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Abstract6

For any S ⊂ Z we say that a graph G has the S-property if there exists an S-edge-weighting7

w : E(G) → S such that for any pair of adjacent vertices u, v we have
∑

e∈E(v) w(e) 6=8 ∑
e∈E(u) w(e), where E(v) and E(u) are the sets of edges incident to v and u, respectively. This9

work focuses on {a, a + 2}-edge-weightings where a ∈ Z is odd. We show that a 2-connected10

bipartite graph has the {a, a+ 2}-property if and only if it is not a so-called odd multi-cactus.11

In the case of trees, we show that only one case is pathological. That is, we show that all trees12

have the {a, a + 2}-property for odd a 6= −1, while there is an easy characterization of trees13

without the {−1, 1}-property.14

1 Introduction15

Let G be an undirected graph. For an S-edge-weighting w : E(G) → S of G, where S ⊂ Z, each16

vertex v ∈ V (G) has weighted degree equal to the sum of the weights of its incident edges. We call17

w neighbour sum-distinguishing if no two adjacent vertices of G have the same weighted degree. For18

a set S of weights, we say that G has the S-property if it admits neighbour sum-distinguishing S-19

edge-weightings. The study of graphs having or not having the S-property for some sets S is highly20

related to the well-known 1-2-3 Conjecture raised by Karonski,  Luczak, and Thomason in 2004 [6].21

That conjecture states that every connected graph different from K2
1 has the {1, 2, 3}-property. A22

particular case of a list version of the 1-2-3 Conjecture (introduced by Bartnicki, Grytczuk, and23

Niwczyk [2]), even states that every graph should have the {a, b, c}-property for every distinct24

a, b, c ∈ N. For more details on the progress towards the 1-2-3 Conjecture (and variants of it),25

please refer to [11] for a survey on this topic.26

For any smaller set S ⊂ Z of weights, i.e., with |S| = 2, one can easily come up with examples27

showing that there do exist graphs not having the S-property (complete graphs are such examples).28

∗The first author was supported by PEPS grant POCODIS.
1This requirement is mandatory for any graph to be weightable; throughout this work, it is thus implicit, unless

stated otherwise, that every considered graph does not have K2 as a connected component.
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A natural question that has been investigated is about the existence of a good characterization29

of graphs that have the S-property for such smaller sets S. Here and further on, by a “good30

characterization” we mean a description in terms of a graph class whose members can be recognized31

in polynomial time. Dudek and Wajc [5] settled the question in the negative, as they proved that,32

unless P=NP, there is no good characterization of graphs with the {1, 2}-property, and similarly33

for the {0, 1}-property. Later on, noticing that, for any two distinct sets S, S′ ⊂ Z of weights34

with |S|, |S′| = 2, any neighbour sum-distinguishing S-edge-weighting of a regular graph yields a35

neighbour sum-distinguishing S′-edge-weighting, Ahadi, Dehghan, and Sadeghi [1] proved that there36

is no good characterization of graphs with the {a, b}-property for any two distinct a, b ∈ Z.37

From this point on, it thus made sense investigating, for any two distinct a, b ∈ Z, sufficient38

conditions for graphs to have the {a, b}-property. A special focus has been dedicated to bipartite39

graphs, as 1) the aforementioned NP-completeness results were not known to hold in the bipartite40

context, and 2) bipartite graphs form one of the rare graph classes for which the 1-2-3 Conjecture is41

relatively well understood (see [6]). As a first step, several works [3, 4, 7, 8, 9] investigated whether42

there is a good characterization of bipartite graphs with the {1, 2}-property. Back then, it was43

believed that such a good characterization should exist, as, notably, all 3-connected bipartite graphs44

were proved to have the {1, 2}-property [9]. It was not until quite recently that Thomassen, Wu, and45

Zhang proved that, indeed, bipartite graphs without the {1, 2}-property are easy to describe [13].46

Namely, only so-called odd multi-cacti are bipartite and do not have the {1, 2}-property. These47

graphs are defined as follows (the comprehensive definition is from [10]; refer to Figure 2 later on48

for an illustration):49

“Take a collection of cycles of length 2 modulo 4, each of which has edges coloured alternately50

red and green. Then form a connected simple graph by pasting the cycles together, one by one, in a51

tree-like fashion along green edges; the resulting graph is an odd multi-cactus. The graph with one52

green edge and two vertices (K2) is also an odd multi-cactus. When replacing a green edge of an53

odd multi-cactus by a green edge of any multiplicity, we again obtain an odd multi-cactus.”54

One main ingredient behind Thomassen et al.’s result is the nice observation, already made back55

in [3], that, when a and b are integers with distinct parity, every bipartite graph G with bipartition56

(X,Y ) such that at least one of X and Y has even cardinality has the {a, b}-property. This is57

because, in such a case, one can easily construct {a, b}-edge-weightings of G where all vertices in58

X have odd weighted degree while those in Y have even weighted degree. These observations also59

imply that, for a and b with distinct parity, bipartite graphs without the {a, b}-property have their60

two partite sets of odd cardinality, and they thus have even order.61

Reusing some of Thomassen et al.’s ideas, Lyngsie later considered the {0, 1}-property for bi-62

partite graphs [10]. His main result is a good characterization of 2-edge-connected bipartite graphs63

without the {0, 1}-property, which turns out to be nothing but the class of odd multi-cacti. This64

result was established, in particular, through aforementioned tools and results for cases where a and65

b have different parities. However, both Thomassen et al. and Lyngsie observed that there exist66

infinitely many separable (i.e., with cut-vertices) bipartite graphs without the {0, 1}-property.67

Although they are far from covering all the cases of a and b, the previous series of results show68

two things. First, that, when considering 2-connected bipartite graphs without the {a, b}-property,69

one should pay attention to odd multi-cacti. Second, that separable bipartite graphs without the70
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Figure 1: Constructing graphs without the {−1, 1}-property from graphs without that property.

{a, b}-property and those without the {a′, b′}-property may differ for different pairs a, b and a′, b′.71

This is already well illustrated by the class of trees: while they all have the {1, 2}-property [3],72

infinitely many of them do not have the {0, 1}-property [10].73

This paper is mainly devoted to studying {a, b}-properties where both a and b are odd. As a74

first step, we focus on the cases where b = a+ 2. We introduce mechanisms that are reminiscent of75

the ones mentioned above (for a and b with distinct parity), which allow us to study the {a, a+ 2}-76

property for bipartite graphs and odd a ∈ Z. One of the main results we get from these is that, for77

any odd a, 2-connected bipartite graphs without the {a, a+2}-property are precisely odd multi-cacti78

again.79

Theorem 1.1. Let a, b ∈ Z be odd integers with b = a + 2. A 2-connected bipartite graph G does80

not have the {a, b}-property if and only if G is an odd multi-cactus.81

Similarly as for the {0, 1}-property, the structure of separable bipartite graphs without the {a, b}-82

property for odd a and b does not appear obvious. As a first step, we give a special focus on the83

case {a, b} = {−1, 1}. In that case, we can already point out two operations that, given bipartite84

graphs without the {−1, 1}-property, clearly provide more separable bipartite graphs without the85

{−1, 1}-property (see Figure 1):86

• Let G1, G2, G3, G4 be four bipartite graphs without the {−1, 1}-property, and let v1, v2, v3, v487

be any four degree-1 vertices of G1, G2, G3, G4, respectively. The operation (see Figure 1 (a)88

and (b)) consists in considering the disjoint union G1 ∪G2 ∪G3 ∪G4, identifying the vertices89

v1 and v2, identifying the vertices v3 and v4, and adding an edge joining the two vertices90

resulting from these identifications (i.e., v1 ∼ v2 and v3 ∼ v4).91

• Let G1, G2 be two bipartite graphs without the {−1, 1}-property, and let v1, v2 be any two92

vertices of G1, G2, respectively. The operation (see Figure 1, (c) and (d)) consists in consid-93
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ering the disjoint union G1 +G2, adding the edge v1, v2, and further joining v1, v2 by a path94

with odd length at least 3.95

In the case of trees, when a and b are any two non-zero integers that are both positive (or96

negative), it is easy to see that K2 is the only tree without the {a, b}-property: consider a vertex v97

whose all neighbours u1, ..., ud−1 but one ud (if any) are leaves, remove u1, ..., ud−1, apply induction98

to deduce a neighbour sum-distinguishing {a, b}-edge-weighting, and extend the weighting to the99

edges vu1, ..., vud−1 so that the conflict vud is avoided. Thus, when b = a + 2 and a, b are odd,100

only the case a = −1, b = 1 is potentially non-trivial. In Section 3, we show that trees without the101

{−1, 1}-property can all be constructed through the first operation above (illustrated in Figure 1,102

(a) and (b)) performed on K2’s.103

Theorem 1.2. A tree does not have the {−1, 1}-property if and only if it can be constructed from104

a disjoint union of K2’s through repeated applications of the first operation above.105

In particular, the structure of trees without the {−1, 1}-property is very different and simpler106

than that of trees without the {0, 1}-property (for more on the structure of these trees, see [10]).107

