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The rheological response of dense active matter is a topic of fundamental importance for many
processes in nature such as the mechanics of biological tissues. One prominent way to probe me-
chanical properties of tissues is to study their response to externally applied forces. Using a particle-
based model featuring random apoptosis and environment-dependent division rates, we evidence a
crossover from linear flow to a shear-thinning regime with an increasing shear rate. To rationalize
this nonlinear flow we derive a theoretical mean-field scenario that accounts for the interplay of
mechanical and active noise in local stresses. These noises are, respectively, generated by the elastic
response of the cell matrix to cell rearrangements and by the internal activity.

Mechanical stimuli on single cells [1] and cell assem-
blies [2] play an important role in biology, for example
in the mechanics of biofilms [3] as well as for medical
issues [4, 5]. Furthermore, mechanical sensing has been
shown to be of vital importance in cancer growth [6–8]
and morphogenesis [9, 10]. Driven by advances in exper-
imental cell tracking techniques [11–14], this topic has
gained a lot of importance in recent years. The mechan-
ical response of cell aggregates under deformation has
been shown to exhibit elastic, elastoplastic and viscous
flow behavior depending on the forces applied and the
time scale of observation considered [12, 15, 16]. Re-
cently there have been many efforts to understand the
origin of these different mechanical regimes. It has been
shown that both self-propulsion [17–20], as well as cell di-
vision and apoptosis [21–23] are processes able to fluidize
a confluent cell assembly, which appears to be arrested
in a glassy configuration otherwise.

In this Letter we go beyond the study of the specific
fluidization mechanism and the corresponding linear flow
regime [22]. We investigate the flow properties of a con-
fluent tissue under shear using a particle-based model
that incorporates activity in the form of cell division and
apoptosis [23]. We find that the internal activity gives
rise to a fluidization of the tissues at shear rates smaller
than a time scale set by the apoptosis rate, followed by
a shear-thinning regime, well described by a Herschel-
Bulkley flow curve at higher shear rates. These findings
are in agreement with experimental studies on epithelial
cell monolayers [14], which showed that the structural re-
laxation time of their tissue was purely governed by the
cell division time in the high density regime.

In analogy to the flow of soft matter, such as emul-
sions or foams, we propose a statistical description to de-
rive an analytical prediction for the complex flow curve
in confluent tissues. At the core of this description is
an elastoplastic picture: the inactive cell assembly re-
sponds elastically to external forcing like a solid up to a
threshold above which it is able to locally yield through
cell-cell rearrangements leading to plastic flow as shown
in the stress-strain curve in the bottom panel of Fig. 1.

T1 Division Apoptosis

FIG. 1. (Top) Microscopic events in a system with cell divi-
sion and apoptosis under shear. From left to right, T1 event
(passive rearrangement), cell division and apoptosis (active
rearrangements). (Bottom) Typical macroscopic stress-strain
curve, the average slope of the increasing elastic parts on the
curve corresponds to the elastic modulus G0.

The local rearrangements (T1 events, see sketch in Fig. 1)
lead to a long-range elastic response of the surrounding
medium that will create a mechanical noise [24]. We
argue that the elastic perturbation created through the
internal activity, for example via cell division and apop-
tosis (sketch in Fig. 1), creates an additional active noise.
The interplay of these different mechanisms leads to an
interesting nontrivial flow behavior. We rationalize these
findings using a mean-field description that extends the
Hébraud-Lequeux model [25] of athermal yield stress flu-
ids.

In spite of the inherent complexity of tissue mechan-
ics, many interesting collective phenomena at tissue level
can be described using simple models in which cell-cell
interactions are treated as soft interactions between par-
ticles [26, 27]. In this spirit, we model a tissue as a collec-
tion of N soft spherical particles with radii bi uniformly
distributed in a range of 0.85 to 1.15. Moreover, in order
to mimic the real behavior of cells in epithelial sheets we
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consider adhesion and excluded volume as a combination
of attractive and repulsive forces [23, 28],

