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Abstract

For any S ⊂ Z we say that a graph G has the S-property if there exists an S-edge-weighting

w : E(G) → S such that for any pair of adjacent vertices u, v we have
∑

e∈E(v) w(e) 6=∑
e∈E(u) w(e), where E(v) and E(u) are the sets of edges incident to v and u, respectively. This

work focuses on {a, a + 2}-edge-weightings where a ∈ Z is odd. We show that a 2-connected

bipartite graph has the {a, a+ 2}-property if and only if it is not a so-called odd multi-cactus.

In the case of trees, we show that only one case is pathological. That is, we show that all trees

have the {a, a + 2}-property for odd a 6= −1, while there is an easy characterization of trees

without the {−1, 1}-property.

1 Introduction

Let G be an undirected graph. For an S-edge-weighting w : E(G) → S of G, where S ⊂ Z, each

vertex v ∈ V (G) has weighted degree equal to the sum of the weights of its incident edges. We call

w neighbour sum-distinguishing if no two adjacent vertices of G have the same weighted degree. For

a set S of weights, we say that G has the S-property if it admits neighbour sum-distinguishing S-

edge-weightings. The study of graphs having or not having the S-property for some sets S is highly

related to the well-known 1-2-3 Conjecture raised by Karonski,  Luczak, and Thomason in 2004 [6].

That conjecture states that every connected graph different from K2
1 has the {1, 2, 3}-property. A

particular case of a list version of the 1-2-3 Conjecture (introduced by Bartnicki, Grytczuk, and

Niwczyk [2]), even states that every graph should have the {a, b, c}-property for every distinct

a, b, c ∈ N. For more details on the progress towards the 1-2-3 Conjecture (and variants of it),

please refer to [11] for a survey on this topic.

For any smaller set S ⊂ Z of weights, i.e., with |S| = 2, one can easily come up with examples

showing that there do exist graphs not having the S-property (complete graphs are such examples).

∗The first author was supported by PEPS grant POCODIS.
1This requirement is mandatory for any graph to be weightable; throughout this work, it is thus implicit, unless

stated otherwise, that every considered graph does not have K2 as a connected component.
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A natural question that has been investigated is about the existence of a good characterization

of graphs that have the S-property for such smaller sets S. Here and further on, by a “good

characterization” we mean a description in terms of a graph class whose members can be recognized

in polynomial time. Dudek and Wajc [5] settled the question in the negative, as they proved that,

unless P=NP, there is no good characterization of graphs with the {1, 2}-property, and similarly

for the {0, 1}-property. Later on, noticing that, for any two distinct sets S, S′ ⊂ Z of weights

with |S|, |S′| = 2, any neighbour sum-distinguishing S-edge-weighting of a regular graph yields a

neighbour sum-distinguishing S′-edge-weighting, Ahadi, Dehghan, and Sadeghi [1] proved that there

is no good characterization of graphs with the {a, b}-property for any two distinct a, b ∈ Z.

From this point on, it thus made sense investigating, for any two distinct a, b ∈ Z, sufficient

conditions for graphs to have the {a, b}-property. A special focus has been dedicated to bipartite

graphs, as 1) the aforementioned NP-completeness results were not known to hold in the bipartite

context, and 2) bipartite graphs form one of the rare graph classes for which the 1-2-3 Conjecture is

relatively well understood (see [6]). As a first step, several works [3, 4, 7, 8, 9] investigated whether

there is a good characterization of bipartite graphs with the {1, 2}-property. Back then, it was

believed that such a good characterization should exist, as, notably, all 3-connected bipartite graphs

were proved to have the {1, 2}-property [9]. It was not until quite recently that Thomassen, Wu, and

Zhang proved that, indeed, bipartite graphs without the {1, 2}-property are easy to describe [13].

Namely, only so-called odd multi-cacti are bipartite and do not have the {1, 2}-property. These

graphs are defined as follows (the comprehensive definition is from [10]; refer to Figure 2 later on

for an illustration):

“Take a collection of cycles of length 2 modulo 4, each of which has edges coloured alternately

red and green. Then form a connected simple graph by pasting the cycles together, one by one, in a

tree-like fashion along green edges; the resulting graph is an odd multi-cactus. The graph with one

green edge and two vertices (K2) is also an odd multi-cactus. When replacing a green edge of an

odd multi-cactus by a green edge of any multiplicity, we again obtain an odd multi-cactus.”

One main ingredient behind Thomassen, Wu, and Zhang’s result is the nice observation, already

made back in [3], that, when a and b are integers with distinct parity, every bipartite graph G with

bipartition (X,Y ) such that at least one of X and Y has even cardinality has the {a, b}-property.

This is because, in such a case, one can easily construct {a, b}-edge-weightings of G where all vertices

in X have odd weighted degree while those in Y have even weighted degree. These observations

also imply that, for a and b with distinct parity, bipartite graphs without the {a, b}-property have

their two partite sets of odd cardinality, and they thus have even order.

Reusing some of Thomassen, Wu, and Zhang’s ideas, Lyngsie later considered the {0, 1}-property

for bipartite graphs [10]. His main result is a good characterization of 2-edge-connected bipartite

graphs without the {0, 1}-property, which turns out to be nothing but the class of odd multi-cacti.

This result was established, in particular, through aforementioned tools and results for cases where

a and b have different parities. However, both Thomassen, Wu, and Zhang and Lyngsie observed

that there exist infinitely many separable (i.e., with cut-vertices) bipartite graphs without the

{0, 1}-property.

Although they are far from covering all the cases of a and b, the previous series of results show

two things. First, that, when considering 2-connected bipartite graphs without the {a, b}-property,
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Figure 1: Constructing graphs without the {−1, 1}-property from graphs without that property.

one should pay attention to odd multi-cacti. Second, that separable bipartite graphs without the

{a, b}-property and those without the {a′, b′}-property may differ for different pairs a, b and a′, b′.

This is already well illustrated by the class of trees: while they all have the {1, 2}-property [3],

infinitely many of them do not have the {0, 1}-property [10].

This paper is mainly devoted to studying {a, b}-properties where both a and b are odd. As a

first step, we focus on the cases where b = a+ 2. We introduce mechanisms that are reminiscent of

the ones mentioned above (for a and b with distinct parity), which allow us to study the {a, a+ 2}-
property for bipartite graphs and odd a ∈ Z. One of the main results we get from these is that, for

any odd a, 2-connected bipartite graphs without the {a, a+2}-property are precisely odd multi-cacti

again.

Theorem 1.1. Let a, b ∈ Z be odd integers with b = a + 2. A 2-connected bipartite graph G does

not have the {a, b}-property if and only if G is an odd multi-cactus.

Similarly as for the {0, 1}-property, the structure of separable bipartite graphs without the {a, b}-
property for odd a and b does not appear obvious. As a first step, we give a special focus on the

case {a, b} = {−1, 1}. In that case, we can already point out two operations that, given bipartite

graphs without the {−1, 1}-property, clearly provide more separable bipartite graphs without the

{−1, 1}-property (see Figure 1):

• Let G1, G2, G3, G4 be four bipartite graphs without the {−1, 1}-property, and let v1, v2, v3, v4

be any four degree-1 vertices of G1, G2, G3, G4, respectively. The operation (see Figure 1, top)

consists in considering the disjoint union G1 ∪ G2 ∪ G3 ∪ G4, identifying the vertices v1 and

v2, identifying the vertices v3 and v4, and adding an edge joining the two vertices resulting

from these identifications (i.e., v1 ∼ v2 and v3 ∼ v4).

• Let G1, G2 be two bipartite graphs without the {−1, 1}-property, and let v1, v2 be any two

vertices of G1, G2, respectively. The operation (see Figure 1, bottom) consists in considering
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the disjoint union G1 + G2, adding the edge v1, v2, and further joining v1, v2 by a path with

odd length at least 3.

In the case of trees, when a and b are any two non-zero integers that are both positive (or

negative), it is easy to see that K2 is the only tree without the {a, b}-property: consider a vertex v

whose all neighbours u1, ..., ud−1 but one ud (if any) are leaves, remove u1, ..., ud−1, apply induction

to deduce a neighbour sum-distinguishing {a, b}-edge-weighting, and extend the weighting to the

edges vu1, ..., vud−1 so that the conflict vud is avoided. Thus, when b = a + 2 and a, b are odd,

only the case a = −1, b = 1 is potentially non-trivial. In Section 3, we show that trees without the

{−1, 1}-property can all be constructed through the first operation above (illustrated in Figure 1,

top) performed on K2’s.

Theorem 1.2. A tree does not have the {−1, 1}-property if and only if it can be constructed from

a disjoint union of K2’s through repeated applications of the first operation above.

In particular, the structure of trees without the {−1, 1}-property is very different and simpler

than that of trees without the {0, 1}-property (for more on the structure of these trees, see [10]).

Recall that all trees have the {1, 2}-property, as was shown, e.g., in [3].