Recall that all trees have the {1, 2}-property, as was shown, e.g., in [3].108

Terminology and notation. Let G be a connected graph. For a given vertex v of G we denote109

by E(v) the set of edges incident to v. A bridge in G is an edge whose removal results in two110

components. Let w be an edge-weighting of G. Abusing the notation, the weighted degree of v in111

G by w will sometimes be denoted w(v) for convenience. We say that an edge uv of G is a conflict112

by w if w(u) = w(v). In other words, w is neighbour sum-distinguishing if no edge is a conflict.113

In what follows, we will instead use the term proper in place of neighbour sum-distinguishing to114

lighten the writing. By an x-edge of G (by w), we mean an edge assigned weight x by w.115

2 Proof of Theorem 1.1116

In this section, we prove that for every odd integer a ∈ Z, the class of 2-connected bipartite graphs117

without the {a, a + 2}-property is exactly that of odd multi-cacti. Another way to define these118

graphs is as follows. Start from K2, the simple connected graph on two vertices, having its only119

edge coloured green. Then, repeatedly apply an arbitrary number of the following operation (see120

Figure 2 for an illustration). Consider any green edge uv of the current graph, and join u, v by a121

new path P of length ` ≥ 1 congruent to 1 modulo 4 whose edges are coloured red and green as122

follows:123

• if ` = 1, i.e., P has a unique edge, then this edge is green;124

• if ` ≥ 5, then the edges of P are coloured red and green properly (i.e., no two subsequent125

edges have the same colour) so that the two end-edges are red.126

Figure 2 notably shows that performing this operation multiple times for a same green edge is127

allowed, and that adding paths of length 1 is similar to increasing the multiplicity of a green edge.128

Note also that it is not possible to get two adjacent green edges with distinct ends at any point129

of the process. Furthermore, every obtained graph is bipartite. An odd multi-cactus is any graph130
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Figure 2: Constructing an odd multi-cactus through several steps, from K2 (a). Red-green paths

with length at least 5 congruent to 1 modulo 4 are being attached onto the green edge uv through

steps (b) to (d). In step (e), (green) paths of length 1 are added, which corresponds to increasing

the multiplicity of some green edges.

that can be obtained during this process, no matter how many times the operation is applied. In131

particular, K2 itself is regarded as an odd multi-cactus.132

In this section, we will implicitly use several properties of odd multi-cacti, such as:133

Observation 2.1. Let M be an odd multi-cactus with its edges being coloured red and green as134

described above. Then:135

• M is 2-connected;136

• when replacing every (green) edge of M by an edge with multiplicity 1, a 2-degenerate graph137

(i.e., a graph in which every subgraph has a vertex of degree at most 2) is obtained;138

• for every green edge uv of M , we have dM (u) = dM (v).139

Having the structure of odd multi-cacti in mind, it can be proved that the following holds true.140

Lemma 2.2. If G is not an odd multi-cactus and was obtained from an odd multi-cactus M by141

replacing a red edge with an edge of multiplicity at least 2 or by replacing a green edge by a path142

of length k ≥ 5 with k ≡ 1 mod 4, then G has the {a, b}-property for any two distinct integers143

a, b ∈ Z.144

Proof. The proof is by induction on the order of M . So suppose that G is obtained from an odd145

multi-cactus M by replacing an edge e with either an edge of multiplicity at least 2 (if e is red in146
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M) or a path of length k ≥ 5 with k ≡ 1 mod 4 (if e is green in M). It is easy to check that the147

statement is true if M is just a cycle with some multiple green edges. So we can focus on cases148

where M was obtained in the general way, i.e., by pasting together cycles with length 2 modulo 4149

having possibly green edges of any multiplicity. Furthermore, it is easy to check that the statement150

is true if M was constructed by only pasting cycles together along one single green edge e′ as in151

Figures 2 (c), (d) and (e) where there have only been pasted cycles together along the edge uv:152

in this case, since G is not an odd multi-cactus, G is either obtained from M by replacing a red153

edge with an edge of multiplicity at least 2, or e = e′ must be a simple edge and G is obtained by154

replacing that edge e with a path of length k ≥ 5 with k ≡ 1 mod 4 and k ≥ 5. In both cases it is155

easy to check that G has the {a, b}-property.156

Thus, we can assume that M was obtained by pasting together at least three cycles and that157

there are at least two disjoint edges to which other cycles have been pasted to. This implies that158

there are at least two disjoint cycles of length congruent to 2 modulo 4 where all vertices except159

two which are adjacent have exactly two neighbours. One of these cycles C = v1v2...vnv1 does not160

contain e. By possibly relabelling the vertices we can assume that all vertices of C except v1 and161

v2 only have two distinct neighbours. By induction the graph G′ obtained from G by replacing the162

path v2v3...vn with an edge e′′ has the {a, b}-property, but any proper {a, b}-edge-weighting of G′163

can be converted to a proper {a, b}-edge-weighting of G by assigning the same weight to an edge in164

G as in G′ and assigning the weight assigned to e′′ in G′ to the edges v2v3 and vn−1vn, and finally165

assigning the weights of the remaining edges v2v3, ..., vn−2vn−1 in a way avoiding conflicts inside166

C.167

We now introduce or recall results that will be needed during the course of our main proof below.168

The following first observation is obvious and implies that studying the {a, b}-property only makes169

sense when gcd(a, b) = 1.170

Observation 2.3. Let w be a proper {a, b}-edge-weighting of a graph G. If we multiply all edge171

weights of w by a non-zero integer α, then we get a proper {aα, bα}-edge-weighting of G.172

In what follows, given a graph G and a mapping f : V (G) → Zk, by an f -factor modulo k we173

mean a spanning subgraph H of G such that, for every v ∈ V (G), we have dH(v) ≡ f(v) (mod k).174

Lemma 2.4 (Thomassen [12]). Let G be a connected graph. If f : V (G) → Z2 is a mapping175

satisfying
∑

v∈V (G) f(v) ≡ 0 mod 2, then G contains an f-factor modulo 2.176

When dealing with bipartite graphs with a bipartition set of even cardinality, and when a and b177

have distinct parity, f -factors modulo 2 can be employed as a convenient tool to deduce proper {a, b}-178

edge-weightings in quite an easy way (see [10, 13]). More precisely, let (X,Y ) be the bipartition of a179

bipartite graph G where |X| is even. Lemma 2.4 (when applied onto the function f where f(x) = 1180

for x ∈ X and f(y) = 0 for y ∈ Y ) implies that G has a spanning subgraph H where all of the181

vertices in X have odd degree, while all of the vertices in Y have even degree. From this, it is easy182

to see that, assuming a is odd and b is even, assigning weight a to all of the edges in E(H) and183

weight b to all of the edges in E(G) \ E(H) yields a proper {a, b}-edge-weighting of G.184

The upcoming new tools and concepts (in particular that of mod-4 vertex-colourings) are the185

key to generalize this approach to odd a, b ∈ Z when |a− b| = 2.186
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Definition 2.5. A mod-4 vertex-colouring of a graph G is a vertex-colouring c : V (G)→ {1, 2} of187

G satisfying the following conditions for any uv ∈ E(G) where d(u) and d(v) have the same parity:188

1. d(u) ≡ d(v) mod 4⇒ c(u) 6= c(v).189

2. d(u) 6≡ d(v) mod 4⇒ c(u) = c(v).190

In the next result, we prove that every bipartite graph G admits a mod-4 vertex-colouring c.191

It is important to point out that, in general, c might be far from fitting with the bipartition of G.192

Actually, G might have many edges whose two ends have the same colour by c.193

Lemma 2.6. Every bipartite graph has a mod-4 vertex-colouring.194

Proof. It suffices to prove the lemma for connected bipartite graphs where all vertices have odd195

degree or where all vertices have even degree (as otherwise we can consider, still in the whole graph,196

the vertices with even degree first, and then those with odd degree). So let G be a connected197

bipartite graph where all vertex degrees have the same parity. Let v be a vertex in G and let198

D0, D1, ..., Dm denote the distance classes of G from v ∈ D0. Since G is bipartite, each Di is an199

independent set. Now give v colour 1 and colour the distance classes in the given order starting200

with D1, then D2 and so on until we reach a vertex v′ ∈ Di′ we cannot assign a colour without201

violating conditions 1 or 2 in Definition 2.5. If this happens one or both of the following two cases202

have occurred:203

1. there are two neighbours v1, v2 ∈ Di′−1 of v′ with d(v1) ≡ d(v2) mod 4 and c(v1) 6= c(v2);204

2. there are two neighbours v1, v2 ∈ Di′−1 of v′ with d(v1) 6≡ d(v2) mod 4 and c(v1) = c(v2).205

Let us first assume that we are in the first case and let P1, P2 be two internally disjoint shortest206

paths towards v starting with v′v1 and v′v2 respectively and ending in a common vertex v′′ ∈ Di′′ .207

