forming maintenance (i.e., condition-based maintenance),
the different duration of the maintenance intervals for parts

of different technologies, the constraints on the sharability
of the parts on GTs with different operation temperatures,
and the long repair durations that make the parts not read-
ily available for the next MS. Accounting for these GT
operational aspects requires encoding constraints about the
actions that can be taken in each state, which are really dif-
ficult to set in model-based frameworks such as dynamic
programming. On the contrary, RL acts on the simulation
of the decision process and, thus, selects actions from those
feasible, only. This makes RL easily integrable with part
flow simulators.

On the other hand, the proposed RL solution suffers from
some limitations that can still prevent its full application
to the industrial practice. First, in complex problems
the state-space becomes very large, whereby the tabular
representation of the state-action value function is not
doable. For this, action-value approximation techniques can
be used instead of the tabular approach hereby presented.
This issue will be tackled in future works. Yet, although
the time required to run a single part flow simulation
episode is very small (in the order of milliseconds),
nonetheless, RL requires performing a very large number
of simulated episodes. This can undermine the application
of RL to contexts in which decisions must be taken

100 101 102 103 104 105 106 107

Episode

-1400

-1200

-1000

-800

-600

-400

-200

0

Q
(S

,A
)

Fig. 2 Q(S1, A1) over the 107 simulated episodes
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Table 2 Comparison of MRC and RL policies

Number of FOs MRC RL Average maintenance costs for MRC Average maintenance costs for RL

0 0.519 ± 0.00044 0.5324 ± 0.00049 1150 1050

1 0.3476 ± 0.00047 0.3446 ± 0.00047 1361 1291

2 0.1085 ± 0.00031 0.1021 ± 0.00030 1586 1549

3 0.0215 ± 0.00014 0.0183 ± 0.00013 1804 1803

4 or more 0.0034 ± 0.00005 0.0025 ± 0.00005 2078 2079

– – Average total maintenance costs 1288 1200

readily. In any case, the proposed RL framework is not
meant to be used in a real-time setting. Rather, it is
conceived to be run either at the first decision time
or when unforeseen events such as a change in the
warehouse configuration due to external reasons, modify
the environment and pose a new optimization problem. In
these cases, however, we usually have plenty of time to take
decisions.

4 Case study

In this section, we extend the case study proposed in [25],
which derives from an industrial application, to include
consideration of the parts failure stochastic process. The
main characteristics are summarized in Table 1.

In the considered oil and gas plant there are G = 2
GTs (first column in Table 1), each one maintained every
H = 24 000 hours (second column) over a time horizon of
T = 216 000 hours (third column). The time step is set to
�t = 0.1, dimensionless (fourth column). The maximum
part MNRC, R, and the maximum number of available
parts in the warehouse for each MNRC value, W , are both
set to 3 (fifth and sixth columns in Table 1, respectively).
The cost values are reported from the 7-th to the 11-th
columns of Table 1, in arbitrary units. Finally, the failure
rates λr, r = 1, 2, 3, are reported in the last three columns,
dimensionless. These values are for illustration, only.

Notice that the failures we are referring to do not entail
the complete loss of the entire GT. Rather, we consider as
failure the degradation of the functional performance to a
level which requires the GT control system to command the

Table 3 MRC policy, scenario with no FO

k tθk
θk w1,θk

w2,θk
w3,θk

MNRC@ GT g = 1 MNRC@ GT g = 2 MNRC Installed Repair Purchase Ck

1 0 1 3 1 0 2 0 2 Y N 50

2 0.5 6 3 1 0 1 0 2 N N 0

3 1 11 3 0 0 1 1 1 Y N 50

4 1.5 16 3 0 0 0 1 1 Y N 50

5 2 21 3 0 0 0 0 1 N N 0

6 2.5 26 2 0 0 0 0 1 N N 0

7 3 31 1 0 0 0 0 1 N N 0

8 3.5 36 0 0 0 0 0 3 N Y 100

9 4 41 0 0 0 0 2 3 N Y 100

10 4.5 46 0 0 0 2 2 3 Y Y 150

11 5 51 0 1 0 2 2 2 Y N 50

12 5.5 56 0 1 0 1 2 2 Y N 50

13 6 61 0 1 0 1 1 2 Y N 50

14 6.5 66 1 0 0 1 1 1 Y N 50

15 7 71 1 0 0 1 0 1 Y N 50

16 7.5 76 1 0 0 0 0 1 N N 0

17 8 81 0 0 0 0 2 3 N Y 100

18 8.5 86 0 0 0 2 2 3 N Y 100

19 9 91 0 0 0 2 2 3 Y Y 150

20 9.5 96 0 1 0 2 2 2 Y N 50

– – – 0 1 0 2 1 – – TOT 1150
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Table 4 RL policy without FO