Fij =







−kbij

(

1−
rij
bij

)

r̂ij if 0 ≤
rij
bij

≤ ǫ+ 1

kbij

(

2ǫ+ 1−
rij
bij

)

r̂ij if ǫ <
rij
bij

− 1 ≤ 2ǫ,

(1)
where k is the stiffness constant, bij = bi+bj is the sum of
the particle radii and ǫ is the ratio of the maximal attrac-
tive and maximal repulsive forces. The cell centroids ri(t)
follow an overdamped dynamics, ∂tri(t) = µFi, where µ
is the mobility coefficient [29]. In addition, activity is
introduced via apoptosis and cell-division rates. Apop-
tosis (as well as possibly other cell death mechanisms) is
included by removing cells randomly at a constant rate
a. On the other hand, as in real epithelial tissues, the
contact inhibition process [30] is modeled via a density-
dependent division rate di = d0(1− zi/zmax), with d0 the
division rate amplitude, zi the number of contact neigh-
bors of particle i, and zmax the maximum number of
contact neighbors allowed. After any division, the new
daughter cell is placed on top of the mother cell. In or-
der to prevent any numerical instability, the total force
exerted by the mother and daughter cells on the sur-
rounding cells is kept continuous, by applying only half
the force immediately after cell division, and then pro-
gressively increasing the applied force to reach again a
nominal force applied on each cell [23].

We carried out 2D simulations of the model with fixed
values zmax = 6, ǫ = 0.05 [31]. By setting µ = k = 1
we set the unit time to the elastic relaxation time
τel = (µk)−1, typically of the order of minutes [15]. We
take as a control parameter the apoptosis rate a, where
a−1 is in experiments of the order of half an hour to half a
day [14, 32]. Since varying a at the fixed maximal division
rate d0 would lead to large variations in packing fraction,
we rather fix d0 through the relation a/d0 = 0.1 (consis-
tent with the choice of the other parameters and typical
experimental values [14]), leading to limited changes of
the packing fraction.

After a steady state has been reached in the absence
of shear, with the average division rate balancing the
apoptosis rate, we impose a constant shear rate γ̇ via de-
formation of a triclinic box with periodic boundary con-
ditions. We apply a strain of more than 10 to ensure
that the steady state has been reached and measure the
macroscopic shear stress σxy(t) as illustrated in Fig. 1.

We have established that the homeostatic properties
of the system do not strongly depend on a [31]. For low
enough shear rate γ̇ and apoptosis rate a, the packing
fraction is constant [Fig. 2(b)]. A careful analysis of the
packing fraction Φ as a function of a and γ̇ [Fig. 2(b)]
however reveals two different regimes in which the pack-
ing fraction deviates from this constant value. First, con-
sidering a fixed low shear rate (typically γ̇ < 10−3), the
packing fraction Φ increases with activity if a & 10−3.

FIG. 2. Flow curves for passive and active systems –

(a) Steady-state average shear stress 〈σxy〉 versus the applied
external shear rate γ̇ for different apoptosis rates a. The
symbols indicate the microscopic simulations results for the
different apoptosis rates. The dashed line corresponds to a
Herschel-Bulkley fit of the passive system with packing frac-
tion Φ ≈ 0.94. The dashed-dotted lines are the mean-field
model fits with fitting parameter D0. (b) Shear-rate depen-
dence of the corresponding packing fraction Φ for the same
values of the apoptosis rates.

This is understood as an interplay between the division
rate d0 (equal to 0.1a) and the mechanical relaxation
rate µk in the soft repulsive potential [23]. As long as
the elastic relaxation time τel = (µk)−1 remains small
with respect to the typical time τa = (d0)

−1 between two
divisions involving the same cell, the elastic relaxation
processes remain independent and the packing fraction
remains constant. When, in constrast, τa ≪ τel, multiple
divisions occur during the elastic relaxation, and the re-
sulting packing fraction depends on the activity a. The
second regime is related to the effect of a strong enough
shear rate, typically γ̇ > 10−3. In this case, we observe
that a fast and large deformation of the box produces
a rapid decrease of the number of contact neighbors fol-
lowed by an increase of the division rate, eventually lead-
ing to a steady state with a higher packing fraction.