That is, v′′ is the first vertex on both P1 and P2 that is encountered when going from v1 towards208

v along P1; possibly v′′ = v. All the vertices of P1 and P2 except v′ are coloured without violating209

conditions 1 and 2 in Definition 2.5, and P1 and P2 have the same length. The parity of the number210

of times the degree modulo 4 changes when walking from v′′ to v1 on P1 is the same as the parity211

of the number of times the degree modulo 4 changes when walking from v′′ to v2 on P2. Thus, the212

parity of the number of times the degree modulo 4 does not change when walking from v′′ to v1213

on P1 is the same as the parity of the number of times the degree modulo 4 does not change when214

walking from v′′ to v2 on P2. Since conditions 1 and 2 in Definition 2.5 are not violated, this implies215

that the parity of the number of times the colour changes when walking from v′′ towards v′ is the216

same when walking along P1 as when walking along P2. Thus, c(v1) = c(v2), a contradiction. The217

second case above can be dealt with in a similar way.218

Let a, b ∈ Z be two odd integers with b = a + 2. Let G be a graph and X,Y be two disjoint219

subsets of its vertices. By an (X,Y )-a-parity {a, b}-edge-weighting of G, we mean an {a, b}-edge-220

weighting where all vertices in X are incident to an odd number of a-edges and all vertices in Y are221

incident to an even number of a-edges. (X,Y )-b-parity {a, b}-edge-weightings are defined similarly,222

but with respect to the incident b-edges. In the following result, we establish a crucial connection223

between mod-4 vertex-colourings and (X,Y )-parity {a, b}-edge-weightings, leading to the existence224

of proper {a, b}-edge-weightings.225
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Lemma 2.7. Let G be a connected bipartite graph and let a, b ∈ Z be odd integers with b = a + 2.226

If G has a mod-4 vertex-colouring where at least one of the two colour classes has even size, then G227

has the {a, b}-property. Consequently, if G does not have the {a, b}-property, then, in every mod-4228

vertex-colouring, the two colour classes have odd size.229

Proof. Let G be a connected bipartite graph, and c a mod-4 vertex-colouring of G. We denote by230

X and Y the sets of vertices with colour 1 and 2, respectively. Assume |X| is even. By Lemma 2.4231

there is an {a, b}-edge-weighting w : E(G)→ {a, b} such that all vertices in X are incident to an odd232

number of b-edges and all vertices in Y are incident to an even number of b-edges. This corresponds233

to our notion of an (X,Y )-b-parity {a, b}-edge-weighting. The possible weighted degrees of a vertex234

v of even degree and colour 1 induced by such an edge-weighting are {a(d(v)− 1) + b, a(d(v)− 1) +235

b+ 4, a(d(v)− 1) + b+ 8, ..., a+ b(d(v)− 1)} and the possible weighted degrees of a vertex v′ of even236

degree and colour 2 induced by such an edge-weighting are {ad(v′), ad(v′) + 4, ad(v′) + 8, ..., bd(v′)}.237

The possible weighted degrees of a vertex u of odd degree and colour 1 induced by such an edge-238

weighting are {a(d(u) − 1) + b, a(d(u) − 1) + b + 4, a(d(u) − 1) + b + 8, ..., bd(u)} and the possible239

weighted degrees of a vertex u′ of odd degree and colour 2 induced by such an edge-weighting are240

{ad(u′), ad(u′) + 4, ad(u′) + 8, ..., a+ b(d(u′)− 1)}. Let xy ∈ E(G). We will show that w(x) 6= w(y).241

To do this we distinguish two distinct cases (note that we can assume that x and y have the same242

degree parity, as otherwise w(x) cannot be equal to w(y)):243

1. x and y have the same colour by c.244

2. x and y have distinct colours by c.245

First assume that x and y have the same colour. Since c is a mod-4 vertex-colouring we have246

that d(x) 6≡ d(y) mod 4. Note that by the above it suffices to show that ad(x) 6≡ ad(y) mod 4 and247

this is trivially true since gcd(a, 4) = 1. Now assume that x and y have distinct colours. Since c is248

a mod-4 vertex-colouring we have that d(x) ≡ d(y) mod 4. Note that by the above it suffices to249

show that ad(x) ≡ ad(y) mod 4, and as mentioned above this follows since gcd(a, 4) = 1.250

From the previous proof, we can also extract the following:251

Observation 2.8. Let a, b ∈ Z be odd integers with b = a + 2 and let uv be an edge in a graph G252

whose edges are weighted with a and b. If either253

1. d(u) and d(v) have distinct parity, or254

2. d(u) ≡ d(v) mod 4 and v is incident to an odd number of a-edges while u is incident to an255

even number of a-edges, or256

3. d(u) 6≡ d(v) mod 4 and both v and u are incident to an odd or even number of a-edges,257

then u and v have distinct weighted degrees. This is also true if one considers the parity of the258

numbers of incident b-edges instead of the parity of the numbers of incident a-edges.259

Let G be a graph and w an {a, b}-edge-weighting of G. By swapping (the weight of) an edge, we260

mean changing its weight to a if it is a b-edge, or changing its weight to b otherwise. By swapping261

a path or a cycle, we mean swapping all of its edges. For a vertex v in a cycle C of G, it can be262
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observed that the parity of the number of a-edges (and similarly b-edges) incident to v is not altered263

upon swapping C. In the proof of our main result below, this fact will be used a lot to get rid of264

conflicts in the following way.265

Let X,Y be the two colour classes of a mod-4 vertex-colouring of G and assume that, for some266

vertex v ∈ X, w is an (X \ {v}, Y ∪ {v})-a-parity {a, b}-edge-weighting, i.e., all vertices in X \ {v}267

are incident to an odd number of a-edges and all vertices in Y {v} are incident to an even number of268

a-edges. According to Observation 2.8, all conflicts (if any) involve v. So let uv be a conflict. To get269

rid of this conflict while controlling the possible creation of new conflicts, we will swap particular270

cycles of G. Let C be a cycle of G going through u using two edges e, e′ incident to u. If e, e′ are271

assigned the same weight by w, then C is called u-changing. C will be called v-avoiding if it does272

not go through v.273

Observation 2.9. Let G be a graph, X,Y be the two colour classes of a mod-4 vertex-colouring of274

G, and let w be an (X \{v}, Y,∪{v})-a-parity {a, b}-edge-weighting for some vertex v, where a, b ∈ Z275

are odd integers with b = a+ 2. If uv is a conflict, then, by swapping a u-changing v-avoiding cycle276

C of G, we get rid of this conflict. Furthermore, any remaining/arising conflicts involve v.277

Proof. According to Observation 2.8, all original conflicts by w must involve v. When swapping C,278

the weighted degree of u is altered since C is u-changing, while the weighted degree of v is unaltered279

since C is v-avoiding. So we get rid of the conflict uv. Furthermore, it can be noticed that, upon280

swapping any cycle of G, the parities of the number of a-edges (and similarly b-edges) incident to the281

vertices are unaltered. Therefore, we get another (X \ {v}, Y ∪ {v})-a-parity {a, b}-edge-weighting,282

and Observation 2.8 indicates that, after the swapping of C, all conflicts (if any) in the resulting283

{a, b}-edge-weighting must involve v.284

We finish with a few general lemmas to be used in particular cases of our upcoming main proof.285

Lemma 2.10. Let G be a 2-connected bipartite graph, X,Y be the two colour classes of a mod-4286

vertex-colouring of G, and let a, b ∈ Z be odd integers with b = a + 2. If both X and Y have odd287

size and v ∈ X is such that G− v−N(v) is connected, then there is an (X \ {v}, Y ∪ {v})-a-parity288

{a, b}-edge-weighting of G where all edges incident to v have weight b and every vertex u ∈ N(v) is289

incident to at most 1 +M(uv) b-edges, where M(uv) denotes the multiplicity of the edge uv.290

Proof. Suppose G′ = G−v−N(v) is connected. Let G′′ be obtained from G−v by, for every vertex291

u ∈ N(v), removing all edges but one incident to u in G − v. For each u ∈ N(v), let eu be the292

unique edge incident to u in G′′ and let n(u) denote the unique neighbour of u in G′′. Note that293

since G′ is connected, then so is G′′. Let S denote the set of edges in G not incident to v and not in294

G′′. That is, S is the set of edges removed from G− v to obtain G′′. Let G[S] denote the subgraph295

of G induced by the edges in S and let Z denote the vertices of odd degree in G[S]. Clearly |Z| is296

even, so, since X \ {v} has even size, the set X ′ = (X \ (Z ∪{v}))∪Z ∩Y also has even size. Thus,297

Lemma 2.4 implies that there is an (X ′, V (G′′) \X ′)-a-parity {a, b}-edge-weighting of G′′. We now298

extend this weighting to G by assigning weight a to all edges in S and weight b to all edges in E(v);299

this results in a desired edge-weighting of G.300

Lemma 2.11. Let G be a 2-connected bipartite graph. If there is a vertex v ∈ V (G) of degree at301

least 4 and with |N(v)| ≥ 3 such that G− v −N(v) is connected, then G has the {−1, 1}-property.302
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Proof. By Lemma 2.10, there is an (X\{v}, Y ∪{v})-(−1)-parity {−1, 1}-edge-weighting of G, where303

all edges incident to v have weight 1 and any vertex u ∈ N(v) is incident to at most 1 + M(uv)304