k tθk
θk w1,θk

w2,θk
w3,θk

MNRC@ GT g = 1 MNRC@ GT g = 2 MNRC Installed Repair Purchase Ck

1 0 1 3 1 0 2 0 1 Y N 50

2 0.5 6 2 2 0 0 0 3 N Y 100

3 1 11 2 2 0 0 2 1 N N 0

4 1.5 16 1 2 0 0 2 3 Y Y 150

5 2 21 1 3 0 0 2 2 N N 0

6 2.5 26 1 2 0 1 2 2 Y N 50

7 3 31 1 2 0 1 1 2 Y N 50

8 3.5 36 2 1 0 1 1 1 Y N 50

9 4 41 2 1 0 1 0 3 Y Y 150

10 4.5 46 3 1 0 2 0 3 N Y 100

11 5 51 3 1 0 2 2 3 Y Y 150

12 5.5 56 3 2 0 2 2 2 Y N 50

13 6 61 3 2 0 2 1 2 Y N 50

14 6.5 66 2 3 0 1 1 1 Y N 50

15 7 71 2 3 0 1 0 1 N N 0

16 7.5 76 1 3 0 0 0 1 N N 0

17 8 81 0 3 0 0 0 2 N N 0

18 8.5 86 0 2 0 1 0 2 N N 0

19 9 91 0 1 0 1 1 2 Y N 50

20 9.5 96 1 0 0 1 1 1 N N 0

– – 0 0 0 0 0 0 – – TOT 1050

stop of the GT for removing the degraded part. The major
costs associated to this event are those related to business
interruption and to the loss of the part, which is scrapped.

The total number of possible states is (W +1)R ·RG ·G ·
(T /H + 1) · (10) = 126 720 and the total number of state-
action pairs is (W +1)R ·RG ·G·(T /H +1)·(10)·(2R+2) =
1 013 760.

The SARSA(λ) algorithm has been run for 107 episodes,
which took 25 200 seconds on a 2.20GHz CPU, 4GB Ram
computer. The convergence path is reported in Fig. 2,
which shows the values of Q(S1, A1), where A1 is the
optimal action at tθk

= 0 (i.e., in this case A1 = 5).
To verify that SARSA algorithm converged to the optimal
solution, we considered the oscillating behavior at the end
of the episodes and checked that this is coherent with the
stochastic nature of the considered SDP, which entails that

Q(Sθ , Aθ ) oscillates around its average value, for any θ =
1, ..., |�| [27].

To fairly compare the optimal policy found by RL
with that provided by MRC, these are tested for 106

Monte Carlo (MC) episodes, in which the GT parts fail
according to the exponential distributions introduced above.
Table 2 summarizes the results of these simulations. In
particular, the last row reports the average total maintenance
expenditures, independently on the number of failures
leading to FOs. From these values, we can see that RL
outperforms MRC for managing the part flow.

To understand this result, in the next sub-sections, we
investigate the MC simulation outcomes summarized in
Table 2: the first column shows the possible number of
FOs occurring over the time horizon; for every number of
FO, the second and third columns report the corresponding

Table 5 Comparison between MRC and RL policies in case of no FO, and RL in the deterministic environment

Number of purchasing Repairs of parts with r=2 Repairs of parts with r=1 Scrap of parts with r>0 Scrap of parts with r=0

RL 5 6 5 2 7

MRC 6 6 5 0 9

RL Det 5 6 5 1 8
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Table 6 Number of episodes vs V , single FO scenario

Total maintenance expenditures V % MRC % RL

1250 0 41.32

1300 2.17 36.11

1350 74.17 20.41

1400 21.67 2.16

1450 1.99 0

average portion of MC episodes for MRC and RL policies,
respectively, with related 68% confidence bounds, whereas
the two last columns report the mean total maintenance
expenditures for MRC and RL, respectively.

4.1 Scenario with no FO

The second row of Table 2 shows that 53.24% of the
simulated episodes do not experience FOs if we apply
the RL policy, against 51.90% obtained by MRC, with no
overlap of the confidence intervals of these estimates. This
leads us to conclude that for a significant portion of the
possible stochastic evolutions of the part flow, the RL policy
yields a large number of episodes without FOs and, thus,
small costs.

To investigate this result, we can refer to Table 3, which
shows the part flow policy derived by the application of
the MRC rule. Namely, the first three columns report the
index of the shutdown, k, the MS time instant, tθk

and the
corresponding time index θk . The following three columns
report the corresponding situation of the warehouse. For
example, at the beginning of the considered time horizon,
i.e., at t1=0, there are three parts with one remaining cycle,
w1,1 = 3, one part with two remaining cycles, w2,1 = 1,
and no new parts, w3,1 = 0.