Terminology and notation. Let G be a connected graph. For a given vertex v of G we denote

by E(v) the set of edges incident to v. A bridge in G is an edge whose removal results in two

components. Let w be an edge-weighting of G. Abusing the notation, the weighted degree of v in

G by w will sometimes be denoted w(v) for convenience. We say that an edge uv of G is a conflict

by w if w(u) = w(v). In other words, w is neighbour sum-distinguishing if no edge is a conflict.

In what follows, we will instead use the term proper in place of neighbour sum-distinguishing to

lighten the writing. By an x-edge of G (by w), we mean an edge assigned weight x by w.

2 Proof of Theorem 1.1

In this section, we prove that for every odd integer a ∈ Z, the class of 2-connected bipartite graphs

without the {a, a + 2}-property is exactly that of odd multi-cacti. Another way to define these

graphs is as follows. Start from K2, the simple connected graph on two vertices, having its only

edge coloured green. Then, repeatedly apply an arbitrary number of the following operation (see

Figure 2 for an illustration). Consider any green edge uv of the current graph, and join u, v by a

new path P of length ` ≥ 1 congruent to 1 modulo 4 whose edges are coloured red and green as

follows:

• if ` = 1, i.e., P has a unique edge, then this edge is green;

• if ` ≥ 5, then the edges of P are coloured red and green properly (i.e., no two subsequent

edges have the same colour) so that the two end-edges are red.

Figure 2 notably shows that performing this operation multiple times for a same green edge is

allowed, and that adding paths of length 1 is similar to increasing the multiplicity of a green edge.

Note also that it is not possible to get two adjacent green edges with distinct ends at any point

of the process. Furthermore, every obtained graph is bipartite. An odd multi-cactus is any graph
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Figure 2: Constructing an odd multi-cactus through several steps, from K2 (a). Red-green paths

with length at least 5 congruent to 1 modulo 4 are being attached onto the green edge uv through

steps (b) to (d). In step (e), (green) paths of length 1 are added, which corresponds to increasing

the multiplicity of some green edges.

that can be obtained during this process, no matter how many times the operation is applied. In

particular, K2 itself is regarded as an odd multi-cactus.

In this section, we will implicitly use several properties of odd multi-cacti, such as:

Observation 2.1. Let M be an odd multi-cactus with its edges being coloured red and green as

described above. Then:

• M is 2-connected;

• when replacing every (green) edge of M by an edge with multiplicity 1, a 2-degenerate graph

is obtained;

• for every green edge uv of M , we have dM (u) = dM (v).

Having the structure of odd multi-cacti in mind, it can be proved that the following holds true.

Lemma 2.2. If G is not an odd multi-cactus and was obtained from an odd multi-cactus M by

replacing a red edge with an edge of multiplicity at least 2 or by replacing a green edge by a path

of length k ≥ 5 with k ≡ 1 mod 4, then G has the {a, b}-property for any two distinct integers

a, b ∈ Z.

Proof. The proof is by induction on the order of M . So suppose G was obtained from an odd

multi-cactus M by replacing an edge e with either an edge of multiplicity at least 2 (if e is red in
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M) or a path of length k ≥ 5 with k ≡ 1 mod 4 (if e is green in M). It is easy to check that the

statement is true if M is just a cycle with some multiple green edges. So we can focus on cases

where M was obtained in the general way, i.e., by pasting together cycles with length 2 modulo 4

having possibly green edges of any multiplicity. Furthermore, it is easy to check that the statement

is true if M was constructed by only pasting cycles together along one single green edge e′ as in

Figures 2 (c), (d) and (e) where there have only been pasted cycles together along the edge uv:

in this case, since G is not an odd multi-cactus, G is either obtained from M by replacing a red

edge with an edge of multiplicity at least 2, or e = e′ must be a simple edge and G is obtained by

replacing that edge e with a path of length k ≥ 5 with k ≡ 1 mod 4 and k ≥ 5. In both cases it is

easy to check that G has the {a, b}-property.

Thus, we can assume that M was obtained by pasting together at least three cycles and that

there are at least two disjoint edges to which other cycles have been pasted to. This implies that

there are at least two disjoint cycles of length congruent to 2 modulo 4 where all vertices except

two which are adjacent have exactly two neighbours. One of these cycles C = v1v2...vnv1 does not

contain e. By possibly relabelling the vertices we can assume that all vertices of C except v1 and

v2 only have two distinct neighbours. By induction the graph G′ obtained from G by replacing the

path v2v3...vn with an edge e′′ has the {a, b}-property, but any proper {a, b}-edge-weighting of G′

can be converted to a proper {a, b}-edge-weighting of G by assigning the same weight to an edge in

G as in G′ and assigning the weight assigned to e′′ in G′ to the edges v2v3 and vn−1vn, and finally

assigning the weights of the remaining edges v2v3, ..., vn−2vn−1 in a way avoiding conflicts inside

C.

We now introduce or recall results that will be needed during the course of our main proof below.

The following first observation is obvious and implies that studying the {a, b}-property only makes

sense when gcd(a, b) = 1.

Observation 2.3. Let w be a proper {a, b}-edge-weighting of a graph G. If we multiply all edge

weights of w by a non-zero integer α, then we get a proper {aα, bα}-edge-weighting of G.

In what follows, given a graph G and a mapping f : V (G) → Zk, by an f -factor modulo k we

mean a spanning subgraph H of G such that, for every v ∈ V (G), we have dH(v) ≡ f(v) (mod k).

Lemma 2.4 (Thomassen [12]). Let G be a connected graph. If f : V (G) → Z2 is a mapping

satisfying
∑

v∈V (G) f(v) ≡ 0 mod 2, then G contains an f-factor modulo 2.

When dealing with bipartite graphs with a bipartition set of even cardinality, and when a and b

have distinct parity, f -factors modulo 2 can be employed as a convenient tool to deduce proper {a, b}-
edge-weightings in quite an easy way (see [10, 13]). More precisely, let (X,Y ) be the bipartition of a

bipartite graph G where |X| is even. Lemma 2.4 (when applied onto the function f where f(x) = 1

for x ∈ X and f(y) = 0 for y ∈ Y ) implies that G has a spanning subgraph H where all of the

vertices in X have odd degree, while all of the vertices in Y have even degree. From this, it is easy

to see that, assuming a is odd and b is even, assigning weight a to all of the edges in E(H) and

weight b to all of the edges in E(G) \ E(H) yields a proper {a, b}-edge-weighting of G.

The upcoming new tools and concepts (in particular that of mod-4 vertex-colourings) are the

key to generalize this approach to odd a, b ∈ Z when |a− b| = 2.
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Definition 2.5. A mod-4 vertex-colouring of a graph G is a vertex-colouring c : V (G)→ {1, 2} of

G satisfying the following conditions for any uv ∈ E(G) where d(u) and d(v) have the same parity:

1. d(u) ≡ d(v) mod 4⇒ c(u) 6= c(v).

2. d(u) 6≡ d(v) mod 4⇒ c(u) = c(v).

In the next result, we prove that every bipartite graph G admits a mod-4 vertex-colouring c.

It is important to point out that, in general, c might be far from fitting with the bipartition of G.

Actually, G might have many edges whose two ends have the same colour by c.

Lemma 2.6. Every bipartite graph has a mod-4 vertex-colouring.

Proof. It suffices to prove the lemma for connected bipartite graphs where all vertices have odd

degree or where all vertices have even degree (as otherwise we can consider, still in the whole graph,

the vertices with even degree first, and then those with odd degree). So let G be a connected

bipartite graph where all vertex degrees have the same parity. Let v be a vertex in G and let

D0, D1, ..., Dm denote the distance classes of G from v ∈ D0. Since G is bipartite, each Di is an

independent set. Now give v colour 1 and colour the distance classes in the given order starting

with D1, then D2 and so on until we reach a vertex v′ ∈ Di′ we cannot assign a colour without

violating conditions 1 or 2 in Definition 2.5. If this happens one or both of the following two cases

have occurred:

1. there are two neighbours v1, v2 ∈ Di′−1 of v′ with d(v1) ≡ d(v2) mod 4 and c(v1) 6= c(v2);

2. there are two neighbours v1, v2 ∈ Di′−1 of v′ with d(v1) 6≡ d(v2) mod 4 and c(v1) = c(v2).

Let us first assume that we are in the first case and let P1, P2 be two internally disjoint shortest

paths towards v starting with v′v1 and v′v2 respectively and ending in a common vertex v′′ ∈ Di′′ .