The corresponding flow curves, i.e., the steady-state
macroscopic stress 〈σxy〉 as a function of γ̇, are shown
in Fig. 2(a) for different values of the apoptosis rate.
In the absence of activity (a = 0) the system exhibits
a nonlinear rheology as observed in foams; it is well
known that this type of dynamics is then character-
ized at low shear rates by a Herschel-Bulkley flow curve

〈σxy〉 = σ
(d)
y +AHBγ̇

n. In other words, in the limit of
zero shear rate, the macroscopic stress takes a finite

value, known as the dynamical yield stress σ
(d)
y , and

then increases with the shear rate following a power-

law behavior [33]. In our case, we obtain σ
(d)
y = 0.014,
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AHB = 0.065 and n ≈ 0.5 for γ̇ ≤ 0.025 (see the dashed
curve), this exponent being consistent with those ob-
served in foams and in recent molecular dynamics simu-
lations [24]. On the other hand, a finite activity a > 0

prevents the system from having a finite yield stress σ
(d)
y ,

leading to a linear behavior at low shear rates, with a vis-
cosity that decreases when a increases. Here the new
feature is the crossover, at a shear rate γ̇∗ controlled
by the activity, from a Newtonian to a Herschel-Bulkley
behavior. Defining the crossover as the intersection be-
tween the linear regime and the plateau, we have plotted
γ̇∗(a) in Fig. 3(b), obtaining an almost linear dependence
γ̇∗ ∼ a0.82. We emphasize that, at least for small enough
activity (a . 10−4), the crossover from activity-driven
fluidization to a yield-stress (plateau) behavior occurs at
a constant packing fraction. On the contrary, the stress
increase at large shear rate γ̇ results from both standard
elastoplastic effects and the increase of the packing frac-
tion.

The crossover from linear to nonlinear flow behaviors
of the sheared active system can be captured via a mini-
mal mean-field description that focuses on the dynamics
of the local shear stress. For this purpose, we use an
athermal-local-yield-stress model [34, 35], which gener-
alizes the original Hébraud-Lequeux model [25]. These
models usually do not take into account any active con-
tribution to the local stress fluctuations. As shown in
Fig. 2(a), this active contribution is however a key ingre-
dient for fluidizing the system and is thus introduced ex-
plicitly thereafter. In a simplified mean-field picture, the
dynamics of the local stress can be modeled by a modi-
fied Langevin dynamics, ∂tσ(t) = G0γ̇ + ξmec(t) with G0

the average local elastic modulus, γ̇ the external con-
stant shear rate, and ξmec(t) the mechanical noise. In
addition, once σ(t) exceeds a typical threshold σc, a lo-
cal plastic event randomly occurs at a fixed rate 1/τ ,
which would in turn fully relax the local stress and thus
reset σ(t) to 0. Here, ξmec(t) is modeled by a Gaus-
sian noise with zero mean. Furthermore, at the time
scale we consider, we can neglect its time correlation,
i.e., 〈ξmec(t)ξmec(t

′)〉 = 2D(t)δ(t− t′), where the brack-
ets corresponds to average over time, and D(t) is the
stress diffusion coefficient. At low shear rate, a natural
way to introduce activity is to distinguish two contri-
butions to the noise, i.e., ξmec(t) = ξpl(t) + ξact(t). The
noise ξpl(t) accounts for the plastic events triggered by
the external driving throughout the system, and has a
time-dependent diffusion coefficient Dpl(t). The noise
ξact(t) corresponds to the stress fluctuations produced
by activity (cell division and apoptosis), and has a time-
independent diffusion coefficient D0. We assume that
these two competing noises are statistically independent.
Hence, the stress diffusion coefficient has two additive
contributions, D(t) = Dpl(t) + D0. Following the stan-
dard Hébraud-Lequeux model [25], the diffusion coeffi-
cient Dpl(t) modeling the effect of plastic events is self-

FIG. 3. (a) Fitted value of the diffusion coefficient D0 of
the active noise as a function of the apoptosis rate a from the
mean-field fit on the simulation data. The dashed line is a
power-law fit with an exponent 0.94. (b) Activity-dependent
crossover shear rate γ̇∗(a) measured from the flow curves (see
text for details). Crosses are determined values from the pure
simulation data, whereas stars come from the mean-field fit
of the simulations.

consistently determined as Dpl(t) = αΓ(t), where Γ(t) is
the global plastic activity and α is a coupling parameter
related to the elastic stress propagator [31, 34, 36]. Here,
we emphasize that the new key ingredient is the diffusion
coefficient D0 > 0 stemming from activity. The macro-
scopic stress 〈σxy〉 can be obtained from the probability
distribution of the local stress σ. The evolution equation
of this distribution is

∂tP(σ, t) =−G0γ̇ ∂σP + (αΓ(t) +D0) ∂
2
σP

−
1

τ
θ(|σ| − σc)P + Γ(t) δ(σ)

(2)

where Γ(t) = 1
τ

∫

|σ|>σc
dσP(σ, t) is the average number

of sites that yield per unit time; Γ(t) is proportional to
the number of sites that have reached the threshold (i.e.,
|σi| > σc) divided by the “lifetime” τ [25, 34]. The stress
on these sites is reset to zero after the yield event. These
simple rules do not correspond to the true local relax-
ation processes [24]. The aim is to introduce the sim-
plest analytically solvable mean-field scenario that pre-
dicts qualitatively well the numerical data with a set of
few meaningful effective parameters.