1-edges, where M(uv) denotes the multiplicity of the edge uv. Observation 2.8 implies that the only305

potential conflicts are between v and its neighbours. But the weighted degree of v is d(v) and since306

|N(v)| ≥ 3, we have for any u ∈ N(u) that the multiplicity of uv is less than d(v) − 1. Thus, the307

weighted degree of any u ∈ N(v) is less than d(v) and therefore, there can be no conflicts.308

Lemma 2.12 (Thomassen, Wu, Zhang [13]). Let q be a natural number such that q ≥ 4. Let G be a309

connected graph and let A be an independent set of at most q vertices such that each vertex in A has310

degree at least q−1, or, each vertex in A, except possibly one, has degree at least q. Assume that no311

vertex in A is adjacent to a bridge in G. Then, for each vertex a of A, there is an edge ea incident312

with a such that the deletion of all ea, a ∈ A, results in a connected graph unless |A| = q = 4, all313

vertices of A have degree 3, and G − A has six components each of which is joined to two distinct314

vertices of A.315

Let a and b be two odd integers with b = a+ 2. In some cases Lemmas 2.4 and 2.12 work well316

together when trying to construct a proper {a, b}-edge-weighting of a connected bipartite graph317

G: suppose c : V (G) → {1, 2} is a mod-4 vertex-colouring of G and let X and Y denote the sets318

of vertices in G of colour 1 and 2 respectively and assume that both X and Y have odd size.319

Furthermore, suppose that the degree of a vertex v ∈ X is at least 4 and no vertex in N(v) has320

degree strictly larger than 4. Let A be the vertices in N(v) with the same degree as v and suppose321

that no vertex in A is incident to a bridge in G − v, the graph G − v is connected, and we are322

not in the exceptional case of Lemma 2.10, that is, for each u ∈ A there is an edge eu such that323

G− ∪u∈A{eu} is connected. Define S = ∪u∈A{eu} and let Z denote the set of vertices in G which324

have odd degree in the subgraph of G induced by S (note that A ⊂ Z). Since X \ {v} and Z325

have even size, the set X ′ = (X \ (Z ∪ {v})) ∪ Z ∩ Y also has even size. Thus, Lemma 2.4 implies326

that there is an (X ′, V (G − v) \ X ′)-a-parity {a, b}-edge-weighting of G − v. We can extend this327

edge-weighting to G by assigning weight a to all edges in S and weight b to all edges in E(v) to328

obtain an (X \ {v}, Y ∪ {v})-a-parity {a, b}-edge-weighting of G where all edges incident to v have329

weight b and every vertex u ∈ N(v) is incident to at least one a-edge. Thus, the weighted degree330

of v is greater than that of its neighbours and Observation 2.8 implies that the edge-weighting is331

proper.332

We are now ready to prove the main result of this section. Let us emphasize that the main steps333

in the proof follow the lines of those in the proofs of the main results in [10] and [13]. In particular,334

Claims 2, 3, 4, 5, as stated below, can also be found in [10]. The proofs are rather different, though,335

as most arguments used to deal with the {0, 1}-property do not apply immediately for the {a, b}-336

property when a, b ∈ Z are odd and b = a + 2. Instead, some of the tools and results we have337

introduced earlier are used. Also, the end of the proof in our case is more straightforward than338

those for the {1, 2}- and {0, 1}-properties.339

Proof of Theorem 1.1. Suppose the theorem is false and, for some odd a ∈ Z and b = a + 2, let G340

be a counterexample which has smallest order possible. By possibly multiplying the weights by −1341

we can assume b > 0. Let c be a mod-4 vertex-colouring of G (such a colouring exists by Lemma342

10



2.6), and let X denote the set of vertices with colour 1 and Y denote the set of vertices with colour343

2. By Lemma 2.7, we can assume that both X and Y have odd size.344

Claim 1. G has no multiple edge uv where both u and v have only two distinct neighbours.345

Proof of the claim. Suppose uv is a multiple edge and both u and v have only two distinct neighbours.346

By the minimality of G, Lemma 2.2, and the fact that G is not an odd multi-cactus, the graph347

obtained from G by replacing uv with one non-multiple edge has a proper {a, b}-edge-weighting w.348

But since the multiplicity of uv in G is at least 2 and since u and v can each be in only one conflict349

distinct from uv, we can obtain a proper {a, b}-edge-weighting of G from w by weighting the edges350

joining u and v to avoid the conflicts involving u and v (such an edge-weighting exists because there351

are at least three possible sums for the weight of edges joining u and v). �352

Since G is 2-connected, it has minimum degree at least 2. In what follows, by a suspended path353

of G, we mean a path v1x1...xkv2 where all internal vertices x1, ..., xk have degree 2 and v1 and v2354

have degree at least 3.355

Claim 2. G has no suspended path of length 2.356

Proof of the claim. Suppose the claim is false and let v1xv2 be a suspended path in G, where357

d(x) = 2 and d(v1), d(v2) ≥ 3. We can assume x ∈ X. Define G′ = G − x. Recall that G′ is358

connected since G is 2-connected. Lemma 2.4 implies that there is an (X \ {x}, Y ∪ {x})-a-parity359

{a, b}-edge-weighting w of G, where w(v1x) = w(v2x) = a. More precisely, w can be obtained as360

follows (recall that |V (G′) ∩X| is even):361

• If v1, v2 ∈ X, then, according to Lemma 2.4, there is an (X \ {v1, v2, x}, Y ∪ {v1, v2})-a-362

parity {a, b}-edge-weighting of G′. Then, assigning weight a to v1x and v2x gives the desired363

weighting of G.364

• If v1, v2 ∈ Y , then the same conclusion can be reached when applying Lemma 2.4 so that we365

start from an (X − {x} ∪ {v1, v2}, Y \ {v1, v2})-a-parity {a, b}-edge-weighting of G′.366

• If v1 ∈ X and v2 ∈ Y (resp. v2 ∈ X and v1 ∈ Y ), then, again, we can get the same367

conclusion after applying Lemma 2.4 from an (X \ {v1, x} ∪ {v2}, Y ∪ {v1} \ {v2})-a-parity368

{a, b}-edge-weighting (resp. (X \ {v2} ∪ {v1}, Y ∪ {v2} \ {v1})-a-parity {a, b}-edge-weighting)369

of G′.370

Observation 2.8 implies that the only conflicts that can arise are xv1 and xv2. So we can assume371

that x and v1 are in conflict, i.e., both x and v1 have weighted degree 2a. This implies that v1 has372

even degree at least 4 (by the definition of a suspended path, and only vertices with degree of the373

same parity can be in conflict) and a < 0 < b and hence a = −1 and b = 1. Let u1, u2 be two374

neighbours of v1 in G′ such that u1v1 and u2v1 have weight −1 and let C be a cycle in G′ using the375

edges u1v1 and v1u2. Such a cycle exists as, because G is 2-connected, there is a path from u1 to u2376

in G− v1. Because C is v1-changing and x-avoiding, if we swap all weights on C we do not create377

new conflicts in G′ and we lose the conflict xv1 (recall Observation 2.9). In particular, x remains of378

weighted degree −2 while v1 becomes of weighted degree 2.379

Thus, we can now assume that xv2 is a conflict. This implies that v2 also has even degree at least380

4. We can now get rid of this conflict in the same way as we got rid of the conflict v1x, unless all381
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v2-changing cycles in G′ (that thus use two edges in E(v2) having the same weight) all use two edges382

in E(v1) both having weight 1 (in this case we only move the conflict from xv2 to xv1). Since xv2 is383

a conflict, v2 must be incident to at least two −1-edges in G′ and at least one 1-edge. Furthermore,384

as mentioned above, we can assume that any v2-changing cycle in G′ contains two edges incident385

to v1 having weight 1.386

Assume that v1 is incident to a −1-edge e in G′. Since G is 2-connected, there is, in G − v1, a387

path from v2 to the end of e different from v1. From the existence of that path, we get that there is388

a path P in G′ from v1 to v2 using e. If the weight on the last edge e′ of P (the one incident to v2)389

is 1, then swapping the weights on the cycle P ∪v1x∪xv2 yields a proper edge-weighting; so we can390

assume e′ has weight −1. Since xv2 is a conflict and v2 has even degree at least 4, vertex v2 must391

be incident to a −1-edge e′′ 6= e′ in G′. Now, because G is 2-connected, the graph G−v2 has a path392

P ′ joining the end of e′ different from v2 and the end of e′′ different from v2. Note that if P ′ does393

not contain v1, then we would get a cycle whose weights can be swapped to immediately deduce a394

proper edge-weighting of G. The same conclusion holds if P ′ and P intersect for the first time on395

a vertex different from v1. So v1 is the first intersection point between P and P ′, in which case we396

deduce a cycle of G containing v2 as well as all of e, e′, e′′ (first go from v2 to v1 along P ′, before397

going back to v2 along P ); when swapping the weights along that cycle, we get rid of all conflicts398

between x and v1, v2.399

We are left with the case where v1 is not incident to a −1-edge e in G′. Thus, we deduce that400

v1 has degree 4 and, by symmetry, v2 also has degree 4. Note that this implies that v1, v2 ∈ X401

and furthermore, that all four edges incident to v1 except v1x have weight 1. Also, according to all402

hypotheses so far, v1 has weighted degree 2, v2 has weighted degree −2, and so two edges incident403

to v2 in G′ have weight −1 while the last edge incident to v2 in G′ has weight 1. We now consider404

the graph G′′ = G′ − v1 − v2. If G′′ is connected, then we can find in G′ a cycle including the two405