That is, v′′ is the first vertex on both P1 and P2 that is encountered when going from v1 towards

v along P1; possibly v′′ = v. All the vertices of P1 and P2 except v′ are coloured without violating

conditions 1 and 2 in Definition 2.5, and P1 and P2 have the same length. The parity of the number

of times the degree modulo 4 changes when walking from v′′ to v1 on P1 is the same as the parity

of the number of times the degree modulo 4 changes when walking from v′′ to v2 on P2. Thus, the

parity of the number of times the degree modulo 4 does not change when walking from v′′ to v1

on P1 is the same as the parity of the number of times the degree modulo 4 does not change when

walking from v′′ to v2 on P2. Since conditions 1 and 2 in Definition 2.5 are not violated, this implies

that the parity of the number of times the colour changes when walking from v′′ towards v′ is the

same when walking along P1 as when walking along P2. Thus, c(v1) = c(v2), a contradiction. The

second case above can be dealt with in a similar way.

Let a, b ∈ Z be two odd integers with b = a + 2. Let G be a graph and X,Y be two disjoint

subsets of its vertices. By an (X,Y )-a-parity {a, b}-edge-weighting of G, we mean an {a, b}-edge-

weighting where all vertices in X are incident to an odd number of a-edges and all vertices in Y are

incident to an even number of a-edges. (X,Y )-b-parity {a, b}-edge-weightings are defined similarly,

but with respect to the incident b-edges. In the following result, we establish a crucial connection

between mod-4 vertex-colourings and (X,Y )-parity {a, b}-edge-weightings, leading to the existence

of proper {a, b}-edge-weightings.
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Lemma 2.7. Let G be a connected bipartite graph and let a, b ∈ Z be odd integers with b = a + 2.

If G has a mod-4 vertex-colouring where at least one of the two colour classes has even size, then G

has the {a, b}-property. Consequently, if G does not have the {a, b}-property, then, in every mod-4

vertex-colouring, the two colour classes have odd size.

Proof. Let G be a connected bipartite graph, and c a mod-4 vertex-colouring of G. We denote by

X and Y the sets of vertices with colour 1 and 2, respectively. Assume |X| is even. By Lemma 2.4

there is an {a, b}-edge-weighting w : E(G)→ {a, b} such that all vertices in X are incident to an odd

number of b-edges and all vertices in Y are incident to an even number of b-edges. This corresponds

to our notion of an (X,Y )-b-parity {a, b}-edge-weighting. The possible weighted degrees of a vertex

v of even degree and colour 1 induced by such an edge-weighting are {a(d(v)− 1) + b, a(d(v)− 1) +

b+ 4, a(d(v)− 1) + b+ 8, ..., a+ b(d(v)− 1)} and the possible weighted degrees of a vertex v′ of even

degree and colour 2 induced by such an edge-weighting are {ad(v′), ad(v′) + 4, ad(v′) + 8, ..., bd(v′)}.
The possible weighted degrees of a vertex u of odd degree and colour 1 induced by such an edge-

weighting are {a(d(u) − 1) + b, a(d(u) − 1) + b + 4, a(d(u) − 1) + b + 8, ..., bd(u)} and the possible

weighted degrees of a vertex u′ of odd degree and colour 2 induced by such an edge-weighting are

{ad(u′), ad(u′) + 4, ad(u′) + 8, ..., a+ b(d(u′)− 1)}. Let xy ∈ E(G). We will show that w(x) 6= w(y).

To do this we distinguish two distinct cases (note that we can assume that x and y have the same

degree parity, as otherwise w(x) cannot be equal to w(y)):

1. x and y have the same colour by c.

2. x and y have distinct colours by c.

First assume that x and y have the same colour. Since c is a mod-4 vertex-colouring we have

that d(x) 6≡ d(y) mod 4. Note that by the above it suffices to show that ad(x) 6≡ ad(y) mod 4 and

this is trivially true since gcd(a, 4) = 1. Now assume that x and y have distinct colours. Since c is

a mod-4 vertex-colouring we have that d(x) ≡ d(y) mod 4. Note that by the above it suffices to

show that ad(x) ≡ ad(y) mod 4, and as mentioned above this follows since gcd(a, 4) = 1.

From the previous proof, we can also extract the following:

Observation 2.8. Let a, b ∈ Z be odd integers with b = a + 2 and let uv be an edge in a graph G

whose edges are weighted with a and b. If either

1. d(u) and d(v) have distinct parity, or

2. d(u) ≡ d(v) mod 4 and v is incident to an odd number of a-edges while u is incident to an

even number of a-edges, or

3. d(u) 6≡ d(v) mod 4 and both v and u are incident to an odd or even number of a-edges,

then u and v have distinct weighted degrees. This is also true if one considers the parity of the

numbers of incident b-edges instead of the parity of the numbers of incident a-edges.

Let G be a graph and w an {a, b}-edge-weighting of G. By swapping (the weight of) an edge, we

mean changing its weight to a if it is a b-edge, or changing its weight to b otherwise. By swapping

a path or a cycle, we mean swapping all of its edges. For a vertex v in a cycle C of G, it can be
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observed that the parity of the number of a-edges (and similarly b-edges) incident to v is not altered

upon swapping C. In the proof of our main result below, this fact will be used a lot to get rid of

conflicts in the following way.

Let X,Y be the two colour classes of a mod-4 vertex-colouring of G and assume that, for some

vertex v ∈ X, w is an (X \ {v}, Y ∪ {v})-a-parity {a, b}-edge-weighting, i.e., all vertices in X \ {v}
are incident to an odd number of a-edges and all vertices in Y {v} are incident to an even number of

a-edges. According to Observation 2.8, all conflicts (if any) involve v. So let uv be a conflict. To get

rid of this conflict while controlling the possible creation of new conflicts, we will swap particular

cycles of G. Let C be a cycle of G going through u using two edges e, e′ incident to u. If e, e′ are

assigned the same weight by w, then C is called u-changing. C will be called v-avoiding if it does

not go through v.

Observation 2.9. Let G be a graph, X,Y be the two colour classes of a mod-4 vertex-colouring of

G, and let w be an (X \{v}, Y,∪{v})-a-parity {a, b}-edge-weighting for some vertex v, where a, b ∈ Z
are odd integers with b = a+ 2. If uv is a conflict, then, by swapping a u-changing v-avoiding cycle

C of G, we get rid of this conflict. Furthermore, any remaining/arising conflicts involve v.

Proof. According to Observation 2.8, all original conflicts by w must involve v. When swapping C,

the weighted degree of u is altered since C is u-changing, while the weighted degree of v is unaltered

since C is v-avoiding. So we get rid of the conflict uv. Furthermore, it can be noticed that, upon

swapping any cycle of G, the parities of the number of a-edges (and similarly b-edges) incident to the

vertices are unaltered. Therefore, we get another (X \ {v}, Y ∪ {v})-a-parity {a, b}-edge-weighting,

and Observation 2.8 indicates that, after the swapping of C, all conflicts (if any) in the resulting

{a, b}-edge-weighting must involve v.

We finish with a few general lemmas to be used in particular cases of our upcoming main proof.

Lemma 2.10. Let G be a 2-connected bipartite graph, X,Y be the two colour classes of a mod-4

vertex-colouring of G, and let a, b ∈ Z be odd integers with b = a + 2. If both X and Y have odd

size and v ∈ X is such that G− v−N(v) is connected, then there is an (X \ {v}, Y ∪ {v})-a-parity

{a, b}-edge-weighting of G where all edges incident to v have weight b and every vertex u ∈ N(v) is

incident to at most 1 +M(uv) b-edges, where M(uv) denotes the multiplicity of the edge uv.

Proof. Suppose G′ = G−v−N(v) is connected. Let G′′ be obtained from G−v by, for every vertex

u ∈ N(v), removing all edges but one incident to u in G − v. For each u ∈ N(v), let eu be the

unique edge incident to u in G′′ and let n(u) denote the unique neighbour of u in G′′. Note that

since G′ is connected, then so is G′′. Let S denote the set of edges in G not incident to v and not in

G′′. That is, S is the set of edges removed from G− v to obtain G′′. Let G[S] denote the subgraph

of G induced by the edges in S and let Z denote the vertices of odd degree in G[S]. Clearly |Z| is

even, so, since X \ {v} has even size, the set X ′ = (X \ (Z ∪{v}))∪Z ∩Y also has even size. Thus,

Lemma 2.4 implies that there is an (X ′, V (G′′) \X ′)-a-parity {a, b}-edge-weighting of G′′. We now

extend this weighting to G by assigning weight a to all edges in S and weight b to all edges in E(v);

this results in a desired edge-weighting of G.

Lemma 2.11. Let G be a 2-connected bipartite graph. If there is a vertex v ∈ V (G) of degree at

least 4 and with |N(v)| ≥ 3 such that G− v −N(v) is connected, then G has the {−1, 1}-property.
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Proof. By Lemma 2.10, there is an (X\{v}, Y ∪{v})-(−1)-parity {−1, 1}-edge-weighting of G, where

all edges incident to v have weight 1 and any vertex u ∈ N(v) is incident to at most 1 + M(uv)

1-edges, where M(uv) denotes the multiplicity of the edge uv. Observation 2.8 implies that the only

potential conflicts are between v and its neighbours. But the weighted degree of v is d(v) and since

|N(v)| ≥ 3, we have for any u ∈ N(u) that the multiplicity of uv is less than d(v) − 1. Thus, the

weighted degree of any u ∈ N(v) is less than d(v) and therefore, there can be no conflicts.