In the steady state at constant shear rate, and in the
absence of activity (D0 = 0), it is well known that this
mean-field model predicts the existence of a Herschel-
Bulkley regime with an exponent n = 1/2 at low γ̇ and
for α < σ2

c/2 [25, 34, 35].

In the presence of activity (D0 > 0), the present mean-
field model reproduces the fluidization process leading
to a linear behavior (i.e., Newtonian regime) and, quite
importantly, recovers a nonlinear flow curve beyond a
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crossover shear rate γ̇∗,

〈σxy〉 ≈

{

η γ̇ if γ̇ < γ̇∗

σy +AHB γ̇1/2 if γ̇ > γ̇∗
(3)

as observed in Fig. 2. Analytical calculations show that
γ̇∗ ∼ D0 for D0 → 0. The explicit expressions for
{η, σy, AHB, γ̇

∗} can be computed as a function of the
model parameters {G0, τ, σc, α,D0}, using the methods
described in Ref. [34] – see the Supplemental Material in
Ref. [31].

To compare the mean-field model with the numeri-
cal data of the particle-based model, we have to fit the
values of the model parameters {G0, τ, σc, α,D0}. We
used the following fitting procedure. First, the elastic
modulus G0 is estimated independently from the initial
elastic response in the stress-strain curve (see Fig. 1)
yielding G0 ≈ 0.25. Second, the parameters {τ, σc, α}
are fitted on the flow curve obtained in the absence of
activity (a = 0, Φ ≈ 0.94), in turn yielding τ = 0.12,
σc = 0.15, and α = 0.45σ2

c . Having fixed the four param-
eters {G0, τ, σc, α}, we then fit the different flow curves
obtained in the active case (a > 0) with D0 as the only
free parameter. The procedure eventually yields the fit-
ted value D0(a), which is plotted in Fig. 3(a). As ex-
pected, the fitted value of σc is larger than σy , see Eq. 3,
and that the coupling α is smaller than σ2

c/2 as required
to observe a Herschel-Bulkley behavior. We further ob-
serve that the obtained value of α/σ2

c is larger than for
the Lennard-Jones systems [24]; this larger value might
be linked to the presence of a softer potential. More

FIG. 4. Viscosity η = 〈σxy〉/γ̇ as a function of the apoptosis
rate a for different small values of the shear rate (symbols for
the numerical data and dash-dotted lines for the mean-field
prediction).

importantly, the stress diffusion coefficient D0(a) fitted
from the mean-field prediction is plotted in Fig. 4(a),
and scales fairly linearly with a. This can be understood
as follows. At low a, apoptosis events are rare and in-
dependent, so we can safely assume that the typical re-
distributed stress ∆σ after such events will depend only
on the packing fraction but not on the activity. More-
over, at low shear rates the only relevant time scale is set

by the apoptosis rate. Thus, we can estimate the stress
diffusion coefficient D0 by a simple scaling argument as
D0 ∼ (∆σ)2a. Furthermore, the mean-field picture pre-
dicts a crossover γ̇∗ linear with D0, and hence we expect
γ̇∗ ∼ a, consistently with the flow curve crossover shown
in Fig. 3(b).