−1-edges incident to v2 (thus v2-changing), and not passing through v1; then, as earlier, we can406

swap the weights along this cycle to get rid of the conflict v2x. So we may assume the two −1-edges407

incident to v2 in G′ are incident to two distinct components of G′′. This leaves us with the following408

three cases to consider:409

Case 1: G′′ has two components C1, C2, such that v1 has two neighbours in C1 and one neighbour410

in C2, and v2 has two neighbours in C2 and one neighbour in C1.411

Let e1,a and e1,b denote the two edges incident to v1 going to C1. Recall that e1,a, e1,b have412

weight 1. Since C1 is connected, there is a path from the end of e1,a different from v1 to the end413

of e1,b different from v1. We swap all weights along the cycle formed by this path and e1,a, e1,b to414

get another edge-weighting of G where v1 has weighted degree −2; so, now, both xv1 and xv2 are415

conflicts.416

Now let e1,c denote the edge incident to v1 going to C2, and e2,a denote the 1-edge incident to417

v2 going to C2. Both these edges are weighted 1. Since C2 is connected, there is a path P from418

the end of e1,c different from v1 to the end of e2,a different from v2. Now consider the cycle of G419

starting in x, going through xv2 and e2,a, then going along P , and finally going through e1,c and v1x.420

When swapping all weights along this cycle, note that v1, v2 remain of weighted degree −2, while421

x becomes of weighted degree 2. So the {−1, 1}-edge-weighting of G becomes proper according to422

Observation 2.9.423
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Case 2: G′′ has two components C1, C2, such that both v1 and v2 have two neighbours in C1 and424

one neighbour in C2.425

Let v1,a, v1,b denote the two neighbours of v1 in C1, and let v1,c denote the neighbour of v1 in426

C2. Note that for one of v1,a, v1,b, say v1,a, the graph G′′′ = G − v1 − v1,a − v1,c is connected, for427

if G′ is disconnected, then it must be the case that v1,a is a cut-vertex in G − v1 and then it is428

easy to see that G− v1 − v1,b − v1,c is connected, and we can just rename v1,a and v1,b accordingly.429

Note that, by Lemma 2.11, we can assume that G′′′− v1,b is disconnected. Let L1, ..., Ln denote the430

components of G′′′ − v1,b, where v2 ∈ V (L1). Since v1,b is not a cut-vertex in G, it follows that v1,a431

has a neighbour in each of the components Li for i ≥ 2.432

Let us now consider the graph obtained from G by removing the vertex v1, and, for each of433

v1,a, v1,c, removing all remaining incident edges but one. Note that, in that graph, x also has de-434

gree 1. Lemma 2.4 implies that this graph has an (X \{v1}, Y )-(−1)-parity {−1, 1}-edge-weighting.435

By then assigning weight −1 to all removed edges incident to v1 and weight 1 to all remaining edges436

(incident to one of v1,a, v1,c), we get that G has an (X \{v1}, Y )-(−1)-parity {−1, 1}-edge-weighting437

where all four edges incident to v1 are weighted −1, and each of v1,a, v1,c is incident to at most two438

−1-edges. Now the only possible conflict is v1v1,b, so we can assume this is indeed a conflict, and439

hence, both v1 and v1,b have weighted degree −4. We can also assume that we cannot swap the440

weights in a cycle in G′′′ containing two edges incident to v1,b having the same weight, and hence,441

v1,b has at most two neighbours in each of Li for i = 1, ..., n. Since the weighted degree of v1,b is442

−4, there must be some components in G′′′ − v1,b which are incident to strictly more −1-edges in443

E(v1,b) than 1-edges in E(v1,b). Again, since we can assume that there is no cycle in G′′′ containing444

two edges incident to v1,b having the same weight, we can also deduce that no two edges incident to445

v1,b having the same weight go to the same component in G′′′ − v1,b. Thus, there are at least three446

components L′1, L
′
2, L
′
3 in G′′′ − v1,b, each of which is incident to only one edge in E(v1,b) and each447

of these edges has weight −1. We can assume that L′1 and L′2 are distinct from L1, and, since v1,b448

is not a cut-vertex in G, the vertex v1,a has a neighbour u′i in each L′i for i = 1, 2. There is now a449

cycle C in G′′′+ v1,a containing two edges incident to v1,b having weight −1 and containing the two450

edges v1,au
′
1 and v1,au

′
2. If we swap the weights on C, then the only possible conflict is v1v1,a in the451

case where v1,a is a vertex of degree 4 and v1v1,a has weight −1, both v1,au
′
1 and v1,au

′
2 have weight452

1, and v1,a is incident to some fourth −1-edge v1,au
′. We can assume that the component L′ to453

which u′ belongs in G′′′ − v1,b is not incident to a −1-edge of v1,b, since otherwise, we could modify454

C to contain the edge v1,au
′. Note that this also implies that L′3 = L1. Since v1,b had weighted455

degree −4 this implies that there is another component L′4 distinct from all of L′1, L
′
2, L
′
3, which is456

incident to an edge in E(v1,b) having weight −1. The vertex v1,a must have a neighbour u′′ in this457

component L′4 and, since we can assume that we cannot modify C to contain v1,au
′, we must have458

u′′ 6= u′. This contradicts v1,a having degree 4.459

Case 3: G′′ has three components C1, C2, C3, such that v1 and v2 have one neighbour in each of460

these three components.461

In that case, G has the {−1, 1}-property according to Lemma 2.11 as v1 has even degree 4, and462

it can be checked that G − v1 − NG(v1) remains connected due to the 2-connectedness of G. In463

particular, for i = 1, 2, 3, note that the edge incident to v1 going to Ci and the edge incident to v2464

going to Ci cannot share an end. A contradiction. �465
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Claim 3. G has no suspended path of length 4.466

Proof of the claim. Suppose the claim is false and let v1x1x2x3v2 be a suspended path in G,467

where d(x1) = d(x2) = d(x3) = 2 and d(v1), d(v2) ≥ 3. We can assume x2 ∈ X, which implies468

that x1, x3 ∈ Y . Define G′ = G − x1 − x2 − x3. Using Lemma 2.4 similarly as in the proof of469

Claim 2, we can come up with an (X \ {x1}, Y \ {x2, x3})-a-parity {a, b}-edge-weighting w of G470

where w(v1x1) = w(x3v2) = a and w(x1x2) = w(x2x3) = b. One can check that, by slightly471

modifying the exact same arguments used in the proof of Claim 2, we can eventually remove all472

conflicts from w, or deduce another proper {a, b}-edge-weighting of G. �473

Claim 4. G has no suspended path of length at least 5.474

Proof of the claim. Suppose the claim is false and let v1x1x2x3x4v2 be a path in G, where475

x1, x2, x3, x4 all have degree 2, and v1, v2 here might be of degree 2. Let G′ be obtained from476

G by replacing v1x1x2x3x4v2 by an edge e = v1v2 even if that edge is already there. If G′ has the477

{a, b}-property, then so does G. Indeed, assume there is a proper {a, b}-edge-weighting of G where478

the weight of e is, say a, and consider that weighting back in G. We start the extension to the five479

edges by assigning weight a to v1x1 and x4v2, so that v1 and v2 keep the same weighted degree as480

in G′. Since v1v2 is an edge in G′, note that v1 and v2 have different weighted degrees. From this,481

we deduce that either v1 has weighted degree different from 2a and v2 has weighted degree different482

from a + b, or conversely. Assume the first situation holds. Then, we can achieve the weighting of483

G by assigning weight a to x1x2 and weight b to x2x3 and x3x4.484

So we can assume that G′ does not have the {a, b}-property and is thus an odd multi-cactus by485

the minimality of G. The edge e cannot be red in G′, since then G would also be an odd multi-486

cactus. Thus e is green and Lemma 2.2 implies that G has the {a, b}-property. �487

488

By Claims 1, 2, 3, 4, all degree-2 vertices in G (if any) lie on suspended paths of length 3. In G489

we replace all suspended paths of length 3 by edges (even if the two ends were already adjacent) to490

form a bipartite multigraph G∗. Edges arising from suspended paths of length 3, we call blue edges.491

Every other edge of G∗, i.e., which was already present in G, we call a white edge.492

Note that G∗ is bipartite, 2-connected, has minimum degree at least 3, and it may have more493

multiple edges than G has. Also, note that for every vertex v in G∗, we have dG∗(v) = dG(v).494

In general, it is not easy to deduce a proper {a, b}-edge-weighting of G from one of G∗ (typically495

because of blue edges); however, information on the structure of G can be deduced from that of G∗.496

