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We consider the ground-state energy and the spectrum of the low-energy excitations of a Majorana
island formed of topological superconductors connected by a single-mode junction of arbitrary trans-
mission. Coulomb blockade results in e-periodic modulation of the energies with the gate-induced
charge. We find the amplitude of modulation as a function of reflection coefficient R. The amplitude
scales as VR in the limit R — 0. At larger R, the dependence of the amplitude on the Josephson
and charging energies is similar to that of a conventional-superconductor Cooper-pair box. The
crossover value of R is small and depends on the ratio of the charging energy to superconducting

gap.

The Coulomb blockade phenomenon is associated with
the localization of charge in a small conductor with ap-
preciable charging energy. The Coulomb blockade results
in the observable quantities being periodic functions of
the charge induced by an applied gate voltage. For a
normal system, this periodicity in the induced charge is
e while for an island of conventional (s-wave) supercon-
ductor, a so-called Cooper-pair box, the periodicity is 2e.

With a junction between the island and a lead, charg-
ing effects are smeared by delocalization of the electrons.
Remarkably, the Coulomb blockade is fully suppressed
by the presence of even a single reflectionless channel in
the junction [1]. The way oscillations vanish depends
on the relevant low-energy excitations. For normal-state
conductors, the spectrum is continuous and gapless; the
effect of weak reflection can be read off from known re-
sults for a quantum impurity in a Luttinger liquid [2, 3].
When the island and the lead are s-wave superconduc-
tors, the ground state is non-degenerate and separated
from the continua by gaps. In this case, the destruction
of the Coulomb blockade is described by an imaginary-
time version of the Landau-Zener diabatic crossing of two
in-gap levels, with the off-diagonal matrix element being
proportional to the backscattering amplitude [4].

In this Letter, we elucidate the nature of the suppres-
sion of Coulomb blockade in a nearly-open system made
of topological superconductors, illustrated in Fig. 1. The
topological superconductors are characterized by a finite
gap in the energy spectrum, coexisting with a nontrivial
degeneracy of the ground state, which causes the period-
icity in the induced charge to be e and not 2e. This dif-
ference in the states and spectra from both conventional
superconductors and normal metals results in a differ-
ent underlying physics of the disappearance of Coulomb
blockade oscillations at perfect transmission. We show
that it is related to the physics of diabatic transitions be-
tween a discrete state and a continuum of itinerant states,
and we formulate a quantitative theory valid for the
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FIG. 1. Two topological superconductors, hosting Majorana
zero modes 7y;, are connected by a single-channel junction with
reflection coefficient R. Capacitively coupled gate induces
average charge bias eNy = Cy V.

crossover from a regime where the amplitude of Coulomb
blockade oscillations is proportional to the reflection am-
plitude, to a regime where the physics is similar to a
conventional Cooper-pair box [5].

The system shown in Fig. 1 has become experimentally
relevant since the appearance of viable theoretical mod-
els of one-dimensional topological superconductors [6-9].
Several recent experiments reported data consistent with
topological superconductivity in Coulomb blockade de-
vices [10-12], thus opening a perspective for the experi-
mental study of the quantum charge fluctuations consid-
ered here. Moreover, topological superconducting islands
have been the basis for several proposals for Majorana-
based qubits [13-16], some of which [13, 14] use control of
the charging energy to lift the ground-state degeneracy.
The theory of such control is another application of our
work.

Conventional transmon qubit is a Cooper pair box with
the charging energy much smaller than the Josephson
energy. This arrangement is chosen to suppress charge



fluctuations and increase coherence time of the qubit. In
the present work we focus on the case where the charging
energy E¢ is relatively small, Ec < A (here A is the su-
perconducting gap in the topological phase, it also fixes
the scale of the Josephson energy in the single-channel
junction), which is also the limit considered for a con-
ventional transmon [5]. We find that the gate-induced
charge e/, modulates the energy levels of the topologi-
cal transmon,

SEm(N,) = (—1)m+1%” cos(27N,) , (1)

where m labels the energy levels, with m = 0 being the
ground state [17]; unlike the conventional transmon, the
modulation period is e. The charge sensitivity comes
from the Aharonov-Casher effect [18] in tunneling of the
phase variable ¢ between the classically-equivalent min-
ima (¢ = 0,4x in Fig. 2). The modulation amplitude €,,
is
2m+3

4m—+3 1
em = F(h)-Ec—— \/5 (EM> e~WEu/Ee (3)
s

m)! E7(;

Here Ej); = Av1 — R is the height of the barrier sepa-
rating the two minima of the ground-state energy in the
absence of charging, and R is the reflection coeflicient.
Apart from the function F'(h), Eq. (2) closely resembles
the respective formula [5] for a conventional transmon. It
is valid if the electron system is able to adjust to the in-
stantaneous values of ¢ in the course of tunneling. Such
adiabaticity requires a sufficiently large value of the re-
flection coefficient R. The function F'(h) describes the
crossover between the diabatic and adiabatic regimes,