Lemma 2.12 (Thomassen, Wu, Zhang [13]). Let q be a natural number such that q ≥ 4. Let G be a

connected graph and let A be an independent set of at most q vertices such that each vertex in A has

degree at least q−1, or, each vertex in A, except possibly one, has degree at least q. Assume that no

vertex in A is adjacent to a bridge in G. Then, for each vertex a of A, there is an edge ea incident

with a such that the deletion of all ea, a ∈ A, results in a connected graph unless |A| = q = 4, all

vertices of A have degree 3, and G − A has six components each of which is joined to two distinct

vertices of A.

Let a and b be two odd integers with b = a+ 2. In some cases Lemmas 2.4 and 2.12 work well

together when trying to construct a proper {a, b}-edge-weighting of a connected bipartite graph

G: suppose c : V (G) → {1, 2} is a mod-4 vertex-colouring of G and let X and Y denote the sets

of vertices in G of colour 1 and 2 respectively and assume that both X and Y have odd size.

Furthermore, suppose that the degree of a vertex v ∈ X is at least 4 and no vertex in N(v) has

degree strictly larger than 4. Let A be the vertices in N(v) with the same degree as v and suppose

that no vertex in A is incident to a bridge in G − v, the graph G − v is connected, and we are

not in the exceptional case of Lemma 2.10, that is, for each u ∈ A there is an edge eu such that

G− ∪u∈A{eu} is connected. Define S = ∪u∈A{eu} and let Z denote the set of vertices in G which

have odd degree in the subgraph of G induced by S (note that A ⊂ Z). Since X \ {v} and Z

have even size, the set X ′ = (X \ (Z ∪ {v})) ∪ Z ∩ Y also has even size. Thus, Lemma 2.4 implies

that there is an (X ′, V (G − v) \ X ′)-a-parity {a, b}-edge-weighting of G − v. We can extend this

edge-weighting to G by assigning weight a to all edges in S and weight b to all edges in E(v) to

obtain an (X \ {v}, Y ∪ {v})-a-parity {a, b}-edge-weighting of G where all edges incident to v have

weight b and every vertex u ∈ N(v) is incident to at least one a-edge. Thus, the weighted degree

of v is greater than that of its neighbours and Observation 2.8 implies that the edge-weighting is

proper.

We are now ready to prove the main result of this section. Let us emphasize that the main steps

in the proof follow the lines of those in the proofs of the main results in [10] and [13]. In particular,

Claims 2, 3, 4, 5, as stated below, can also be found in [10]. The proofs are rather different, though,

as most arguments used to deal with the {0, 1}-property do not apply immediately for the {a, b}-
property when a, b ∈ Z are odd and b = a + 2. Instead, some of the tools and results we have

introduced earlier are used. Also, the end of the proof in our case is more straightforward than

those for the {1, 2}- and {0, 1}-properties.

Proof of Theorem 1.1. Suppose the theorem is false and, for some odd a ∈ Z and b = a + 2, let G

be a counterexample which has smallest order possible. By possibly multiplying the weights by −1

we can assume b > 0. Let c be a mod-4 vertex-colouring of G (such a colouring exists by Lemma

10



2.5), and let X denote the set of vertices with colour 1 and Y denote the set of vertices with colour

2. By Lemma 2.7, we can assume that both X and Y have odd size.

Claim 1. G has no multiple edge uv where both u and v have only two distinct neighbours.

Proof of the claim. Suppose uv is a multiple edge and both u and v have only two distinct neighbours.

By the minimality of G, Lemma 2.2, and the fact that G is not an odd multi-cactus, the graph

obtained from G by replacing uv with one non-multiple edge has a proper {a, b}-edge-weighting w.

But since the multiplicity of uv in G is at least 2 and since u and v can each be in only one conflict

distinct from uv, we can obtain a proper {a, b}-edge-weighting of G from w by weighting the edges

joining u and v to avoid the conflicts involving u and v (such an edge-weighting exists because there

are at least three possible sums for the weight of edges joining u and v). �

Since G is 2-connected, it has minimum degree at least 2. In what follows, by a suspended path

of G, we mean a path v1x1...xkv2 where all internal vertices x1, ..., xk have degree 2 and v1 and v2

have degree at least 3.

Claim 2. G has no suspended path of length 2.

Proof of the claim. Suppose the claim is false and let v1xv2 be a suspended path in G, where

d(x) = 2 and d(v1), d(v2) ≥ 3. We can assume x ∈ X. Define G′ = G − x. Recall that G′ is

connected since G is 2-connected. Lemma 2.4 implies that there is an (X \ {x}, Y ∪ {x})-a-parity

{a, b}-edge-weighting w of G, where w(v1x) = w(v2x) = a. More precisely, w can be obtained as

follows (recall that |V (G′) ∩X| is even):

• If v1, v2 ∈ X, then, according to Lemma 2.4, there is an (X \ {v1, v2, x}, Y ∪ {v1, v2})-a-

parity {a, b}-edge-weighting of G′. Then, assigning weight a to v1x and v2x gives the desired

weighting of G.

• If v1, v2 ∈ Y , then the same conclusion can be reached when applying Lemma 2.4 so that we

start from an (X − {x} ∪ {v1, v2}, Y \ {v1, v2})-a-parity {a, b}-edge-weighting of G′.

• If v1 ∈ X and v2 ∈ Y (resp. v2 ∈ X and v1 ∈ Y ), then, again, we can get the same

conclusion after applying Lemma 2.4 from an (X \ {v1, x} ∪ {v2}, Y ∪ {v1} \ {v2})-a-parity

{a, b}-edge-weighting (resp. (X \ {v2} ∪ {v1}, Y ∪ {v2} \ {v1})-a-parity {a, b}-edge-weighting)

of G′.

Observation 2.8 implies that the only conflicts that can arise are xv1 and xv2. So we can assume

that x and v1 are in conflict, i.e., both x and v1 have weighted degree 2a. This implies that v1 has

even degree at least 4 (by the definition of a suspended path, and only vertices with degree of the

same parity can be in conflict) and a < 0 < b and hence a = −1 and b = 1. Let u1, u2 be two

neighbours of v1 in G′ such that u1v1 and u2v1 have weight −1 and let C be a cycle in G′ using the

edges u1v1 and v1u2. Such a cycle exists as, because G is 2-connected, there is a path from u1 to u2

in G− v1. Because C is v1-changing and x-avoiding, if we swap all weights on C we do not create

new conflicts in G′ and we lose the conflict xv1 (recall Observation 2.9). In particular, x remains of

weighted degree −2 while v1 becomes of weighted degree 2.

Thus, we can now assume that xv2 is a conflict. This implies that v2 also has even degree at least

4. We can now get rid of this conflict in the same way as we got rid of the conflict v1x, unless all
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v2-changing cycles in G′ (that thus use two edges in E(v2) having the same weight) all use two edges

in E(v1) both having weight 1 (in this case we only move the conflict from xv2 to xv1). Since xv2 is

a conflict, v2 must be incident to at least two −1-edges in G′ and at least one 1-edge. Furthermore,

as mentioned above, we can assume that any v2-changing cycle in G′ contains two edges incident

to v1 having weight 1.

Assume that v1 is incident to a −1-edge e in G′. Since G is 2-connected, there is, in G − v1, a

path from v2 to the end of e different from v1. From the existence of that path, we get that there is

a path P in G′ from v1 to v2 using e. If the weight on the last edge e′ of P (the one incident to v2)

is 1, then swapping the weights on the cycle P ∪ v1x∪xv2 yields a proper edge-weighting; so we can

assume e′ has weight −1. Since xv2 is a conflict and v2 has even degree at least 4, vertex v2 must

be incident to a −1-edge e′′ 6= e′ in G′. Now, because G is 2-connected, the graph G−v2 has a path

P ′ joining the end of e′ different from v2 and the end of e′′ different from v2. Note that if P ′ does

not contain v1, then we would get a cycle whose weights can be swapped to immediately deduce a

proper edge-weighting of G. The same conclusion holds if P ′ and P intersect for the first time on

a vertex different from v1. So v1 is the first intersection point between P and P ′, in which case we

deduce a cycle of G containing v2 as well as all of e, e′, e′′ (first go from v2 to v1 along P ′, before

going back to v2 along P ); when swapping the weights along that cycle, we get rid of all conflicts

between x and v1, v2.