To provide further insights on the behavior of our
model, we show in Fig. 4 the activity-dependent vis-
cosity η = 〈σxy〉/γ̇ for different fixed, low values of the
shear rate. We observe that the viscosity decreases when
the activity is enhanced beyond a (strain-rate-dependent)
threshold value, i.e., fluidizing the system as previously
reported in Ref. [21]. However, the Maxwell picture pro-
posed in Ref. [21] cannot capture the crossover to the
nonlinear rheology that we observe in Fig. 2(a). This is
due to the fact that the plateau in the viscosity observed
at low activity [see Fig. 4] does not correspond to a New-
tonian regime (in which the shear stress varies linearly
with γ̇), but rather to a yield stress fluid behavior. This
is clearly seen from the fact that the plateau value of the
viscosity strongly depends on the strain rate γ̇, a prop-
erty that cannot be accounted for by a simple Maxwell
model. The data presented in Fig. 4 can be understood
as follows. At low enough activity, plasticity is dominant
and the shear stress remains independent of activity. For
a fixed shear rate, the viscosity η = 〈σxy〉/γ̇ is thus inde-
pendent of activity, yielding the plateau in Fig. 4. At a
higher activity, the active contribution to the mechani-
cal noise instead becomes dominant, thus decreasing the
viscosity. In this regime, the mean-field model predicts
η ∼ 1/D0 (see the Supplemental Material in Ref. [31]),
in good agreement with Fig. 4 (dashed-dot lines), taking
into account D0 ∼ a. Note here again the good agree-
ment between the mean-field model and the numerical
simulations.

In conclusion, we proposed in this Letter a generic sce-
nario to understand the crossover from linear to nonlinear
rheology in flowing active tissues, based on stress fluctu-
ations mediated by long-range elastic interactions. The
mean-field picture presented here allows us to introduce
explicitly the interplay of the two relevant time scales in
these systems, one imposed by the external shear and
another by the internal processes of the biological tissue
in the form of cell division and apoptosis. This scenario
is able to rationalize well the numerical findings of our
particle-based model for the active confluent tissue un-
der shear, as can be seen from the flow curves and the
activity-dependent viscosity.

It has been shown that our mean-field predictions are
qualitatively robust to the addition of disorder [34], the
partial relaxation of stress or the effective shear-rate
dependence of the elastic modulus or relaxation time
[35], assessing furthermore the generality of our sce-
nario. Moreover, the introduction of additional relax-
ation mechanisms like cell-shape fluctuations, self propul-
sion, external vibrations, and other sources of mechani-
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cal noise, can be easily implemented in our mean-field
description via assumptions on the distribution of the
active part of the noise. However, to allow for a more
refined description of the dynamics aiming for a quanti-
tative agreement, it would be interesting to investigate in
more details the long-range elastic effects of cell division
and apoptosis events. A strong point of our approach is
that it can be easily generalized to describe the rheolog-
ical response of other systems that include an additional
shear-rate independent noise, such as vibrated grains [37–
40], active colloidal suspensions [41] or coarsening foams
[42, 43].

Acknowledgements. J.-L. B., D. A. M.-F. and
E. A. acknowledge financial support from European Re-
search Council Grant No. ADG20110209; E. A. was
also supported by the Swiss National Science Foundation
Grant No P2GEP2-15586 and by a Simons Foundation
Grant (♯ 454955, Zamponi). J.-L. B., D. A. M.-F., and
K. M. thank the NVIDIA Corporation for a hardware
grant through the Academic Partnership Program. Fur-
ther, we would like to thank Silke Henkes and Rastko
Sknepnek for valuable discussions on the particle model
description during this work.

D. A. M.-F. and E. A. contributed equally to this work.

∗ daniel-alejandro.matoz-fernandez@univ-grenoble-alpes.fr
† elisabeth.agoritsas@lpt.ens.fr

[1] E. Moeendarbary and A. R. Harris,
Wiley Interdisciplinary Reviews: Systems Biology and Medicine 6, 371 (2014).

[2] T. Lecuit and P.-F. Lenne,
Nature Reviews. Molecular Cell Biology 8, 633 (2007).

[3] N. Billings, A. Birjiniuk, T. S. Samad,
P. S. Doyle, and K. Ribbeck,
Reports on Progress in Physics 78, 036601 (2015).

[4] C. R. Jacobs, H. Huang, and R. Y. Kwon,
Introduction to Cell Mechanics and Mechanobiology
(Garland Science, 2013).

[5] A. van den Berg and L. Segerink, eds.,
Microfluidics for Medical Applications, RSC
Nanoscience & Nanotechnology (The Royal Society
of Chemistry, 2015) pp. P001–303.

[6] M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins,
G. I. Rozenberg, A. Gefen, C. A. Reinhart-King,
S. S. Margulies, M. Dembo, D. Boettiger, et al.,
Cancer Cell 8, 241 (2005).