31/6
F(h) = 5502/3)h = 102k, h<1, (3)

F(h):l—g-h*?’ ~1-039h7% h>1.  (4)

It depends on a single variable,

h = (16?%)1/6 VR. (5)

We first note that F(0) = 0, i.e., in the absence of re-
flection 6F,, = 0, in agreement with the general prop-
erties [2-4, 19, 20] of the Coulomb blockade effect dis-
cussed in the introduction. Below, we derive Egs. (1)-(5)
and show that the entire crossover from F(h) — 0 to
F(h) — 1 occurs in a narrow region of reflection coeffi-
cients, R ~ (16Ec/A)Y3 < 1 [21].

At zero charging energy, phase ¢ across the junction
is a good quantum number. Assuming that only one
pair of helical modes propagates across a short junction,
the phase-dependent part of the ground state energy in
the sector with an even number of electrons takes the
form [6, 22]

Fo(g) = — Far cos(p/2). (6)
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FIG. 2. Energy spectrum of a topological junction in the
absence of backscattering. At R = 0, the bound states are
degenerate at ¢ = 27 mod4n with the edge of continuum
(shaded area).

Here the sign is fixed by the total parity which we as-
sume to be conserved. Furthermore, in a ballistic junc-
tion (R = 0), the momentum associated with the propa-
gating modes is conserved. The bound states are formed
out of states of one chirality: these are, respectively,
the right-movers at 0 < ¢ < 27 and left-movers at
21 < ¢ < 4m, cf. the solid (red) and bold-dashed (black)
curves in Fig. 2. The two bound states become degener-
ate with each other and with the edge of the continuum
at ¢ = 2m. In the presence of backscattering induced by
any finite R, both left- and right-movers participate in
the formation of the continuum and bound states. As
a result, the degeneracy is lifted, and the gap between
the ground state and continuum, (A — Eyy), is finite at
p =27.

Finite charging energy endows the phase with quantum
dynamics; the same-parity, classically-distinguishable
states corresponding to ¢ = 0,4m,... may hybridize.
The hybridization does not occur at R = 0, as these
states are protected by the movers’ momentum conser-
vation, but they do hybridize at R # 0. At small charg-
ing energy, Ec < A, one may view the hybridization as
the result of phase tunneling between the nearest minima
(¢ = 0,47 in Fig. 2).

If the gap 3(A — E)) is large enough, phase tunnel-
ing occurs in the adiabatic regime and is governed by
Hamiltonian

Hy = Ec (—2i0, — Ny)* + Eg(y) (7)

acting in the space of 4r-periodic functions. Here N =
—2i0/0¢p is the operator for the electron number of the
island. To find the energy spectrum of Hy as a function
of Ny, we map the problem onto the known one for the
conventional transmon [5] and find Eq. (2) with F(h)
replaced by 1 (see Sections I and VIII of [23] for details).

The adiabatic approximation fails if the gap %(AfE M)
is small. The corresponding quantum dynamics of the
many-body state in the topological case is very different



from that in the conventional s-wave case [4]. Disregard-
ing for a moment the difference between driving the vari-
able ¢ classically and allowing it to tunnel, one may say
that the conventional problem is related to the Landau-
Zener passage of an avoided crossing between two discrete
many-body states. On the contrary, Coulomb blockade in
the topological junction is related to a Demkov-Osherov
process involving a discrete state and continuum [24].

We may estimate R at which adiabaticity is violated by
a qualitative consideration that ignores the difference be-
tween the real-time evolution and tunneling of the phase
(i.e., “imaginary-time” evolution) across the ¢ = 2w
point. The separation Eex(f) of the bound state energy
from continuum is small at R < 1 and |p — 27| < 1;
using Eq. (6), we find (hereinafter § = ¢ — 27)

4 4

The energy Fox(f) can be estimated as Eex(6*) ~ RA
everywhere within the interval |0 < 6*, where 0* = V/R.
In the (imaginary) time domain, it takes time 7(6*) ~
0* /wp to pass this interval; here wp = VEcEy =
Vv EcA is the Josephson plasma frequency which deter-
mines the time scale for both oscillations and tunneling
of the phase. The phase is passing the point # = 0 adi-
abatically if Eex(60*)7(0*) > 1. Under that condition,
the electron system adjusts to the instantaneous value of
¢ and the use of Hamiltonian (7) at any ¢ is justified.
Expressing Eex(0*) and 7(6%) in terms of R and utilizing
the definition (5), we find that the adiabaticity is vio-
lated at h ~ 1, which indeed is the crossover scale for the
function F'(h), cf. Eq. (2).