We are left with the case where v1 is not incident to a −1-edge e in G′. Thus, we deduce that

v1 has degree 4 and, by symmetry, v2 also has degree 4. Note that this implies that v1, v2 ∈ X

and furthermore, that all four edges incident to v1 except v1x have weight 1. Also, according to all

hypotheses so far, v1 has weighted degree 2, v2 has weighted degree −2, and so two edges incident

to v2 in G′ have weight −1 while the last edge incident to v2 in G′ has weight 1. We now consider

the graph G′′ = G′ − v1 − v2. If G′′ is connected, then we can find in G′ a cycle including the two

−1-edges incident to v2 (thus v2-changing), and not passing through v1; then, as earlier, we can

swap the weights along this cycle to get rid of the conflict v2x. So we may assume the two −1-edges

incident to v2 in G′ are incident to two distinct components of G′′. This leaves us with the following

three cases to consider:

Case 1: G′′ has two components C1, C2, such that v1 has two neighbours in C1 and one neighbour

in C2, and v2 has two neighbours in C2 and one neighbour in C1.

Let e1,a and e1,b denote the two edges incident to v1 going to C1. Recall that e1,a, e1,b have

weight 1. Since C1 is connected, there is a path from the end of e1,a different from v1 to the end

of e1,b different from v1. We swap all weights along the cycle formed by this path and e1,a, e1,b to

get another edge-weighting of G where v1 has weighted degree −2; so, now, both xv1 and xv2 are

conflicts.

Now let e1,c denote the edge incident to v1 going to C2, and e2,a denote the 1-edge incident to

v2 going to C2. Both these edges are weighted 1. Since C2 is connected, there is a path P from

the end of e1,c different from v1 to the end of e2,a different from v2. Now consider the cycle of G

starting in x, going through xv2 and e2,a, then going along P , and finally going through e1,c and v1x.

When swapping all weights along this cycle, note that v1, v2 remain of weighted degree −2, while

x becomes of weighted degree 2. So the {−1, 1}-edge-weighting of G becomes proper according to

Observation 2.9.
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Case 2: G′′ has two components C1, C2, such that both v1 and v2 have two neighbours in C1 and

one neighbour in C2.

Let v1,a, v1,b denote the two neighbours of v1 in C1, and let v1,c denote the neighbour of v1 in

C2. Note that for one of v1,a, v1,b, say v1,a, the graph G′′′ = G − v1 − v1,a − v1,c is connected, for

if G′ is disconnected, then it must be the case that v1,a is a cut-vertex in G − v1 and then it is

easy to see that G− v1 − v1,b − v1,c is connected, and we can just rename v1,a and v1,b accordingly.

Note that, by Lemma 2.11, we can assume that G′′′− v1,b is disconnected. Let L1, ..., Ln denote the

components of G′′′ − v1,b, where v2 ∈ V (L1). Since v1,b is not a cut-vertex in G, it follows that v1,a

has a neighbour in each of the components Li for i ≥ 2.

Let us now consider the graph obtained from G by removing the vertex v1, and, for each of

v1,a, v1,c, removing all remaining incident edges but one. Note that, in that graph, x also has de-

gree 1. Lemma 2.4 implies that this graph has an (X \{v1}, Y )-(−1)-parity {−1, 1}-edge-weighting.

By then assigning weight −1 to all removed edges incident to v1 and weight 1 to all remaining edges

(incident to one of v1,a, v1,c), we get that G has an (X \{v1}, Y )-(−1)-parity {−1, 1}-edge-weighting

where all four edges incident to v1 are weighted −1, and each of v1,a, v1,c is incident to at most two

−1-edges. Now the only possible conflict is v1v1,b, so we can assume this is indeed a conflict, and

hence, both v1 and v1,b have weighted degree −4. We can also assume that we cannot swap the

weights in a cycle in G′′′ containing two edges incident to v1,b having the same weight, and hence,

v1,b has at most two neighbours in each of Li for i = 1, ..., n. Since the weighted degree of v1,b is

−4, there must be some components in G′′′ − v1,b which are incident to strictly more −1-edges in

E(v1,b) than 1-edges in E(v1,b). Again, since we can assume that there is no cycle in G′′′ containing

two edges incident to v1,b having the same weight, we can also deduce that no two edges incident to

v1,b having the same weight go to the same component in G′′′ − v1,b. Thus, there are at least three

components L′1, L
′
2, L
′
3 in G′′′ − v1,b, each of which is incident to only one edge in E(v1,b) and each

of these edges has weight −1. We can assume that L′1 and L′2 are distinct from L1, and, since v1,b

is not a cut-vertex in G, the vertex v1,a has a neighbour u′i in each L′i for i = 1, 2. There is now a

cycle C in G′′′+ v1,a containing two edges incident to v1,b having weight −1 and containing the two

edges v1,au
′
1 and v1,au

′
2. If we swap the weights on C, then the only possible conflict is v1v1,a in the

case where v1,a is a vertex of degree 4 and v1v1,a has weight −1, both v1,au
′
1 and v1,au

′
2 have weight

1, and v1,a is incident to some fourth −1-edge v1,au
′. We can assume that the component L′ to

which u′ belongs in G′′′ − v1,b is not incident to a −1-edge of v1,b, since otherwise, we could modify

C to contain the edge v1,au
′. Note that this also implies that L′3 = L1. Since v1,b had weighted

degree −4 this implies that there is another component L′4 distinct from all of L′1, L
′
2, L
′
3, which is

incident to an edge in E(v1,b) having weight −1. The vertex v1,a must have a neighbour u′′ in this

component L′4 and, since we can assume that we cannot modify C to contain v1,au
′, we must have

u′′ 6= u′. This contradicts v1,a having degree 4.

Case 3: G′′ has three components C1, C2, C3, such that v1 and v2 have one neighbour in each of

these three components.

In that case, G has the {−1, 1}-property according to Lemma 2.11 as v1 has even degree 4, and

it can be checked that G − v1 − NG(v1) remains connected due to the 2-connectedness of G. In

particular, for i = 1, 2, 3, note that the edge incident to v1 going to Ci and the edge incident to v2

going to Ci cannot share an end. A contradiction. �
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Claim 3. G has no suspended path of length 4.

Proof of the claim. Suppose the claim is false and let v1x1x2x3v2 be a suspended path in G,

where d(x1) = d(x2) = d(x3) = 2 and d(v1), d(v2) ≥ 3. We can assume x2 ∈ X, which implies

that x1, x3 ∈ Y . Define G′ = G − x1 − x2 − x3. Using Lemma 2.4 similarly as in the proof of

Claim 2, we can come up with an (X \ {x1}, Y \ {x2, x3})-a-parity {a, b}-edge-weighting w of G

where w(v1x1) = w(x3v2) = a and w(x1x2) = w(x2x3) = b. One can check that, by slightly

modifying the exact same arguments used in the proof of Claim 2, we can eventually remove all

conflicts from w, or deduce another proper {a, b}-edge-weighting of G. �

Claim 4. G has no suspended path of length at least 5.

Proof of the claim. Suppose the claim is false and let v1x1x2x3x4v2 be a path in G, where

x1, x2, x3, x4 all have degree 2, and v1, v2 here might be of degree 2. Let G′ be obtained from

G by replacing v1x1x2x3x4v2 by an edge e = v1v2 even if that edge is already there. If G′ has the

{a, b}-property, then so does G. Indeed, assume there is a proper {a, b}-edge-weighting of G where

the weight of e is, say a, and consider that weighting back in G. We start the extension to the five

edges by assigning weight a to v1x1 and x4v2, so that v1 and v2 keep the same weighted degree as

in G′. Since v1v2 is an edge in G′, note that v1 and v2 have different weighted degrees. From this,

we deduce that either v1 has weighted degree different from 2a and v2 has weighted degree different

from a + b, or conversely. Assume the first situation holds. Then, we can achieve the weighting of

G by assigning weight a to x1x2 and weight b to x2x3 and x3x4.

So we can assume that G′ does not have the {a, b}-property and is thus an odd multi-cactus by

the minimality of G. The edge e cannot be red in G′, since then G would also be an odd multi-

cactus. Thus e is green and Lemma 2.2 implies that G has the {a, b}-property. �

By Claims 1, 2, 3, 4, all degree-2 vertices in G (if any) lie on suspended paths of length 3. In G

we replace all suspended paths of length 3 by edges (even if the two ends were already adjacent) to

form a bipartite multigraph G∗. Edges arising from suspended paths of length 3, we call blue edges.

Every other edge of G∗, i.e., which was already present in G, we call a white edge.

Note that G∗ is bipartite, 2-connected, has minimum degree at least 3, and it may have more

multiple edges than G has. Also, note that for every vertex v in G∗, we have dG∗(v) = dG(v).

In general, it is not easy to deduce a proper {a, b}-edge-weighting of G from one of G∗ (typically

because of blue edges); however, information on the structure of G can be deduced from that of G∗.

In particular, we will study the existence of paths or cycles in G∗ to deduce that of corresponding

paths or cycles in G (where any traversed blue edge in G∗ is replaced by the corresponding path of

length 3 in G).