In particular, we will study the existence of paths or cycles in G∗ to deduce that of corresponding497

paths or cycles in G (where any traversed blue edge in G∗ is replaced by the corresponding path of498

length 3 in G).499

If the deletion of some pair of adjacent vertices u, v disconnects G∗, then let z0y0 ∈ E(G∗) be500

such that G− z0− y0 is disconnected and such that some component H of G∗− z0− y0 has smallest501

possible order. The union of that component H and z0, y0 together with all edges connecting them502

is denoted B. In case G has no pair of adjacent vertices whose removal disconnects the graph, we503

define H = B = G∗, and y0, z0 do not exist.504

Claim 5. For every vertex v of H, we have dG∗(v) = 3.505
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Proof of the claim. Suppose the claim is false and let w0 be a vertex in H of maximum degree506

d = d(w0) at least 4. Without loss of generality, we can suppose that w0 ∈ X. Assume first that507

w0 is adjacent to none of z0, y0 (this is the case if these two vertices do not exist). By the remark508

following Lemma 2.12, we can assume that we are in the exceptional case when considering G−w0509

and defining A to be the set of vertices in N(v) which have the same degree as w0. Thus, w0 and510

all vertices in N(w0) have degree 4 and G− w0 −N(w0) has exactly six components. We can now511

choose another vertex of degree d as w0 by choosing w0 such that the order of the component of512

G− w0 −N(w0) containing z0 is maximum and avoid the exceptional case in Lemma 2.12. Again,513

the remark following Lemma 2.12 shows how to find a proper {a, b}-edge-weighting of G.514

So we can assume w0 is adjacent to, say, z0 and that all the neighbours of w0 in H which have515

the same degree as w0 are adjacent to y0 (due to the bipartiteness of G∗). Since y0, z0 thus exist,516

we have G 6= H. We can also assume that all vertices in H having maximum degree are adjacent517

to z0 or y0 (as otherwise, the previous situation would apply). Note that this implies that we can518

never be in the exceptional case in Lemma 2.12 when we delete a vertex v in H of maximum degree519

and define A to be the neighbours of v with the same degree as v.520

As pointed out earlier, there is an (X \ {w0}, Y )-a-parity {a, b}-edge-weighting of G where all521

edges incident to w0 are weighted b and every neighbour of w0 with degree d is incident to at least522

one a-edge. This edge-weighting is proper unless z0w0 is a conflict, which occurs only if the degree523

of z0 is strictly greater than that of w0. Note that we can assume that z0 is incident to exactly524

one edge going to each component other than H in G − y0 − z0, since otherwise, we could deduce525

an {a, b}-edge-weighting of G as above with the extra condition that two edges e, e′ incident to z0526

going to a component C of G− y0 − z0 other than H are weighted b. Then, if z0w0 is a conflict, we527

could get rid of it by swapping the weights along a cycle going through z0 and C via e, e′ (so that528

it is z0-changing) and not going through H (so that it is w0-avoiding). So z0 is incident to exactly529

one edge going to each component other than H in G−y0− z0. We can also assume that there is at530

most one component C other than H in G−y0− z0, since otherwise, we could reach the exact same531

conclusion by deducing an {a, b}-edge-weighting of G as before with the extra condition that two532

edges e, e′ incident to z0 going to two different components C,C ′ distinct from H are weighted b.533

In case z0w0 is a conflict, we could again get rid of it by swapping the weights along a cycle going534

through z0, in C via e, back to y0, in C ′, and back to z0 via e′. This would be correct since such a535

cycle would not go through H, and thus, would be w0-avoiding. Similarly, we can assume that the536

multiplicity of z0y0 is 1.537

Let us denote by z1 the unique neighbour of z0 in C. By swapping the weights along a cycle538

through C containing z0, y0 and the edge z0z1, and not going through H, we can further assume that539

the edge z0z1 is weighted a. For a similar reason, we can assume that the edge y0z0 is weighted b.540

Recall that w0 and all the neighbours of w0 with degree d are all incident to an even number of541

a-edges; thus, each of the neighbours of w0 with degree d is incident to at least two a-edges.542

To get rid of the conflict z0w0, we would like to swap the weights along a z0-changing cycle in543

G−w0 (thus, w0-avoiding). According to Observation 2.9, recall that this would not alter the parity544

of the number of incident a’s of any vertex in V (G) \ {w0}. Furthermore, this would get rid of the545

conflict z0w0. However, this swapping process can create a conflict between w0 and a neighbour v546

of w0 with degree d; but such a conflict can only arise when the cycle goes through the only two547

a-edges incident to v. For a neighbour v of w0 with degree d that is incident to only two a-edges,548
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we call this pair of edges a forbidden pair. Our goal in what follows is to show that G − w0 has a549

z0-changing cycle not containing any forbidden pair of edges.550

Let us denote by v1, ..., vm the neighbours of w0 with degree d. As mentioned earlier, recall that551

the vi’s are all adjacent to y0. Since z0w0 is a conflict, recall that d(z0) and d(w0) have the same552

parity. Furthermore, since d(z0) > d(w0) > 3, it follows that d(z0) ≥ 6, and, because the only553

neighbours of z0 outside H are y0 and z1, there is a vertex z2 6= w0 in N(z0) ∩ V (H). Note that,554

to find the desired cycle through z0 in G−w0, it suffices to find a path P from y0 to a vertex z′ in555

N(z0)∩V (H) in the connected graph G− z0−w0 (which is connected by the minimality of H) not556

using any forbidden pair of edges. Indeed, if the weight on z0z
′ is b, then we can define our cycle557

to be P ∪ {z0y0, z′z0}, while, if the weight on z0z
′ is a, then we can define our cycle to be P ∪ Pc,558

where Pc is a path from z0 to y0 in G−H − z0y0 (thus, through C). Since the graph G− z0−w0 is559

connected, there is a path P1 from z2 to y0. We can assume that P1 uses forbidden pairs of edges.560

Without loss of generality, let pv1 and v1q be the first forbidden pair of edges P1 used when going561

from z2 to y0. Since v1 is adjacent to y0, it follows that q = y0, since otherwise, we have found a562

path from y0 to z2 not using any forbidden pair of edges. Thus, we can assume that all paths from563

y0 to a vertex in N(z0) ∩ V (H) use exactly one forbidden pair of edges. Now we look at all such564

paths using only one pair of forbidden edges y0vi and vip (for i ∈ {1, ...,m}) and consider one such565

path P that goes through the most neighbours of w0. Let y0vi and vip be the pair of forbidden566

edges that P contains.567

First suppose that vi has a neighbour v′i distinct from y0, p, w0. The edge viv
′
i must have weight568

b. Since G−w0 − vi is connected, it has a path P ′ from v′i to a vertex in N(z0) ∩ V (H). The path569

P ′ must use a forbidden pair of edges, as otherwise, the graph induced by E(P ) ∪ E(P ′) would570

contain a desired path from y0 to a vertex in N(z0) ∩ V (H) avoiding forbidden pairs of edges. Let571

the first pair of forbidden edges P ′ used when starting from v′i be qv and vr. The subpath P ′1 of P ′572

from v′i to v must be disjoint from P , since otherwise, the graph induced by E(P )∪E(P ′1) contains573

a desired path from y0 to N(z0) ∩ V (H) avoiding forbidden pairs of edges. Furthermore, we must574

have that r = y0, since otherwise, the path P ′′ defined to be y0v together with the subpath of P ′575

from v to v′i followed by v′ivi and the subpath of P from vi to N(z0)∩ V (H) is a desired path from576

y0 to N(z0)∩V (H) avoiding forbidden pairs of edges. Now the path P ′′ contradicts the maximality577

of P .578

So we can assume that N(vi) = {y0, p, w0}, which means, because vi has degree d > 3, that579

some of the edges viy0, vip, viw0 have multiplicity more than 1. The multiplicity of both y0vi and580

vip must be 1, since otherwise, we would get a desired path from z2 to y0 avoiding the forbidden581

pair of edges y0vi, vip. So the multiplicity of viw0 is at least 2. If the only neighbours of w0 are vi582

and z0, then we can swap the weights on two edges between w0 and vi to avoid the conflict z0w0583

and obtain a proper {a, b}-edge-weighting of G; so we can assume that w0 is incident to a vertex584

v′ in H distinct from vi. Since d(vi) = d(w0), the edges w0z0 and w0v
′ are not multiple and since585

z0 has degree at least 6, there are two edges z0z
′
2, z0z

′′
2 incident with z0 having the same weight586

and where z′2, z
′′
2 ∈ H. Possibly z′2 = z′′2 or z′2 = z2. The graph B − w0 − z0 is connected, so it587

contains a path P ′1 from z′2 to y0 and a path P ′2 from from z′′2 to y0. These paths P ′1 and P ′2 must588

be internally disjoint, since otherwise, there would be a z0-changing cycle in B not containing any589

pair of forbidden edges. We can assume that both P ′1 and P ′2 contain a pair of forbidden edges,590

since otherwise, there is a desired path from y0 to (N(z0)−w0)∩V (H). Hence, we can assume that591
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P ′1 contains y0vi and vip and P ′2 contains a pair of forbidden edges qv′, v′r incident to v′. Since592

this implies that y0 and v′ are adjacent, we can assume that y0 = q. The vertex v′ must have a593

neighbour s distinct from y0, w0, r and since the graph B−w0− v′ is connected, there is a path P ′′594

in B−w0− v′ from s to y0. If P ′′ contains the forbidden pair of edges y0vi and vip, then the graph595