To quantify the crossover behavior, we notice that
Eq. (7) determines the dynamics of the many-body
state in the Born-Oppenheimer (adiabatic) approxima-
tion with ¢ being the slow variable. In that approx-
imation, the eigenfunction of the system is factorized,
U({x;}, ) = Uy({x;:})¥(p). The first factor here is the
many-body BCS wave function of the electron ground
state at a given phase ¢. The phase-dependent part of
the corresponding energy, E¢(p), appears in Egs. (6) and
(7). The single-particle states comprising W, ({x;}) are
defined by the Bogoliubov-de Gennes (BdG) equations
where ¢ is treated as a parameter. The second factor,
Y(p), is an eigenfunction of Eq. (7). If R > (E¢/A)Y/?
(i.e., h > 1), then the Born-Oppenheimer wave func-
tion is a good leading-order approximation at all ¢.
In the opposite case, h < 1, we use the condition
Eex(0)7(0) = 1 to determine the range of ¢ (within the
period [0, 47]) where the adiabatic approximation is ap-
plicable. That yields |p — 27| 2 (Ec/A)Y¢. Our strat-
egy is to find ¥U({z;},¢) in the region |p — 27| < 27
by a method inspired by Demkov-Osherov approach [24]
and then match the found ¥({z;},¢) with the Born-
Oppenheimer wave function in the common region of ap-
plicability (Eg/A)YS < |p — 27| < 27. Knowing the

Eux(0) = © (R+ 92) Al (8)

wave functions in the entire interval [0,47] allows us to
find the dependence of energy spectrum on Nj.

To illustrate the strategy, we concentrate on finding
dEy(0), cf. Eq. (1). In the vicinity of ¢ = 0, the func-
tion 1(¢) is well approximated by the eigenstate of a
harmonic oscillator,

AJEc)® > A
¢<@>:Wexp<—sf6- EC) Q

Next we extend Eq. (9) to the apex of the classically-
forbidden region, 21 > 2w — ¢ > max[V'R, (Ec/A)Y9),
by using WKB approximation. This yields

_ (BB o /RTEG o, (_0=0°/96
Y(0) = (2m)L/4 e s exp( 5 EC/A>.(1O)

Clearly, the exponentially small factor in Eq. (10) does
not affect the normalization factor in Eq. (9). The ex-
tension of Egs. (9) and (10) to arbitrary N, and for the
entire classically-forbidden region is given in Sections I,
I1, and IIT of [23].

Finding the many-body state is simplified by the ob-
servation that the phase-dependent energy Eg(p) of a
short junction comes from one single-particle bound state
(the latter is formed by two Majorana states ~ya, 3 hy-
bridized across the junction, see Fig. 1). That allows
us to replace {x;} by a single generalized coordinate,
U({z;},¢) = ¥(x,6). In the vicinity of § = 0, the ac-
tivation energy of the bound state becomes small, see
Eq. (8). That further simplifies the problem, as the rele-
vant states are linear combinations of quasiparticle wave
functions with energies close to A. Similar to the effective
mass approximation in the theory of semiconductors [25],
we construct an effective Hamiltonian [26, 27]

Heg = AEc(—i0p — N, /2)? (11)
1L[vh o 0. R A
+2{2A(_Z@”) —up <20z+\/ﬁc;’x) 5(x)}+2,

here 6, . are Pauli matrices in the space of right/left-
propagating states and vg is the Fermi velocity (it drops
out from final results). The divergent-at-the-gap density
of states and energy FEx () are correctly described by
Hg, see Section IV in [23]. Note that [6,, Heg] = 0 at
R = 0, and the bound states at § > 0 and 6 < 0 belong
to orthogonal sub-spaces. Therefore, at R = 0 there is
no tunneling between the ¢ = 0,47 minima, consistent
with momentum conservation.

As we are interested in states with energy E ~ —A/2
(see Fig. 2), the problem can be further simplified by
factoring out the leading (linear in #) exponential term in
the wave function and replacing x and 6 by dimensionless
variables y and z:

U(z,0) = exp (—«/A/4EC 9) Uy, 2), (12)
x=2"23(A/Ec) (vp/A)y, 0 =253 (Ec/A)%.



