
HAL Id: hal-01988291
https://hal.science/hal-01988291v1

Submitted on 24 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Propagative selection of tilted array patterns in
directional solidification

Younggil Song, Silvère Akamatsu, Sabine Bottin-Rousseau, Alain Karma

To cite this version:
Younggil Song, Silvère Akamatsu, Sabine Bottin-Rousseau, Alain Karma. Propagative selection of
tilted array patterns in directional solidification. Physical Review Materials, 2018, 2 (5), pp.053403.
�10.1103/PhysRevMaterials.2.053403�. �hal-01988291�

https://hal.science/hal-01988291v1
https://hal.archives-ouvertes.fr


Propagative selection of tilted array patterns in directional solidification

Younggil Song,1 Silvère Akamatsu,2 Sabine Bottin-Rousseau,2 and Alain Karma1, ∗

1Department of Physics and Center for Interdisciplinary Research on Complex Systems,
Northeastern University, Boston, MA 02115 USA

2Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris,
case courrier 840, 4 place Jussieu, 75252 Paris Cedex 05, France

(Dated: April 16, 2018)

We investigate the dynamics of tilted cellular/dendritic array patterns that form during directional
solidification of a binary alloy when a preferred-growth crystal axis is misoriented with respect to
the temperature gradient. In situ experimental observations and phase-field simulations in thin
samples reveal the existence of a propagative source-sink mechanism of array spacing selection that
operates on larger space and time scales than the competitive growth at play during the initial
solidification transient. For tilted arrays, tertiary branching at the diverging edge of the sample
acts as a source of new cells with a spacing that can be significantly larger than the initial average
spacing. A spatial domain of large spacing then invades the sample propagatively. It thus yields
a uniform spacing everywhere, selected independently of the initial conditions, except in a small
region near the converging edge of the sample, which acts as a sink of cells. We propose a discrete
geometrical model that describes the large-scale evolution of the spatial spacing profile based on
the local dependence of the cell drift velocity on the spacing. We also derive a nonlinear advection
equation that predicts the invasion velocity of the large-spacing domain, and sheds light on the
fundamental nature of this process. The models also account for more complex spacing modulations
produced by an irregular dynamics at the source, in good quantitative agreement with both phase-
field simulations and experiments. This basic knowledge provides a theoretical basis to improve the
processing of single crystals or textured polycrystals for advanced materials.

PACS numbers: 68.08.-p, 05.70.Ln, 64.70.D, 81.30.Fb

I. INTRODUCTION

The directional solidification of nonfaceted dilute al-
loys leads to the freezing of columnar-like microstructures
in the bulk solid, which are known to largely determine
the properties in use of as-cast materials in metallurgy [1–
3]. These microstructures are formed during growth as
a trace left behind by self-organized solidification front
patterns. Their main morphological features are primar-
ily determined by the redistribution of chemical species
by diffusion in the liquid and capillary effects at the prop-
agating solid-liquid interface, which can be considered in
local thermodynamic equilibrium at slow growth rate [4–
14].

During directional solidification (DS), melt crystalliza-
tion is performed while a sample is pulled with a velocity
V in a uniaxial temperature gradient G [6–13]. When
the sample is pulled from rest, the solute concentration
builds up in front of the recoling planar interface that
becomes morphologically unstable [4, 15, 16], thereby
forming shallow cells that become progressively deeper.
During this initial transient, cells grow competitively due
to solutal interactions between neighbors and become
eliminated. Surviving cells then reach a steady-state,
forming a periodic array of finger-like shapes −“cells”
and “dendrites”− with a primary spacing λ (typically,
a few tens of micrometers), which can vary within a
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large interval [8–24]. In particular, phase-field (PF) sim-
ulation studies have shown that steady-state arrays of
deep cells (smooth fingers) or dendrites (branched fin-
gers) can be stable for a large range of primary spacings
λmin < λ < λmax [19–21]. Moreover, the largest stable
spacing λmax is typically several fold the smallest stable
spacing λmin in the velocity range where arrays of deep
cells or dendrites form, and V is much larger than the
onset velocity Vc of morphological instability [19–21].