Table 7 Number of episodes vs V , double FOs case-scenario

V % MRC % RL

1450 0 10.21

1500 2.33 18.55

1550 36.93 41.55

1600 47.22 20.12

1650 12.45 7.71

1700 1.03 1.40

1750 0.05 0.35

1800 0.00 0.06

1850 0.00 0.03

1900 0.00 0.00

1950 0.00 0.01

2000 0.00 0.02

Table 8 Repair costs, DE setting

Crep (r = 2) Crep (r = 1)

56 62

The MNRC values of the parts installed on GTs g = 1
and g = 2 are reported in the seventh and eighth columns,
respectively, where the maintained GT is indicated in bold.
For example, the part on the GT undergoing maintenance
at θ1 = 1, i.e., g = 1, has d1,1 = 2 remaining cycles,
whereas the GT g = 2 has been equipped with a part with
one remaining cycle at the last MS.

The next three columns detail the action taken at the k-th
shutdown. For example, at the first MS, the MNRC of the
part installed on GT g = 1 is r = 2 (ninth column) and the
removed part is repaired (tenth column), with no purchase
of new parts (eleventh column), i.e., A1 = 6. Finally, the
last column reports the maintenance cost, Ck , at the k-th
shutdown.

To further detail the updating dynamics of Table 3, we
can see that at the second MS w2,6 = 1, because the part
removed from GT g = 1 is now available at the warehouse
for installation on GT g = 2. The removed part must be
scrapped, as it has no remaining cycles, d2,6 = 0. This gives
a maintenance cost C2 = 0.

The part flow solution given by the application of the
MRC rule yields a total maintenance cost of 1150 (in
arbitrary units), as reported in the last row of Table 3.

The application of the RL policy yields the part flow
summarized in Table 4, which follows the same scheme as
Table 3, whereas Table 5 summarizes the main differences
between the two policies. From this Table, we can see that
RL is able to find a more efficient part flow policy in the
case of no FO, because it scraps two parts with MNRC > 0
(second row, fifth column), with one less purchase.

4.2 Scenario with single FO

The percentage of episodes with one FO is almost the same
for RL and MRC (i.e., 34.46% and 34.76%, respectively).
However, if we look at the average total maintenance
expenditures (third row in Table 2), these are significantly
different: 1291 for RL and 1361 for MRC, both in arbitrary
units. This result can be explained by looking at Table 6,
where the first column reports the values of all the possible
maintenance expenditures that are encountered in case
there is one FO, whereas the second and third columns
show the corresponding percentage of time in which these
are encountered in case of application of RL and MRC
policies, respectively. We can see that around 77% of
the episodes corresponding to the RL policy end with
maintenance expenditures smaller or equal to 1300, whereas
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Table 9 RL policy, DE setting [25]

k tθk
θk w1,θk

w2,θk
w3,θk

MNRC@ GT g = 1 MNRC@ GT g = 2 MNRC Installed Repair Purchase Ck

1 0 1 3 1 0 2 0 1 Y N 56

2 0.5 6 2 2 0 0 0 3 N Y 100

3 1 11 2 2 0 0 2 2 N N 0

4 1.5 16 2 1 0 1 2 3 Y Y 156

5 2 21 2 2 0 1 2 3 Y Y 162

6 2.5 26 3 2 0 2 2 2 Y N 56

7 3 31 3 2 0 2 1 2 Y N 56

8 3.5 36 3 2 0 1 1 1 Y N 62

9 4 41 3 2 0 1 0 1 Y N 62

10 4.5 46 3 2 0 0 0 1 N N 0

11 5 51 2 2 0 0 0 3 N Y 100

12 5.5 56 2 2 0 2 0 1 N N 0

13 6 61 1 2 0 2 0 2 Y N 56

14 6.5 66 1 2 0 1 0 1 N N 0

15 7 71 0 2 0 1 0 2 Y N 62

16 7.5 76 1 1 0 1 0 2 N N 0

17 8 81 1 0 0 1 1 3 N Y 100

18 8.5 86 1 0 0 2 1 1 Y N 62

19 9 91 1 0 0 2 0 1 Y N 56

20 9.5 96 0 1 0 0 0 2 N N 0

– – – 0 0 0 0 1 – – TOT 1146

MRC accounts only for 2.17%. Thus, also if the number of
FOs is the same, still RL is capable of managing well the
unplanned event, better than MRC.