In the new variables, the Schrodinger equation for ¥(y, z)
at N; = 0 depends on a single parameter h given by
Eq. (5):
1 N .
(&Z — 585 — (26, + hoﬁé(y)) U(y,z) =0. (13)

Its solution in the Born-Oppenheimer approximation,

VO (y, 2) = 0 (y)g " ()0 (2)x, (14)
B 1/12 A 1/2
(0)(y) = 91/3 [Z€ = —rzyl
WO =22 () [S] e
0 _ (A/Ec)l/s —2+4/A/E 1 ; 2
g( )(Z) = W@ /Ec exp 5 . dZ/K,Z/ ;

reproduces Eq. (10) in its region of validity [upon re-
turning from ¢(?(2) to ¥(#)]. Here k, = (22 4+ h?)/2,
pseudo-spinor x is an eigenvector, 6, = X, and the uni-
tary operator

U(z)zemp{—écof”(—i)é@] (15)

rotates it to align with the z-dependent quantization axis.

The rotation rate in Eq. (15) scales as 1/h; obviously,
the adiabatic approximation fails at h <« 1. We develop
perturbation theory in A to find the energy eigenvalues
in this limit. At h = 0, we can take advantage [24] of the
linear z-dependence of a coefficient in Eq. (13) and solve
the partial differential equations for o, = 41 analytically.
For that, we apply the Fourier transformation to Eq. (13),

(10 + K220, (k. p) = 020, o, (p), (16)
Foo)= [ ().

which allows us to obtain a closed first-order differential
equation for Fy_(p),

—io.[e”"/(2p) /18, Fy.(p) = Fo. (p) (17)

(p'/? > 0 for p > 0). Solution of Eq. (17) followed by in-
verting the Fourier transform ,_(k,p) of Eq. (16) yields

77[1—1(31,*2) = 1[}1(y,2')
:27/127T1/46_2‘/A/EC(A/Ec)1/24(A/’UF)1/2
></ ;i:_exp[ipz— (2ip)'/?|y| +§z’(z‘+1)p3/2 . (18)

The constant of integration here is found by matching
the |z| > 1,2z < 0 asymptote of Eq. (18) with the Born-
Oppenheimer limit, Egs. (14). Knowing the wave func-
tions (18) at h = 0, we may express the first-order cor-
rection to energy in terms of the matrix element of per-

turbationa <¢—1(y7 Z)|h&$5(y)‘w1 (ya Z)>7

0 =2 ueVR o/ [ 027 (0, 2 (0, ).
(19)
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FIG. 3.  Full crossover function F(h), see Eq. (2). Dots:
numerical solution of the eigenvalue problem at Ec/A = 0.05
and varying R, expressed in terms of h given by Eq. (5); lines:
analytically found asymptotes (3) and (4).

Performing the integration with the help of Eq. (18), we
arrive at the asymptote (3), see also Section VI of [23].
In the opposite case, h > 1, we find correction (4) by
perturbing away from the adiabatic limit, Eqs. (14). The
correction stems from the perturbations .U (z), 6zw§°) x
1/h appearing in Eq. (13) upon substitution of Egs. (14)
and (15) in it. We are interested in the correction which
vanishes at z — —oo and modifies the asymptote of the
adiabatic, localized in y, solution at z > 1. The per-
turbations, effective in the region |z| < h, mix the local-
ized state with the itinerant ones, differing in energy by
~ h?. Therefore the modification of the localized state
U0 (y, z) appears in the second-order perturbation the-
ory. The power counting thus gives +1 from the term in
the Hamiltonian, —2 from the second order perturbation
theory, and —2 from the energy cost giving the correc-
tion oc 1/h3. The evaluation of the numerical coefficient
appearing in Eq. (4) is presented in Section VII of [23].
The interpolation between the diabatic and adiabatic
asymptotes of F'(h) is shown in Fig. 3. It is obtained
by generalizing Hog to arbitrary phases with the help
of substitution /2 — 2sin(6/4) in Eq. (11). The gen-
eralized Hamiltonian, being projected at R < 1 on its
low-energy sector, reproduces Eq. (7) in the region of
phases 0] > (FE¢/A)Y%. By finding numerically the
energy spectrum of that Hamiltonian, we get the rel-
ative amplitude of the gate modulation, F', as a func-
tion of two parameters R and Ec/A (see details in Sec-
tion IX of [23]). The results at the lowest values of Ec/A
are compatible with F' depending on a single parameter,
VR(A/E)Y8 o h, and having asymptotes (3) and (4).

To conclude, we addressed the problem of the crossover
from a pronounced charging effect to its full absence in
a topological superconducting junction upon reduction
of the reflection coefficient R. The many-body prob-



lem was reduced to that of tunneling of a system with
a few degrees of freedom - charge and coordinate of an
effective particle fluctuating between the state localized
in the junction and scattering states in the continuum.
The reduction allowed us to find the full crossover func-
tion F(h). The control parameter h depends weakly on
A/Eq, so that h = (0.6 — 1.1)/R for A/Ec = 1 — 25.
The function F(h) is well approximated by a linear de-
pendence for F < 0.5; in this range, F(h) ~ VR for
typical values of A/E¢.
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