Pattern selection has been studied extensively both
theoretically and experimentally in a thin-sample geome-
try [7–14]. To date, however, those studies have primar-
ily focused on understanding what spacing is dynami-
cally selected by the transient growth competition be-
tween neighboring cells for a well-oriented single crys-
tal [15, 16, 20–22, 25]. Competitive growth continuously
increases the average spacing until a stable spacing is
reached. Therefore, it typically selects a spacing slightly
larger than λmin due to the fact that the cell elimination
stops when a stable spacing is reached. In practice, the
spatial λ distribution along the array is rarely uniform
and can be strongly influenced by the orientation of the
growing crystal with respect to the temperature gradient
axis both during, and well after, the initial cell elimi-
nation process. However, the long-time evolution of the
array pattern towards steady-state in a large crystal as a
function of its orientation remains largely unexplored.

The crystal-orientation dependency of DS front pat-
terns originates from the sensitivity of growth shapes
to the surface-tension anisotropy of the solid-liquid in-
terface, which is well-known to select both the orienta-
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FIG. 1. Tilted-cell arrays in thin-sample directional solid-
ification of a misoriented crystal (misorientation angle α0)
in a dilute succinonitrile-d,camphor alloy of concentration
c∞. (a) Experimental observation (c∞ = 0.3 mol%; V =
4 µm s−1; G = 75 K cm−1; α0 ≈ 15.5◦) of a horizontal di-
mension Ly = 2780 µm. (b) Phase-field numerical simulation
(c∞ = 0.24 wt%; V = 4 µm s−1; G = 12 K cm−1; α0 = 15◦)
of Ly = 2490 µm. In these images, as well as in the following
ones, the field of view covers the entire lateral width of the
sample; the temperature gradient axis x is vertical, and the
liquid is located on the top. The arrow in (a) describes drift-
ing motion of the pattern along the lateral axis y. α and λ
are for a cell-tilt angle and a primary spacing, respectively.

tion and tip operating state of freely growing dendrites
[26, 27]. In a DS setting, however, the growth orienta-
tion is also influenced by the temperature gradient. As a
result, cells/dendrites grow at an angle α with respect to
the temperature gradient axis (x axis), which differs from
the crystal misorientation angle α0 (between the x axis
and one of the principal crystal axes). This difference
is illustrated in Fig. 1, which shows experimental and
PF simulation images of tilted array patterns from the
present investigation. The relationship between α and α0

has been extensively studied previously both experimen-
tally [28, 29] and numerically [30–33]. Those studies have
shown that α/α0 is typically a monotonously increasing
function of the dimensionless Péclet number Pe = λ/ld
that is largely insensitive to G, where D is the solute
diffusion coefficient in the liquid and ld = D/V is the so-
lutal diffusion length. The ratio α/α0 varies from a value
much smaller than unity for Pe � 1, where the growth
direction of cells is primarily determined by diffusive in-
teractions with neighboring cells, to unity in a dendritic
regime (Pe� 1) where the growth direction is primarily
determined by crystalline anisotropy.

This current knowledge of tilted finger patterns re-
mains limited to a steady-state growth regime where λ
is spatially uniform along the array. In this paper, we
present an experimental and numerical study of the large-
scale dynamics of those patterns in the generic case where

λ is spatially non-uniform. Non-uniformity is expected
to be generic and its origin in the setting of the growth
of a single misoriented crystal is illustrated in Fig. 1.
Due to the lateral drift, there is a qualitatively differ-
ent operating dynamics on the two edges of the sample,
each of them acting as a virtually immobile grain bound-
ary (GB). Tilted cells travel away from the right edge
in Fig. 1, referred to as the divergent GB, which acts as
a source of new cells with a spacing significantly larger
than λmin, towards the left edge referred to as a conver-
gent GB, which acts as a sink of cells that are eliminated
when their spacing falls below λmin. To investigate the
pattern dynamics inside the sample resulting from the
source and sink at the edges, we used a model transpar-
ent alloy, namely the well-characterized succinonitrile-d-
camphor (SCN-DC) alloy in a dilute-concentration range,
in semi-thin samples. In such a confined-3D geometry,
deep cells with a three-dimensional (3D) shape arrange
within a single row. This permits real-time observation
of the evolution of the solid-liquid interface with a stan-
dard optical microscope. Quantitative numerical simu-
lations using the physical parameters of dilute SCN-DC
alloys were carried out using a well-developed quantita-
tive PF model of dilute binary alloy DS [23, 24, 34, 35].
Systematic numerical results were obtained by varying
V in a deep-cell regime, and the misorientation angle α0

between 5◦ and 20◦.