If the deletion of some pair of adjacent vertices u, v disconnects G∗, then let z0y0 ∈ E(G∗) be

such that G− z0− y0 is disconnected and such that some component H of G∗− z0− y0 has smallest

possible order. The union of that component H and z0, y0 together with all edges connecting them

is denoted B. In case G has no pair of adjacent vertices whose removal disconnects the graph, we

define H = B = G∗, and y0, z0 do not exist.

Claim 5. For every vertex v of H, we have dG∗(v) = 3.
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Proof of the claim. Suppose the claim is false and let w0 be a vertex in H of maximum degree

d = d(w0) at least 4. Without loss of generality, we can suppose that w0 ∈ X. Assume first that

w0 is adjacent to none of z0, y0 (this is the case if these two vertices do not exist). By the remark

following Lemma 2.12, we can assume that we are in the exceptional case when considering G−w0

and defining A to be the set of vertices in N(v) which have the same degree as w0. Thus, w0 and

all vertices in N(w0) have degree 4 and G− w0 −N(w0) has exactly six components. We can now

choose another vertex of degree d as w0 by choosing w0 such that the order of the component of

G− w0 −N(w0) containing z0 is maximum and avoid the exceptional case in Lemma 2.12. Again,

the remark following Lemma 2.12 shows how to find a proper {a, b}-edge-weighting of G.

So we can assume w0 is adjacent to, say, z0 and that all the neighbours of w0 in H which have

the same degree as w0 are adjacent to y0 (due to the bipartiteness of G∗). Since y0, z0 thus exist,

we have G 6= H. We can also assume that all vertices in H having maximum degree are adjacent

to z0 or y0 (as otherwise, the previous situation would apply). Note that this implies that we can

never be in the exceptional case in Lemma 2.12 when we delete a vertex v in H of maximum degree

and define A to be the neighbours of v with the same degree as v.

As pointed out earlier, there is an (X \ {w0}, Y )-a-parity {a, b}-edge-weighting of G where all

edges incident to w0 are weighted b and every neighbour of w0 with degree d is incident to at least

one a-edge. This edge-weighting is proper unless z0w0 is a conflict, which occurs only if the degree

of z0 is strictly greater than that of w0. Note that we can assume that z0 is incident to exactly

one edge going to each component other than H in G − y0 − z0, since otherwise, we could deduce

an {a, b}-edge-weighting of G as above with the extra condition that two edges e, e′ incident to z0

going to a component C of G− y0 − z0 other than H are weighted b. Then, if z0w0 is a conflict, we

could get rid of it by swapping the weights along a cycle going through z0 and C via e, e′ (so that

it is z0-changing) and not going through H (so that it is w0-avoiding). So z0 is incident to exactly

one edge going to each component other than H in G−y0− z0. We can also assume that there is at

most one component C other than H in G−y0− z0, since otherwise, we could reach the exact same

conclusion by deducing an {a, b}-edge-weighting of G as before with the extra condition that two

edges e, e′ incident to z0 going to two different components C,C ′ distinct from H are weighted b.

In case z0w0 is a conflict, we could again get rid of it by swapping the weights along a cycle going

through z0, in C via e, back to y0, in C ′, and back to z0 via e′. This would be correct since such a

cycle would not go through H, and thus, would be w0-avoiding. Similarly, we can assume that the

multiplicity of z0y0 is 1.

Let us denote by z1 the unique neighbour of z0 in C. By swapping the weights along a cycle

through C containing z0, y0 and the edge z0z1, and not going through H, we can further assume that

the edge z0z1 is weighted a. For a similar reason, we can assume that the edge y0z0 is weighted b.

Recall that w0 and all the neighbours of w0 with degree d are all incident to an even number of

a-edges; thus, each of the neighbours of w0 with degree d is incident to at least two a-edges.

To get rid of the conflict z0w0, we would like to swap the weights along a z0-changing cycle in

G−w0 (thus, w0-avoiding). According to Observation 2.9, recall that this would not alter the parity

of the number of incident a’s of any vertex in V (G) \ {w0}. Furthermore, this would get rid of the

conflict z0w0. However, this swapping process can create a conflict between w0 and a neighbour v

of w0 with degree d; but such a conflict can only arise when the cycle goes through the only two

a-edges incident to v. For a neighbour v of w0 with degree d that is incident to only two a-edges,
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we call this pair of edges a forbidden pair. Our goal in what follows is to show that G − w0 has a

z0-changing cycle not containing any forbidden pair of edges.

Let us denote by v1, ..., vm the neighbours of w0 with degree d. As mentioned earlier, recall that

the vi’s are all adjacent to y0. Since z0w0 is a conflict, recall that d(z0) and d(w0) have the same

parity. Furthermore, since d(z0) > d(w0) > 3, it follows that d(z0) ≥ 6, and, because the only

neighbours of z0 outside H are y0 and z1, there is a vertex z2 6= w0 in N(z0) ∩ V (H). Note that,

to find the desired cycle through z0 in G−w0, it suffices to find a path P from y0 to a vertex z′ in

N(z0)∩V (H) in the connected graph G− z0−w0 (which is connected by the minimality of H) not

using any forbidden pair of edges. Indeed, if the weight on z0z
′ is b, then we can define our cycle

to be P ∪ {z0y0, z′z0}, while, if the weight on z0z
′ is a, then we can define our cycle to be P ∪ Pc,

where Pc is a path from z0 to y0 in G−H − z0y0 (thus, through C). Since the graph G− z0−w0 is

connected, there is a path P1 from z2 to y0. We can assume that P1 uses forbidden pairs of edges.

Without loss of generality, let pv1 and v1q be the first forbidden pair of edges P1 used when going

from z2 to y0. Since v1 is adjacent to y0, it follows that q = y0, since otherwise, we have found a

path from y0 to z2 not using any forbidden pair of edges. Thus, we can assume that all paths from

y0 to a vertex in N(z0) ∩ V (H) use exactly one forbidden pair of edges. Now we look at all such

paths using only one pair of forbidden edges y0vi and vip (for i ∈ {1, ...,m}) and consider one such

path P that goes through the most neighbours of w0. Let y0vi and vip be the pair of forbidden

edges that P contains.

First suppose that vi has a neighbour v′i distinct from y0, p, w0. The edge viv
′
i must have weight

b. Since G−w0 − vi is connected, it has a path P ′ from v′i to a vertex in N(z0) ∩ V (H). The path

P ′ must use a forbidden pair of edges, as otherwise, the graph induced by E(P ) ∪ E(P ′) would

contain a desired path from y0 to a vertex in N(z0) ∩ V (H) avoiding forbidden pairs of edges. Let

the first pair of forbidden edges P ′ used when starting from v′i be qv and vr. The subpath P ′1 of P ′

from v′i to v must be disjoint from P , since otherwise, the graph induced by E(P )∪E(P ′1) contains

a desired path from y0 to N(z0) ∩ V (H) avoiding forbidden pairs of edges. Furthermore, we must

have that r = y0, since otherwise, the path P ′′ defined to be y0v together with the subpath of P ′

from v to v′i followed by v′ivi and the subpath of P from vi to N(z0)∩ V (H) is a desired path from

y0 to N(z0)∩V (H) avoiding forbidden pairs of edges. Now the path P ′′ contradicts the maximality

of P .

So we can assume that N(vi) = {y0, p, w0}, which means, because vi has degree d > 3, that

some of the edges viy0, vip, viw0 have multiplicity more than 1. The multiplicity of both y0vi and

vip must be 1, since otherwise, we would get a desired path from z2 to y0 avoiding the forbidden

pair of edges y0vi, vip. So the multiplicity of viw0 is at least 2. If the only neighbours of w0 are vi

and z0, then we can swap the weights on two edges between w0 and vi to avoid the conflict z0w0

and obtain a proper {a, b}-edge-weighting of G; so we can assume that w0 is incident to a vertex

v′ in H distinct from vi. Since d(vi) = d(w0), the edges w0z0 and w0v
′ are not multiple and since

z0 has degree at least 6, there are two edges z0z
′
2, z0z

′′
2 incident with z0 having the same weight

and where z′2, z
′′
2 ∈ H. Possibly z′2 = z′′2 or z′2 = z2. The graph B − w0 − z0 is connected, so it

contains a path P ′1 from z′2 to y0 and a path P ′2 from from z′′2 to y0. These paths P ′1 and P ′2 must

be internally disjoint, since otherwise, there would be a z0-changing cycle in B not containing any

pair of forbidden edges. We can assume that both P ′1 and P ′2 contain a pair of forbidden edges,

since otherwise, there is a desired path from y0 to (N(z0)−w0)∩V (H). Hence, we can assume that
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P ′1 contains y0vi and vip and P ′2 contains a pair of forbidden edges qv′, v′r incident to v′. Since

this implies that y0 and v′ are adjacent, we can assume that y0 = q. The vertex v′ must have a

neighbour s distinct from y0, w0, r and since the graph B−w0− v′ is connected, there is a path P ′′

in B−w0− v′ from s to y0. If P ′′ contains the forbidden pair of edges y0vi and vip, then the graph

P ′1 ∪P ′2 ∪P ′′ contains a z0-changing cycle in B containing no forbidden pair of edges. Thus, we can

assume that P ′′ contains no pair of forbidden edges. Now P ′2 ∪ P ′′ contains a desired path from w0

to (N(z0)− w0) ∩ V (H). �

Claim 6. There is no vertex v ∈ V (H) such that G− v −N(v) is connected.