P ′1 ∪P ′2 ∪P ′′ contains a z0-changing cycle in B containing no forbidden pair of edges. Thus, we can596

assume that P ′′ contains no pair of forbidden edges. Now P ′2 ∪ P ′′ contains a desired path from w0597

to (N(z0)− w0) ∩ V (H). �598

Claim 6. There is no vertex v ∈ V (H) such that G− v −N(v) is connected.599

Proof of the claim. Suppose v ∈ V (H) and that G′ = G − v −N(v) is connected. We can assume600

v ∈ X. By Lemma 2.10, there is an (X \ {v}, Y ∪ {v})-a-parity {a, b}-edge-weighting of G, where601

all edges incident to v have weight b and any vertex u ∈ N(v) is incident to at most 1 + M(uv)602

b-edges, where M(uv) denotes the multiplicity of the edge uv. Note that Claim 1 implies that if603

vv′ is a multiple edge, then v′ ∈ {z0, y0}. Thus, the only potential conflict is between v and one604

of z0, y0, say y0. This implies that y0 must have odd degree at least 5. But since G′ is connected605

there must then be a y0-changing cycle in G− (N(v) \ {y0}) and swapping the weights on this cycle606

yields a proper {a, b}-edge-weighting of G. �607

Claim 7. There are no multiple edges between two vertices in H.608

Proof of the claim. Suppose uv is a multiple edge in H. We can assume v ∈ X. Since u and v609

have degree 3 in G∗ (by Claim 5), the multiplicity of uv is exactly 2. Let e and e′ be the two edges610

between u and v. By Claim 1, e, e′ are not both white. Thus, at least one of e, e′, say e, is a blue611

edge in H. Let v′ denote, in G∗, the unique neighbour of v different from u.612

Let G′ be obtained from G− v by removing all edges but one edge e′′ incident to v′. Clearly G′613

is connected since G − v − v′ is connected by the minimality of H. Let S = E(v′) \ {vv′, e′′}. Let614

X ′ denote the set of vertices in G − v which are incident to an odd number of edges in S. Note615

that S has even size. Thus, X ′ = (X \ S ∪ (S ∩ Y ) has even size and Lemma 2.4 implies that616

there is an (X ′, V (G′) \X ′)-a-parity {a, b}-edge-weighting of G′. We now extend this weighting to617

G by assigning weight a to all edges in S and weight b to all edges incident to v. This gives an618

(X \ {v}, Y ∪ {v})-a-parity {a, b}-edge-weighting of G where all vertices in N(v) are incident to at619

most two b-edges (the edge in the suspended path of length 3 joining u and v incident to u must620

have weight a). Observation 2.8 implies that the only conflict can be between v and its neighbours,621

so the only possible conflict is vv′ in the case where v′ ∈ {z0, y0}, say v′ = y0, and y0 has degree at622

least 5. But since G− v is connected there must then be a y0-changing cycle avoiding v and u and623

swapping the weights on this cycle yields a proper {a, b}-edge-weighting of G. �624

Claim 8. Every vertex of H is incident to at most one blue edge.625

Proof of the claim. Recall that every vertex v of H has degree 3, by Claim 5. If v is incident to626

three blue edges, then G − v −N(v) is connected, which contradicts Claim 6. So now assume v is627

incident to two blue edges. Let uv denote the white (third) edge incident to v. Still by Claim 6, the628

graph G− v −N(v) cannot be connected, which means that u, v is a pair contradicting the choice629

of y0, z0. �630
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We now have all the tools in hand for finishing the proof. Two cases must be considered:631

Case 1: There is a vertex v ∈ V (H) not adjacent to any of z0, y0.632

Recall that, according to Claim 6, whenever removing from G a vertex of H and its neighbour-633

hood, we get a disconnected graph. Let v be a vertex not adjacent to z0, y0 such that the component634

K of G′ = G − v − N(v) containing z0 and y0 has maximum order. We can assume that v ∈ X.635

Note that there must be a vertex v′ ∈ V (H) distinct from v with N(v′) = N(v) such that the636

components of G′ are exactly K and the isolated vertex v′. This is because otherwise there would637

be a vertex v′′ 6= v in H such that G− v′′ −N(v′′) has a bigger K, a contradiction to our choice of638

v.639

Let e1 = vv1, e2 = vv2, e3 = vv3 denote the three edges incident to v. Since v, v′, v1, v2, v3 all640

belong to H, by Claim 7, all these vertices are distinct. Furthermore, since N(v) = N(v′), we can641

also assume that none of vv1, vv2, vv3 are blue. Hence, v, v′ ∈ X and v1, v2, v3 ∈ Y . The graph642

G−v is connected and so is the graph G′ obtained from it by removing the edges v′v1, v
′v2. Lemma643

2.4 implies that there is an {a, b}-edge-weighting of G′ where the vertices in X \ {v} ∪ {v2, v3} are644

incident to an odd number of a-edges and the vertices in Y \{v2, v3} are incident to an even number645

of a-edges. In particular, in G′ the only a-edge incident to v′ is v′v1. We extend this weighting646

to G by assigning weight a to v′v2, v
′v3, and weight b to all three edges incident to v. That way,647

we get an (X \ {v}, Y ∪ {v})-a-parity {a, b}-edge-weighting of G where all three edges incident to648

v have weight b and all three edges incident to v′ have weight a. Observation 2.8 implies that the649

only potential conflicts are between v and its neighbours, but since all vertices in N(v) are incident650

to at least one a-edge (the one incident to v′) this edge-weighting is proper.651

Case 2: All vertices in H are adjacent to z0 or y0.652

By Claim 6, we can assume that, for every vertex v ∈ V (H), the graph G′ = G − v − N(v) is653

disconnected. First, suppose z0 is joined in G∗ to some vertex v ∈ V (H) by an edge of multiplicity654

2. Let e′ and e′′ be the two edges joining z0 and v in G∗. Claim 6 implies that not both of e′, e′′655

are blue; say e′ is white. If e′′ is blue, then by Claim 8, the third edge e′′′ incident to v in G∗656

must be white. If e′′ is white, then Claim 6 implies that e′′′ is white, so the edge e′′′ = vu must be657

white. We can assume v ∈ X and hence u ∈ Y . Let Z denote the set of vertices in G− v which are658

incident to exactly one edge incident to u. Note that either Z is empty or Z has size 2. Note that659

X ′ = (X \ (Z ∪{v}))∪ (Y ∩Z) has even size, so by Lemma 2.4, there is an (X ′, V (G− v−u) \X ′)-660

a-parity {a, b}-edge-weighting of G − v − u. We now extend this edge-weighting to all of G by661

assigning weight b to all edges in E(v) and weight a to the two edges incident to u distinct from uv.662

Thus, we have obtained an (X \ {v}, Y ∪ {v})-a-parity {a, b}-edge-weighting of G where all edges663

incident to v have weight b and u is incident to exactly one b-edge. Observation 2.8 implies that the664

only potential conflict is vz0 in the case where z0 has degree at least 5. We can also assume that665

there is no z0-changing cycle in G avoiding v and u. Hence, z0 must have degree 2 in G−H and be666

joined by an edge in G∗ to at least one vertex v′ in H distinct from v. We can now find a desired667

z0-changing cycle unless the only neighbours of v′ in B are z0 and u. But in this case G−u−N(u)668

is connected, contradicting Claim 6.669

Thus, we can assume that z0, and similarly y0, is not joined to any vertex in H by a multiple670

edge in G∗. Claim 7 now implies that any vertex in H has three distinct neighbours in G∗. Let671

v ∈ X be any vertex in H incident to z0. The graph G− v −N(v) is disconnected by Claim 6, so672
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there must be a vertex v′ in H which in G∗ has the same neighbourhood as v. Since all vertices in H673

have degree 3 (Claim 5) this implies that H only has four vertices: two joined to z0 and two joined674

to y0. The graph G− v − (N(v) \ {z0}) is connected, so as above, there is an (X \ {v}, Y ∪ {v})-a-675

parity {a, b}-edge-weighting of G where all edges incident to v have weight b, and the neighbours of676

v distinct from z0 which have degree 3 are incident to exactly one b-edge. Again, Observation 2.8677

implies that the only possible conflict is vz0 in the case where z0 has degree at least 5. In this case,678

it is easy to see that there is a z0-changing cycle avoiding H, thus, we can get rid of this conflict679

and obtain a proper {a, b}-edge-weighting of G.680

3 Proof of Theorem 1.2681

Before describing the structure of trees without the {−1, 1}-property, we first introduce the following682

two general lemmas which will be used in the proof. Some of the tools and results used here were683

introduced in Section 2.684

Lemma 3.1. If G is a simple connected bipartite graph without the {−1, 1}-property and e is a685

bridge in G, then the deletion of e results in two components each containing an odd number of686

vertices.687

Proof. Suppose the lemma is false. Let G be a connected bipartite graph without the {−1, 1}-688

property and let e = uv ∈ E(G) be a bridge in G. Let c : V (G) → {1, 2} be a mod-4 vertex-689

colouring of G (such a colouring exists by Lemma 2.6) and let X,Y denote the sets of vertices690

coloured 1 and 2 respectively. By Lemma 2.7, both colour classes of c have odd size. Let C1, C2691

denote the two components of G − e with u ∈ V (C1) and v ∈ V (C2). For a contradiction, assume692

that both |V (C1) ∩X| and |V (C1) ∩ Y | are odd and both |V (C2) ∩X| and |V (C2) ∩ Y | are even.693