Both experiments and numerical simulations show
that, after a long transient, the cell source at the diver-
gent GB operates regularly. As a result, the total number
of cells in the sample remains constant and the spac-
ing reaches a steady-state spatial distribution where λ is
uniform and much larger than λmin in most of the sam-
ple, and drops abruptly to a small value ∼ λmin inside
a boundary layer near the convergent GB. This steady-
state distribution is established by the lateral propaga-
tion of a front separating regions of larger and smaller
spacings from the divergent GB towards the conver-
gent GB. Importantly, this propagation takes place on
a much longer time scale than the competitive growth
transient at the start of an experiment during which
cell elimination establishes the initial spacing distribu-
tion inside the sample with a spacing slightly larger than
λmin [15, 16, 20–22, 25]. Consequently, propagative spac-
ing selection can be investigated separately from the es-
tablishment of the initial spacing distribution. This ini-
tial distribution is not studied in detail here since, on
the long time scale of the present experiments and sim-
ulations, it is completely “erased” by the propagative
source-sink selection mechanism that establishes an en-
tirely different spatial distribution of larger λ.

We propose a simplified geometrical model that can be
numerically studied to predict the long-time spatiotem-
poral evolution of the array spacing. In addition, we
derive a nonlinear advection equation that describes the
evolution of the spacing distribution in a continuum limit
and can be used to predict analytically the invasion ve-
locity of the large spacing region inside the sample using
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only the relationship between local growth orientation
and local spacing (α/α0 vs. Pe) as input into the the-
ory. Those models yield predictions in excellent quan-
titative agreement with numerical and experimental re-
sults. Moreover, they show that the spacing modula-
tions, which are initially present or possibly provoked
during the course of a long-time DS run by any experi-
mental imperfection, are advected in the same direction
as the cell drifts at a rate that is noticeably smaller than
Vd ≡ V tanα, and eventually eliminated at the conver-
gent GB.

The numerical and experimental methods are de-
scribed in Section II A. We propose an overview of the
main results in Section III A, and some useful details
about the relationship between the growth orientation
of tilted cells and the local spacing in reference to previ-
ous works in Section III B. Simple models for analyzing
the (primary) spacing evolution are presented in Section
III C. Numerical and experimental results are presented,
analyzed and discussed in Sections III D and III E, re-
spectively. Conclusions are presented in the last section.

II. METHODS

A. Phase-field model

We used a recent 3D phase-field (PF) model that de-
scribes the solidification dynamics of a single-phase al-
loy in a one-sided limit (no diffusion in the solid) [19,
20, 32, 36–38]. This model includes the so-called anti-
trapping current that has been previously introduced in
PF models to quantitatively predict the interface dynam-
ics during solidification experiments of dilute binary al-
loys [37, 38]. We also replaced the classical phase field ϕ
(ϕ = +1 in the solid and −1 in the liquid) with the pre-

conditioned phase field ψ defined by ϕ ≡ tanh (ψ/
√

2),
thus permitting to enhance the numerical stability of the
PF simulations with large grid spacings [39]. We used a
GPU (Graphic Processing Unit) architecture to improve
the computational performance [21, 23, 30, 40].

In order to produce a tilted-cell array in the 3D PF
model, the misorientation angle α0 is introduced into the
surface tension anisotropy as described in Refs. [30, 40].
Then, the angles α0 and α (Fig. 1) are measured from
the x axis that is parallel to the temperature gradient
G. The detailed equations for the ψ field including a
misorientation angle and dimensionless solute concentra-
tion U can be found elsewhere [30, 40]. We implemented
the thermophysical data of a SCN-0.24wt% camphor al-
loy [23, 24, 35, 41–43], which are listed in Table I along
with numerical parameters for the PF model. This model
used a frozen-temperature approximation, and the tem-
perature gradient was set to G = 12 K cm−1.

We performed PF simulations using three different val-
ues of the solidification velocity, V = 4, 12, and 20 µm s−1

for different interface thicknesses W/d0 ≈ 47.56, 28.26,
and 17.23, respectively, where d0 = Γ/(|m|c∞(1/k −

1)) is the chemical capillary length with the Gibbs-
Thomson coefficient Γ and the nominal composition
c∞ = 0.24wt%. Then, the grid spacing ∆x and the Eu-
ler explicit time step ∆t are chosen as ∆x ≈ 3.00, 1.78,
and 1.09 µm, and ∆t ≈ 5.00 × 10−3, 1.75 × 10−3, and
6.55× 10−4 s in order of increasing V (see Table I).