[7] M. Delarue, F. Montel, D. Vignjevic,
J. Prost, J.-F. Joanny, and G. Cappello,
Biophysical Journal 107, 1821 (2014).

[8] A. Nagelkerke, J. Bussink, A. E. Rowan, and P. N.
Span, Seminars in Cancer Biology 35, 62 (2015), Com-
plexity in Cancer Biology.

[9] M. Popovic, A. Nandi, M. Merkel, R. Etour-
nay, S. Eaton, F. Jülicher, and G. Salbreux,
“Active dynamics of tissue shear flow,” arXiv:1607.03304
(2016).

[10] R. Etournay, M. Popović, M. Merkel, A. Nandi,
C. Blasse, B. Aigouy, H. Brandl, G. Myers, G. Salbreux,

F. Jülicher, et al., Elife 4, e07090 (2015).
[11] X. Trepat, M. R. Wasserman, T. E. Angelini, E. Mil-

let, D. A. Weitz, J. P. Butler, and J. J. Fredberg,
Nature Physics 5, 426 (2009).

[12] T. E. Angelini, E. Hannezo, X. Trepat, M. Mar-
quez, J. J. Fredberg, and D. A. Weitz,
Proceedings of the National Academy of Sciences 108, 4714 (2011).

[13] R. Etournay, M. Merkel, M. Popović, H. Brandl, N. A.
Dye, B. Aigouy, G. Salbreux, S. Eaton, and F. Jülicher,
Elife 5, e14334 (2016).

[14] K. D. Nnetu, M. Knorr, S. Pawlizak, T. Fuhs, and J. A.
Käs, Soft Matter 9, 9335 (2013).

[15] P. Marmottant, A. Mgharbel, J. Kaefer, B. Au-
dren, J.-P. Rieu, J.-C. Vial, B. van der Sanden,
A. F. M. Marée, F. Graner, and H. Delanoe-Ayari,
Proceedings of the National Academy of Sciences 106, 17271 (2009).

[16] S. Heermann, L. Schütz, S. Lemke, K. Krieglstein, and
J. Wittbrodt, Elife 4, e05216 (2015).

[17] L. Berthier, Physical Review Letters 112, 220602 (2014).
[18] R. Mandal, P. J. Bhuyan, M. Rao, and C. Dasgupta,

Soft Matter 12, 6268 (2016).
[19] D. Bi, X. Yang, M. C. Marchetti, and M. L. Manning,

Physical Review X 6, 021011 (2016).
[20] G. Szamel, E. Flenner, and L. Berthier,

Physical Review E 91, 062304 (2015).
[21] J. Ranft, M. Basan, J. Elgeti, J.-

F. Joanny, J. Prost, and F. Jülicher,
Proceedings of the National Academy of Sciences 107, 20863 (2010).

[22] M. Basan, J. Prost, J.-F. Joanny, and J. Elgeti,
Physical Biology 8, 026014 (2011).

[23] D. Matoz Fernandez, K. Martens, R. Sknep-
nek, J. L. Barrat, and S. Henkes,
“Fluidization of tissues due to cell division and apoptosis,” arXiv:1610.09340
[cond-mat.soft] (2016).

[24] F. Puosi, J. Olivier, and K. Martens,
Soft Matter 11, 7639 (2015).

[25] P. Hébraud and F. Lequeux,
Physical Review Letters 81, 2934 (1998).

[26] D. Drasdo, S. Hoehme, and M. Block,
Journal of Statistical Physics 128, 287 (2007).

[27] J. Zimmermann, B. A. Camley,
W.-J. Rappel, and H. Levine,
Proceedings of the National Academy of Sciences 113, 2660 (2016).

[28] B. Szabó, G. J. Szöllösi, B. Gönci, Z. Ju-
rányi, D. Selmeczi, and T. Vicsek,
Physical Review E 74, 061908 (2006).

[29] S. Henkes, Y. Fily, and M. C. Marchetti,
Physical Review E 84, 040301 (2011).

[30] A. Puliafito, L. Hufnagel, P. Neveu, S. Streichan,
A. Sigal, D. K. Fygenson, and B. I. Shraiman,
Proceedings of the National Academy of Sciences 109, 739 (2012).

[31] See Supplemental Material for a complete mathemati-
cal description of the active athermal-local-yield-stress
model and the GPU-Parallel Implementation.