Proof of the claim. Suppose v ∈ V (H) and that G′ = G − v −N(v) is connected. We can assume

v ∈ X. By Lemma 2.10, there is an (X \ {v}, Y ∪ {v})-a-parity {a, b}-edge-weighting of G, where

all edges incident to v have weight b and any vertex u ∈ N(v) is incident to at most 1 + M(uv)

b-edges, where M(uv) denotes the multiplicity of the edge uv. Note that Claim 1 implies that if

vv′ is a multiple edge, then v′ ∈ {z0, y0}. Thus, the only potential conflict is between v and one

of z0, y0, say y0. This implies that y0 must have odd degree at least 5. But since G′ is connected

there must then be a y0-changing cycle in G− (N(v) \ {y0}) and swapping the weights on this cycle

yields a proper {a, b}-edge-weighting of G. �

Claim 7. There are no multiple edges between two vertices in H.

Proof of the claim. Suppose uv is a multiple edge in H. We can assume v ∈ X. Since u and v

have degree 3 in G∗ (by Claim 5), the multiplicity of uv is exactly 2. Let e and e′ be the two edges

between u and v. By Claim 1, e, e′ are not both white. Thus, at least one of e, e′, say e, is a blue

edge in H. Let v′ denote, in G∗, the unique neighbour of v different from u.

Let G′ be obtained from G− v by removing all edges but one edge e′′ incident to v′. Clearly G′

is connected since G − v − v′ is connected by the minimality of H. Let S = E(v′) \ {vv′, e′′}. Let

X ′ denote the set of vertices in G − v which are incident to an odd number of edges in S. Note

that S has even size. Thus, X ′ = (X \ S ∪ (S ∩ Y ) has even size and Lemma 2.4 implies that

there is an (X ′, V (G′) \X ′)-a-parity {a, b}-edge-weighting of G′. We now extend this weighting to

G by assigning weight a to all edges in S and weight b to all edges incident to v. This gives an

(X \ {v}, Y ∪ {v})-a-parity {a, b}-edge-weighting of G where all vertices in N(v) are incident to at

most two b-edges (the edge in the suspended path of length 3 joining u and v incident to u must

have weight a). Observation 2.8 implies that the only conflict can be between v and its neighbours,

so the only possible conflict is vv′ in the case where v′ ∈ {z0, y0}, say v′ = y0, and y0 has degree at

least 5. But since G− v is connected there must then be a y0-changing cycle avoiding v and u and

swapping the weights on this cycle yields a proper {a, b}-edge-weighting of G. �

Claim 8. Every vertex of H is incident to at most one blue edge.

Proof of the claim. Recall that every vertex v of H has degree 3, by Claim 5. If v is incident to

three blue edges, then G − v −N(v) is connected, which contradicts Claim 6. So now assume v is

incident to two blue edges. Let uv denote the white (third) edge incident to v. Still by Claim 6, the

graph G− v −N(v) cannot be connected, which means that u, v is a pair contradicting the choice

of y0, z0. �
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We now have all the tools in hand for finishing the proof. Two cases must be considered:

Case 1: There is a vertex v ∈ V (H) not adjacent to any of z0, y0.

Recall that, according to Claim 6, whenever removing from G a vertex of H and its neighbour-

hood, we get a disconnected graph. Let v be a vertex not adjacent to z0, y0 such that the component

K of G′ = G − v − N(v) containing z0 and y0 has maximum order. We can assume that v ∈ X.

Note that there must be a vertex v′ ∈ V (H) distinct from v with N(v′) = N(v) such that the

components of G′ are exactly K and the isolated vertex v′. This is because otherwise there would

be a vertex v′′ 6= v in H such that G− v′′ −N(v′′) has a bigger K, a contradiction to our choice of

v.

Let e1 = vv1, e2 = vv2, e3 = vv3 denote the three edges incident to v. Since v, v′, v1, v2, v3 all

belong to H, by Claim 7, all these vertices are distinct. Furthermore, since N(v) = N(v′), we can

also assume that none of vv1, vv2, vv3 are blue. Hence, v, v′ ∈ X and v1, v2, v3 ∈ Y . The graph

G−v is connected and so is the graph G′ obtained from it by removing the edges v′v1, v
′v2. Lemma

2.4 implies that there is an {a, b}-edge-weighting of G′ where the vertices in X \ {v} ∪ {v2, v3} are

incident to an odd number of a-edges and the vertices in Y \{v2, v3} are incident to an even number

of a-edges. In particular, in G′ the only a-edge incident to v′ is v′v1. We extend this weighting

to G by assigning weight a to v′v2, v
′v3, and weight b to all three edges incident to v. That way,

we get an (X \ {v}, Y ∪ {v})-a-parity {a, b}-edge-weighting of G where all three edges incident to

v have weight b and all three edges incident to v′ have weight a. Observation 2.8 implies that the

only potential conflicts are between v and its neighbours, but since all vertices in N(v) are incident

to at least one a-edge (the one incident to v′) this edge-weighting is proper.

Case 2: All vertices in H are adjacent to z0 or y0.

By Claim 6, we can assume that, for every vertex v ∈ V (H), the graph G′ = G − v − N(v) is

disconnected. First, suppose z0 is joined in G∗ to some vertex v ∈ V (H) by an edge of multiplicity

2. Let e′ and e′′ be the two edges joining z0 and v in G∗. Claim 6 implies that not both of e′, e′′

are blue; say e′ is white. If e′′ is blue, then by Claim 8, the third edge e′′′ incident to v in G∗

must be white. If e′′ is white, then Claim 6 implies that e′′′ is white, so the edge e′′′ = vu must be

white. We can assume v ∈ X and hence u ∈ Y . Let Z denote the set of vertices in G− v which are

incident to exactly one edge incident to u. Note that either Z is empty or Z has size 2. Note that

X ′ = (X \ (Z ∪{v}))∪ (Y ∩Z) has even size, so by Lemma 2.4, there is an (X ′, V (G− v−u) \X ′)-
a-parity {a, b}-edge-weighting of G − v − u. We now extend this edge-weighting to all of G by

assigning weight b to all edges in E(v) and weight a to the two edges incident to u distinct from uv.

Thus, we have obtained an (X \ {v}, Y ∪ {v})-a-parity {a, b}-edge-weighting of G where all edges

incident to v have weight b and u is incident to exactly one b-edge. Observation 2.8 implies that the

only potential conflict is vz0 in the case where z0 has degree at least 5. We can also assume that

there is no z0-changing cycle in G avoiding v and u. Hence, z0 must have degree 2 in G−H and be

joined by an edge in G∗ to at least one vertex v′ in H distinct from v. We can now find a desired

z0-changing cycle unless the only neighbours of v′ in B are z0 and u. But in this case G−u−N(u)

is connected, contradicting Claim 6.

Thus, we can assume that z0, and similarly y0, is not joined to any vertex in H by a multiple

edge in G∗. Claim 7 now implies that any vertex in H has three distinct neighbours in G∗. Let

v ∈ X be any vertex in H incident to z0. The graph G− v −N(v) is disconnected by Claim 6, so
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there must be a vertex v′ in H which in G∗ has the same neighbourhood as v. Since all vertices in H

have degree 3 (Claim 5) this implies that H only has four vertices: two joined to z0 and two joined

to y0. The graph G− v − (N(v) \ {z0}) is connected, so as above, there is an (X \ {v}, Y ∪ {v})-a-

parity {a, b}-edge-weighting of G where all edges incident to v have weight b, and the neighbours of

v distinct from z0 which have degree 3 are incident to exactly one b-edge. Again, Observation 2.8

implies that the only possible conflict is vz0 in the case where z0 has degree at least 5. In this case,

it is easy to see that there is a z0-changing cycle avoiding H, thus, we can get rid of this conflict

and obtain a proper {a, b}-edge-weighting of G.

3 Proof of Theorem 1.2

Before describing the structure of trees without the {−1, 1}-property, we first introduce the following

two general lemmas which will be used in the proof. Some of the tools and results used here were

introduced in Section 2.

Lemma 3.1. If G is a simple connected bipartite graph without the {−1, 1}-property and e is a

bridge in G, then the deletion of e results in two components each containing an odd number of

vertices.