For a thin-sample geometry, sample sizes were set
to Lx × Ly × Lz = 1290 × 2490 × 114 µm3 for V =
4 µm s−1, 709 × 2563 × 82 µm3 for V = 12 µm s−1,
and 485 × 1998 × 50 µm3 for V = 20 µm s−1, where
Lx, Ly, and Lz correspond to the domain size along
the x, y, and z axes, respectively. In all situations,
the sample width Ly was large enough to form more
than ten cells in steady-state (with the exception of the
periodic-array simulations presented at the beginning of
Section III B). Thermal fluctuations were introduced by
adding a random noise with a strength Fψ = 0.01 onto
the ψ field [23, 30, 32, 35, 40]. No-flux (or reflection)
boundary conditions were imposed at the lower/upper
limits of the simulation domain (x = 0 and x = Lx),
the immobile GBs (y = 0 and y = Ly), and the walls
that delimit the sample along the z axis (z = 0 and
z = Lz). We moreover imposed a finite-wetting con-
dition at the z = 0 and z = Lz boundaries with a
slope dψ/dz|z=0 = −dψ/dz|z=H = +1 [21, 32, 40]. The
long duration time of the simulations (20000 s for V =
4 µm s−1; 2000 s for higher velocities) allowed us to sim-
ulate the dynamics of tilted-cell arrays over several cen-
timeters. The cell-tip positions within a single row of
cells were measured at the middle of the sample, i.e. in
a x-y plane located at z = H/2, where H = Lz is the
sample thickness, as illustrated in Fig. 2a. These mea-
surements in turn were used to calculate the local spacing
λ, the drift velocity Vd, and the cell-tilt angle α.

For calibration purposes, we also carried out PF simu-
lations of a single cell in a channel with periodic bound-
ary conditions in the y direction. This was used to mea-
sure Vd in a perfectly ordered array with a fixed spacing
λ = Ly. For those simulations, we used an initial guess
made of a pre-calculated axial cell (α0 = 0◦) with λ =
114, 82, and 50 µm for V = 4, 12, and 20 µm s−1, respec-
tively, in a squared-section simulation box (i.e. Ly = Lz).
Then, we re-started a simulation using the axial cell by
implementing a finite misorientation angle α0. The λ
value was changed by adding (or subtracting) a grid-
spacing unit ∆x to the width Ly of the sample, and using
a bilinear interpolation from the previous steady-state
simulation.

B. Experiments

A SCN-0.3 ± 0.05mol% DC alloy was prepared with
purified SCN (distillation) and DC (sublimation). Al-
loy samples were enclosed in thin containers made of two
flat glass plates glued to each other, and separated by
polymer spacers of thickness H = 100 µm. The sample
length (along the x axis) was of about 64 mm, and the
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TABLE I. Material, control, and numerical parameters. Thermophysical parameters of SCN alloys are taken from Refs. [23,
35, 41–44, 46, 47]. For the PF simulations, we used a fixed W/∆x = 1.2 and other numerical parameters depend on V . ∗

Experimental parameters (V = 4 µm s−1); see Section III E.

Parameter Symbol Value Unit

Solute concentration c∞ 0.24 wt% camphor

0.3± 0.05∗ mol% d-camphor

Temperature gradient G 12 K cm−1

75± 5∗

misorientation angle α0 5, 10, 15, 20 degrees (◦)

15.5± 0.5∗

Pulling velocity V 4, 12, 20 µm s−1

Diffusion coefficient D 270 µm2s−1

Liquidus slope m -1.365 K wt%−1

Partition coefficient k 0.21 -

Gibbs-Thomson coefficient Γ 6.478 × 10−8 K m

Anisotropy strength ε4 0.011 -

Interface thickness W 47.56, 28.26, 17.23 d0

Grid spacing ∆x 3.00, 1.78, 1.09 µm

Time step ∆t 5.00× 10−3, 1.75× 10−3, 6.55× 10−4 s

width Ly (along the y axis) of 2.8 ± 0.2 mm (this typi-
cally corresponds to 20 cells). Solidification experiments
were carried out over a total length of 30 to 40 mm,
beyond which substantial macrosegregation effects were
observed. Previous to DS, the samples were filled by cap-
illarity with the melted alloy under a low-pressure argon
atmosphere, and then rapidly cooled down to room tem-
perature. During this process, multiple nucleation sites
were activated, thus resulting in the formation of a poly-
crystal.