4.3 Scenario withmultiple FOs

The reasoning for single FO also applies to the case of
two FOs, which occur almost the same number of times
in both RL and MRC policies (i.e.,10.21% for RL and
10.84% for MRC, fourth row in Table 2), but with sensibly
different average maintenance expenditures (i.e., 1549 for
RL and 1586 for MRC, in arbitrary units, Table 2). Similarly
to Tables 6, 7 reports the possible values of maintenance
expenditures and the corresponding percentage of time in
which these are encountered in case of application of RL
and MRC policies. We notice that 70.31% of times RL
total maintenance expenditures are smaller than or equal to
1550, whereas the percentage reduces to 39.26% of times
for MRC. However, for larger cost values the difference
between their percentages decreases. For instance, consider
the total maintenance expenditures smaller than or equal
to 1600; then, RL accounts for 90.43% of times, whereas
MRC for 86.48%. This explains why the difference between
the average maintenance expenditures of RL and MRC
in case of two FOs is smaller than that of the single
FO scenario. With respect to Table 2, finally notice that

the MRC policy has a large percentage of episodes in
which the FOs are larger than 2, although with similar
values of expenditures. However, these scenarios account
only for roughly 2% of times (i.e., they are quite rare
events).

4.4 Comparison with RL in deterministic
environment

A final comment seems in order about the comparison of
the RL solution found in the stochastic environment with
that of the DE setting [25] where it is assumed that parts
cannot fail during operation. To fairly compare the policies,
we assume that in the DE setting, the risk of failure before
the end of the cycle is factored into the MS maintenance
cost: the repair costs reported in Table 1 are summed to the
expected value of the failure cost (i.e., the product between
Cf ailure and the failure probability withinH hours, Table 8)
to have a rough estimate of the total cost of the random
failure. This DE setting is a simplification of the proposed
framework. On the one hand, this allows a large reduction
in the dimension of the state space. On the other hand,
the DE setting neither considers the increase in the total
number of maintenance events over the time horizon nor
provides a policy in the event of a FO during operation,
which changes the environment because the failed part is
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no longer available for the next maintenance events. The
part flow solution found by RL in the DE setting is shown
in Table 9 [25], whereas Table 5, last row, summarizes the
policy characteristics. The number of purchase and repair
actions is the same as that of the RL in case of stochastic
environment and no FO, the only difference being that in the
DE setting, one additional part is scrapped with r = 0 and
one less with r = 1. Consequently, the RL solution for DE
requires installing a part with r = 1 on the last maintained
GT, whereas, in the stochastic environment with no FO, a
part with r = 0 is set on the GT at the same maintenance
event (see last rows of Tables 4 and 9). This implies that the
policy found by RL in DE would increase the total risk of
failure if it were adopted in the stochastic environment, as
one part with r = 0 would be put on the GT during the early
maintenance events, instead of a part with r = 1. To sum
up, the solution under the stochastic environment overcomes
that found in the DE setting because it takes into account the
decrease of risk of failure provided by setting newer parts
on the GTs during the maintenance period rather than at the
last maintenance event.

Moreover, the final maintenance expenditure in DE is
1146 in arbitrary units, which is larger than that of the
RL policy in case of stochastic environment with no FO,
1050, but smaller than the average value of the RL policy,
1200 (Table 2). This difference is obviously due to the
fact that the policy found by RL in the DE, does not take
into account that the occurrence of a FO entails not only a
failure expenditure, which is encoded in the cost of the DE
setting, but also the loss of the failed part, which requires re-
scheduling the MSs. This confirms that the policies found in
the DE are not optimal in the stochastic one and, also, that
the estimations of the maintenance expenditures provided
by the RL algorithm in the DE setting are not correct, even
if they encode the average cost of failure.

Then, the size of the state is much smaller than that of a
real case study (i.e., 3 · 1012, see Section 3). Future research
work will address the issue of extending the methodology
to large state spaces, which requires substituting the tabular
representation of the state-action space by a suitable value-
function approximation method [18, 27].

5 Conclusions

This work extends the formalization of the GT part flow
management in the oil and gas industry as a SDP by
considering the part failure stochastic process. RL is used
as solving technique. The results of a case study inspired
by a real industrial application show that RL finds a more
efficient part flow policy, which increases the GT reliability,
as the percentage of episodes with no forced outages is
increased, but even in case of one or two forced outages, the

policy found by RL results more efficient, leading to lower
total maintenance expenditures.

The application of the proposed framework to a case
study in which the number of turbines is larger and with
larger MNRC values of the parts would require large
computational efforts to explore the search space for finding
the optimal solution. Future research work will, then,
focus on extending the proposed modeling and optimization
framework and the RL algorithms for its solution.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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