[32] A. Puliafito, L. Hufnagel, P. Neveu, S. Streichan, A. Si-
gal, D. K. Fygenson, and B. I. Shraiman, Proceedings of
the National Academy of Sciences 109, 739 (2012).

[33] W. H. Herschel and R. Bulkley,
Kolloid-Zeitschrift 39, 291 (1926).

[34] E. Agoritsas, E. Bertin, K. Martens, and J.-L. Barrat,
European Physical Journal E: Soft Matter 38, 71 (2015).

[35] E. Agoritsas and K. Martens,
“Nontrivial rheological exponents in sheared yield stress fluids,” arXiv:1602.03484
[cond-mat.soft] (2016).

mailto:daniel-alejandro.matoz-fernandez@univ-grenoble-alpes.fr
mailto:elisabeth.agoritsas@lpt.ens.fr
http://dx.doi.org/10.1002/wsbm.1275
http://dx.doi.org/10.1038/nrm2222
http://stacks.iop.org/0034-4885/78/i=3/a=036601
http://www.garlandscience.com/product/isbn/9780815344254
http://dx.doi.org/10.1039/9781849737593
http://dx.doi.org/ 10.1016/j.ccr.2005.08.010
http://dx.doi.org/ 10.1016/j.bpj.2014.08.031
http://dx.doi.org/http://dx.doi.org/10.1016/j.semcancer.2015.09.001
https://arxiv.org/abs/1607.03304
http://dx.doi.org/ 10.1038/nphys1269
http://dx.doi.org/ 10.1073/pnas.1010059108
http://dx.doi.org/ 10.1073/pnas.0902085106
http://dx.doi.org/10.7554/elife.05216
http://dx.doi.org/10.1103/PhysRevLett.112.220602
http://dx.doi.org/ 10.1039/C5SM02950C
http://dx.doi.org/ 10.1103/PhysRevX.6.021011
http://dx.doi.org/10.1103/PhysRevE.91.062304
http://dx.doi.org/ 10.1073/pnas.1011086107
http://dx.doi.org/10.1088/1478-3975/8/2/026014
https://arxiv.org/abs/1610.09340
http://dx.doi.org/10.1039/C5SM01694K
http://dx.doi.org/10.1103/PhysRevLett.81.2934
http://dx.doi.org/10.1007/s10955-007-9289-x
http://dx.doi.org/10.1073/pnas.1522330113
http://dx.doi.org/10.1103/PhysRevE.74.061908
http://dx.doi.org/10.1103/PhysRevE.84.040301
http://dx.doi.org/10.1073/pnas.1007809109
http://dx.doi.org/10.1007/BF01432034
http://dx.doi.org/10.1140/epje/i2015-15071-x
http://arxiv.org/abs/1602.03484


6

[36] L. Bocquet, A. Colin, and A. Ajdari,
Physical Review Letters 103, 036001 (2009).

[37] G. D’anna, P. Mayor, A. Barrat, V. Loreto, and F. Nori,
Nature 424, 909 (2003).

[38] K. J. Ford, J. F. Gilchrist, and H. S. Caram,
Powder Technology 192, 33 (2009).

[39] J. A. Dijksman, G. H. Wortel, L. T. H. van
Dellen, O. Dauchot, and M. van Hecke,
Physical Review Letters 107, 108303 (2011).

[40] A. Pons, T. Darnige, J. Cras-

sous, E. Clément, and A. Amon,
EPL (Europhysics Letters) 113, 28001 (2016).

[41] I. Theurkauff, C. Cottin-Bizonne,
J. Palacci, C. Ybert, and L. Bocquet,
Physical Review Letters 108, 268303 (2012).

[42] S. Hilgenfeldt, S. A. Koehler, and H. A. Stone,
Physical Review Letters 86, 4704 (2001).

[43] A. Saint-Jalmes, Soft Matter 2, 836 (2006).

http://dx.doi.org/10.1103/PhysRevLett.103.036001
http://dx.doi.org/ 10.1038/nature01867
http://dx.doi.org/10.1016/j.powtec.2008.11.017
http://dx.doi.org/10.1103/PhysRevLett.107.108303
http://stacks.iop.org/0295-5075/113/i=2/a=28001
http://dx.doi.org/10.1103/PhysRevLett.108.268303
http://dx.doi.org/10.1103/physrevlett.86.4704
http://dx.doi.org/10.1039/B606780H