Recall that two vertices with degree of distinct parity cannot have the same weighted degree by a694

{−1, 1}-edge-weighting (Observation 2.8). There are thus four cases to be considered:695

Case 1: Both u and v have odd degree and colour 1.696

By Lemma 2.4, there is an (X∩V (C1)\{u}, Y ∩V (C1)∪{u})-(−1)-parity {−1, 1}-edge-weighting697

of C1 and a (Y ∩ V (C2), X ∩ V (C2))-1-parity {−1, 1}-edge-weighting of C2. It follows from Obser-698

vation 2.8 that these two edge-weightings, together with assigning weight −1 to e, form a proper699

edge-weighting of the whole G.700

Case 2: Both u and v have even degree and colour 1.701

By Lemma 2.4, there is an (X∩V (C1)\{u}, Y ∩V (C1)∪{u})-(−1)-parity {−1, 1}-edge-weighting702

of C1 and an (X ∩ V (C2), Y ∩ V (C2))-1-parity {−1, 1}-edge-weighting of C2. It follows from Ob-703

servation 2.8 that these two edge-weightings, together with assigning weight −1 to e, form a proper704

edge-weighting of the whole G.705

Case 3: Both u and v have odd degree, u has colour 1 and v has colour 2.706

By Lemma 2.4, there is an (X∩V (C1)\{u}, Y ∩V (C1)∪{u})-(−1)-parity {−1, 1}-edge-weighting707

of C1 and a (Y ∩ V (C2), X ∩ V (C2))-1-parity {−1, 1}-edge-weighting of C2. It follows from Obser-708

vation 2.8 that these two edge-weightings, together with assigning weight −1 to e, form a proper709

edge-weighting of the whole G.710

Case 4: Both u and v have even degree, u has colour 1 and v has colour 2.711
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By Lemma 2.4, there is an (X∩V (C1)\{u}, Y ∩V (C1)∪{u})-(−1)-parity {−1, 1}-edge-weighting712

of C1 and an (X ∩ V (C2), Y ∩ V (C2))-1-parity {−1, 1}-edge-weighting of C2. It follows from Ob-713

servation 2.8 that these two edge-weightings, together with assigning weight −1 to e, form a proper714

edge-weighting of the whole G.715

Lemma 3.2. If G is a connected bipartite graph without the {−1, 1}-property and e is a bridge in716

G, then there is a {−1, 1}-edge-weighting of G such that e is the only conflict.717

Proof. Let G be a connected bipartite graph without the {−1, 1}-property, e be a bridge in G, and718

C1, C2 be the two components of G− e. Let c be a mod-4 vertex-colouring of G (such a colouring719

exists by Lemma 2.6), and let X denote the set of vertices with colour 1 and Y denote the set of720

vertices with colour 2. By Lemma 2.7, both X and Y have odd size and by Lemma 3.1, we can721

assume that |X ∩ V (C1)| and |Y ∩ V (C2)| are even and |Y ∩ V (C1)| and |X ∩ V (C2)| are odd. Now722

Lemma 2.4 implies that there is an (X∩V (C1), Y ∩V (C1))-1-parity {−1, 1}-edge-weighting of C1 and723

an (X∩V (C2), Y ∩V (C2))-1-parity {−1, 1}-edge-weighting of C2. Observation 2.8 implies that these724

two edge-weightings, together with assigning weight −1 to the edge e, is a {−1, 1}-edge-weighting725

of G where e is the only potential conflict.726

We can now prove Theorem 1.2. When referring to Operation 1, we mean the first operation727

described at the end of Section 1 (illustrated in Figure 1, (a) and (b)).728

Proof of Theorem 1.2. As mentioned in the introduction, it is straightforward to check that any729

graph constructed with Operation 1 from four graphs without the {−1, 1}-property does not have730

the {−1, 1}-property itself. An easy argument is that all five edges incident to the vertices v1 ∼ v2731

and v3 ∼ v4 should have the same weight (in which case a conflict arises), as otherwise, the proper732

{−1, 1}-edge-weighting would yield one of at least one of the four graphs used in the construction,733

a contradiction. Thus, it suffices to prove that any tree without the {−1, 1}-property is constructed734

from a disjoint union of K2’s through repeated (possibly none) applications of Operation 1. Suppose735

this is false and let T be a minimum counterexample. Note that Lemma 3.1 implies that, for any736

vertex v ∈ V (T ) and any edge e ∈ E(v), the component Ce not containing v in T − e has an odd737

number of vertices. Since we can write |V (T )| = 1 +
∑

e∈E(v) |V (Ce)| for any vertex v ∈ V (T ) and738

since |V (T )| is even, this implies that all vertices in T have odd degree. A consequence of this is739

that if S ⊂ T is a subtree of T , then T − S has no components isomorphic to K2 as otherwise T740

would have vertices with degree 2.741

Let P = v1...vm be a longest path in T . Clearly, vm is a leaf and, since all vertices have odd742

degree, vm−1 is incident to an even number of leaves. Suppose vm−1 is incident to an even number743

n ≥ 4 of leaves u1, ..., un, with u1 = vm. Recall that Lemma 2.7 implies that |V (T )| is even; now,744

since T ′ = T −{u1, ...un−1} has an odd number of vertices, Lemma 2.7 implies that T ′ has a proper745

{−1, 1}-edge-weighting. We can now extend this edge-weighting to a proper {−1, 1}-edge-weighting746

of T by assigning the same weight to all the edges vm−1u1, ..., vm−1un (we choose whether it is 1747

or −1 so that we avoid the conflict vm−2vm−1). Thus, vm−1 has degree exactly 3 and, from these748

arguments and the maximality of P , any neighbour of vm−2 distinct from vm−3 and vm−1 is either a749

leaf or a vertex of degree 3 adjacent to two leaves. Let U ′ = {u′1, ..., u′p} be the set of leaves adjacent750

to vm−2 and let U ′′ = {u′′1 , ..., u′′q} be the set of neighbours of vm−2 distinct from vm−1 and vm−3751

which have degree 3. Possibly p = 0 or q = 0, but p+ q > 0 since vm−2 has odd degree and hence752
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p + q is odd. Let T1 and T2 be the two components of T − vm−3vm−2 such that vm−2 ∈ V (T2).753

By Lemma 3.2, there is a {−1, 1}-edge-weighting w of T such that the only potential conflict is754

vm−3vm−2. By possibly multiplying all edge weights by −1, we can assume that the weight of755

vm−3vm−2 is 1. We look at three separate cases:756

Case 1: p+ q ≥ 5.757

By possibly modifying the weights of the edges in E(T2) such that they all have weight 1 or −1,758

the vertex vm−2 can obtain weighted degree 2 + p+ q and −p− q. Now we simply pick the one of759

these two options such that vm−3vm−2 is not a conflict. Since all vertices in T2 except vm−2 have760

degree at most 3, this gives a proper {−1, 1}-edge-weighting of T .761

Case 2: p+ q = 3.762

As in Case 1, we can modify the edge weights such that the vertex vm−2 can obtain weighted763

degree 2 + p + q and −p − q. Furthermore, since 2 + p + q = 5 and all vertices in T2 except vm−2764

have degree at most 3, we can in this way find a proper {−1, 1}-edge-weighting of T , unless vm−3765

has weight 5. So we can assume that vm−3 has weight 5. If p ≥ 1 and p is odd (resp. even), then766

we modify the weights in T2 such that all edges incident with u′1, ..., u
′
p have weight 1 (resp. −1)767

and all other edges in T2 have weight −1 (resp. 1). This yields a proper {−1, 1}-edge-weighting768

of T , so we can assume p = 0 and q = 3. In this case, we modify the weights in T2 such that all769

edges incident to vm−1 and u′′1 have weight 1 and all other edges in T2 have weight −1. This yields770

a proper {−1, 1}-edge-weighting of T .771

Case 3: p+ q = 1.772

First suppose q = 1 and p = 0. If we modify the edge weights in T2 such that they all have weight773

−1, then we obtain a proper {−1, 1}-edge-weighting of T , unless vm−3 has weight−1. In this case, we774

change the weights of the three edges incident to vm−1 to 1 to obtain a proper {−1, 1}-edge-weighting775

of T . Thus, we can assume p = 1 and q = 0. We can assume that T ′′′ = T−vm−vm−1−u2−u′1 has a776

proper {−1, 1}-edge-weighting w, since otherwise, the minimality of T implies that T ′′′ is constructed777

from a disjoint union of K2’s through repeated (possibly none) applications of Operation 1, and778

then so is T . By possibly multiplying all edge weights of w by −1, we can assume that vm−3vm−2779

has weight 1. Now assigning weight 1 to all edges incident to vm−1 and weight −1 to vm−2u
′
1 yields780

a proper {−1, 1}-edge-weighting of T .781
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