Proof. Suppose the lemma is false. Let G be a connected bipartite graph without the {−1, 1}-
property and let e = uv ∈ E(G) be a bridge in G. Let c : V (G) → {1, 2} be a mod-4 vertex-

colouring of G (such a colouring exists by Lemma 2.5) and let X,Y denote the sets of vertices

coloured 1 and 2 respectively. By Lemma 2.7, both colour classes of c have odd size. Let C1, C2

denote the two components of G − e with u ∈ V (C1) and v ∈ V (C2). For a contradiction, assume

that both |V (C1) ∩X| and |V (C1) ∩ Y | are odd and both |V (C2) ∩X| and |V (C2) ∩ Y | are even.

Recall that two vertices with degree of distinct parity cannot have the same weighted degree by a

{−1, 1}-edge-weighting (Observation 2.8). There are thus four cases to be considered:

Case 1: Both u and v have odd degree and colour 1.

By Lemma 2.4, there is an (X∩V (C1)\{u}, Y ∩V (C1)∪{u})-(−1)-parity {−1, 1}-edge-weighting

of C1 and a (Y ∩ V (C2), X ∩ V (C2))-1-parity {−1, 1}-edge-weighting of C2. It follows from Obser-

vation 2.8 that these two edge-weightings, together with assigning weight −1 to e, form a proper

edge-weighting of the whole G.

Case 2: Both u and v have even degree and colour 1.

By Lemma 2.4, there is an (X∩V (C1)\{u}, Y ∩V (C1)∪{u})-(−1)-parity {−1, 1}-edge-weighting

of C1 and an (X ∩ V (C2), Y ∩ V (C2))-1-parity {−1, 1}-edge-weighting of C2. It follows from Ob-

servation 2.8 that these two edge-weightings, together with assigning weight −1 to e, form a proper

edge-weighting of the whole G.

Case 3: Both u and v have odd degree, u has colour 1 and v has colour 2.

By Lemma 2.4, there is an (X∩V (C1)\{u}, Y ∩V (C1)∪{u})-(−1)-parity {−1, 1}-edge-weighting

of C1 and a (Y ∩ V (C2), X ∩ V (C2))-1-parity {−1, 1}-edge-weighting of C2. It follows from Obser-

vation 2.8 that these two edge-weightings, together with assigning weight −1 to e, form a proper

edge-weighting of the whole G.

Case 4: Both u and v have even degree, u has colour 1 and v has colour 2.
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By Lemma 2.4, there is an (X∩V (C1)\{u}, Y ∩V (C1)∪{u})-(−1)-parity {−1, 1}-edge-weighting

of C1 and an (X ∩ V (C2), Y ∩ V (C2))-1-parity {−1, 1}-edge-weighting of C2. It follows from Ob-

servation 2.8 that these two edge-weightings, together with assigning weight −1 to e, form a proper

edge-weighting of the whole G.

Lemma 3.2. If G is a connected bipartite graph without the {−1, 1}-property and e is a bridge in

G, then there is a {−1, 1}-edge-weighting of G such that e is the only conflict.

Proof. Let G be a connected bipartite graph without the {−1, 1}-property, e be a bridge in G, and

C1, C2 be the two components of G− e. Let c be a mod-4 vertex-colouring of G (such a colouring

exists by Lemma 2.5), and let X denote the set of vertices with colour 1 and Y denote the set of

vertices with colour 2. By Lemma 2.7, both X and Y have odd size and by Lemma 3.1, we can

assume that |X ∩ V (C1)| and |Y ∩ V (C2)| are even and |Y ∩ V (C1)| and |X ∩ V (C2)| are odd. Now

Lemma 2.4 implies that there is an (X∩V (C1), Y ∩V (C1))-1-parity {−1, 1}-edge-weighting of C1 and

an (X∩V (C2), Y ∩V (C2))-1-parity {−1, 1}-edge-weighting of C2. Observation 2.8 implies that these

two edge-weightings, together with assigning weight −1 to the edge e, is a {−1, 1}-edge-weighting

of G where e is the only potential conflict.

We can now prove Theorem 1.2. When referring to Operation 1, we mean the first operation

described at the end of Section 1 (illustrated in Figure 1, top).

Proof of Theorem 1.2. As mentioned in the introduction, it is straightforward to check that any

graph constructed with Operation 1 from four graphs without the {−1, 1}-property does not have

the {−1, 1}-property itself. An easy argument is that all five edges incident to the vertices v1 ∼ v2
and v3 ∼ v4 should have the same weight (in which case a conflict arises), as otherwise, the proper

{−1, 1}-edge-weighting would yield one of at least one of the four graphs used in the construction,

a contradiction. Thus, it suffices to prove that any tree without the {−1, 1}-property is constructed

from a disjoint union of K2’s through repeated (possibly none) applications of Operation 1. Suppose

this is false and let T be a minimum counterexample. Note that Lemma 3.1 implies that, for any

vertex v ∈ V (T ) and any edge e ∈ E(v), the component Ce not containing v in T − e has an odd

number of vertices. Since we can write |V (T )| = 1 +
∑

e∈E(v) |V (Ce)| for any vertex v ∈ V (T ) and

since |V (T )| is even, this implies that all vertices in T have odd degree. A consequence of this is

that if S ⊂ T is a subtree of T , then T − S has no components isomorphic to K2 as otherwise T

would have vertices with degree 2.

Let P = v1...vm be a longest path in T . Clearly, vm is a leaf and, since all vertices have odd

degree, vm−1 is incident to an even number of leaves. Suppose vm−1 is incident to an even number

n ≥ 4 of leaves u1, ..., un, with u1 = vm. Recall that Lemma 2.7 implies that |V (T )| is even; now,

since T ′ = T −{u1, ...un−1} has an odd number of vertices, Lemma 2.7 implies that T ′ has a proper

{−1, 1}-edge-weighting. We can now extend this edge-weighting to a proper {−1, 1}-edge-weighting

of T by assigning the same weight to all the edges vm−1u1, ..., vm−1un (we choose whether it is 1

or −1 so that we avoid the conflict vm−2vm−1). Thus, vm−1 has degree exactly 3 and, from these

arguments and the maximality of P , any neighbour of vm−2 distinct from vm−3 and vm−1 is either a

leaf or a vertex of degree 3 adjacent to two leaves. Let U ′ = {u′1, ..., u′p} be the set of leaves adjacent

to vm−2 and let U ′′ = {u′′1 , ..., u′′q} be the set of neighbours of vm−2 distinct from vm−1 and vm−3

which have degree 3. Possibly p = 0 or q = 0, but p+ q > 0 since vm−2 has odd degree and hence
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p + q is odd. Let T1 and T2 be the two components of T − vm−3vm−2 such that vm−2 ∈ V (T2).

By Lemma 3.2, there is a {−1, 1}-edge-weighting w of T such that the only potential conflict is

vm−3vm−2. By possibly multiplying all edge weights by −1, we can assume that the weight of

vm−3vm−2 is 1. We look at three separate cases:

Case 1: p+ q ≥ 5.

By possibly modifying the weights of the edges in E(T2) such that they all have weight 1 or −1,

the vertex vm−2 can obtain weighted degree 2 + p+ q and −p− q. Now we simply pick the one of

these two options such that vm−3vm−2 is not a conflict. Since all vertices in T2 except vm−2 have

degree at most 3, this gives a proper {−1, 1}-edge-weighting of T .

Case 2: p+ q = 3.

As in Case 1, we can modify the edge weights such that the vertex vm−2 can obtain weighted

degree 2 + p + q and −p − q. Furthermore, since 2 + p + q = 5 and all vertices in T2 except vm−2

have degree at most 3, we can in this way find a proper {−1, 1}-edge-weighting of T , unless vm−3

has weight 5. So we can assume that vm−3 has weight 5. If p ≥ 1 and p is odd (resp. even), then

we modify the weights in T2 such that all edges incident with u′1, ..., u
′
p have weight 1 (resp. −1)

and all other edges in T2 have weight −1 (resp. 1). This yields a proper {−1, 1}-edge-weighting

of T , so we can assume p = 0 and q = 3. In this case, we modify the weights in T2 such that all

edges incident to vm−1 and u′′1 have weight 1 and all other edges in T2 have weight −1. This yields

a proper {−1, 1}-edge-weighting of T .

Case 3: p+ q = 1.

First suppose q = 1 and p = 0. If we modify the edge weights in T2 such that they all have weight

−1, then we obtain a proper {−1, 1}-edge-weighting of T , unless vm−3 has weight−1. In this case, we

change the weights of the three edges incident to vm−1 to 1 to obtain a proper {−1, 1}-edge-weighting

of T . Thus, we can assume p = 1 and q = 0. We can assume that T ′′′ = T−vm−vm−1−u2−u′1 has a

proper {−1, 1}-edge-weighting w, since otherwise, the minimality of T implies that T ′′′ is constructed

from a disjoint union of K2’s through repeated (possibly none) applications of Operation 1, and

then so is T . By possibly multiplying all edge weights of w by −1, we can assume that vm−3vm−2

has weight 1. Now assigning weight 1 to all edges incident to vm−1 and weight −1 to vm−2u
′
1 yields

a proper {−1, 1}-edge-weighting of T .
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