The DS apparatus was made of two temperature-
regulated copper blocks, separated from each other by
a distance of 5 mm (for details, see Ref. [44] and ref-
erences therein). A fixed temperature gradient G =
75 ± 5 K cm−1 established by heat conduction in the
sample along the x axis. Solidification was performed
by translating the sample along the x axis at a veloc-
ity V = 4 µm s−1 with a DC motor. The whole setup
was installed on the stage of a standard optical micro-
scope. The solid-liquid interface was visualized (trans-
mitted light) in real time over the entire width of the
sample with a numerical camera connected to a PC for
image storage and analysis.

At the beginning of the experiment, the alloy was
partially melted directionally down to a crystal selec-
tor placed on the cold end of the sample [45]. A single,
randomly oriented crystal was then grown and expanded
along a funnel-shaped region until it occupied the whole
width of the sample. The orientation of the crystal was
measured, within a 1◦ error margin, by growing fully de-
veloped dendrites at a large velocity (V > 200 µm s−1).
The operation was repeated until an “in-plane” crystal
such that a [100] axis (the preferred dendrite growth axis

in SCN-based alloys at low growth rate) belonged to the
sample x-y plane was selected.

III. RESULTS AND DISCUSSION

A. Overview

In both PF simulations and experiments, regular so-
lidification runs were started (time t = 0 s) after a pla-
nar solid-liquid interface was equilibrated at rest (V =
0 µm s−1). Small cells were observed to appear during
the initial solute-redistribution transient after the veloc-
ity of the planar interface becomes larger than the thresh-
old velocity Vc [4, 15, 16]. Their spacing was system-
atically and substantially smaller than the lower stabil-
ity limit of steady periodic cells at the imposed velocity.
This entailed an initial coarsening dynamics by progres-
sive elimination of a large proportion (about one out of
two) of the initial cells, which lasted until a one-row pat-
tern of confined-3D cells with a stable average spacing
was formed. Three key features must be noted at this
stage: (i) after the very last cell-elimination event in the
middle of the sample, the cellular pattern presented a
nonuniform spatial spacing distribution λ(y); (ii) tilted
cells drift away from the divergent GB, which thus acts
as a source of new cells via a tertiary branching process;
(iii) cells are eliminated in the vicinity of the convergent
GB. The aim of the present study is to characterize and
model the long-time behavior of tilted-cell patterns by
taking those three elements –nonuniform initial spacing
distribution, cell source at the divergent GB, and cell sink
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FIG. 2. Numerical simulation of a tilted-cell array in a SCN-0.24wt% camphor alloy (α0 = 15◦; V = 4 µm s−1; G = 12 K cm−1).
(a) Simplified spatiotemporal diagram: cell tip positions (circles) at regular time intervals (≈ 63 s) from t0 to the end of the
simulation at tmax = 20000 s. Dashed horizontal lines and numbers are related to the solidified length V (t − t0). Bottom:
profile of the cross-section of the solid-liquid interface in the median plane of the sample (z = H/2) at time t0. (b) Tilted-cell
arrays at times t = 2072 s, 6032 s, and 10043 s (bottom to top) of the same simulation as in (a). (c) Spatial distribution of the
primary spacing λ(y) for 9 successive times corresponded to different symbols. Dotted lines are guides to the eye (color online).

at the convergent GB– into account.

Let us go into more quantitative details. We note
the time t0 at which the initial coarsening process was
completed (this time has no need to be defined with a
better accuracy than, say, ±λ/2V ). In typical PF sim-
ulations, we measured t0 ≈ 4040 s for α0 = 5◦ (but
2040 s for higher α0 values) at V = 4 µm s−1, 900 s for
V = 12 µm s−1, and 220 s for V = 20 µm s−1. This
represents a long-duration process as compared to the
reference diffusion time τd = D/V 2. Those simula-
tions were performed over tmax = 2000 s and 20000 s
for V = 4 µm s−1 and the higher V , respectively. Then,
the overall duration was systematically in the range of
2t0 and 10t0 (tmax was close to 2t0 in the experiments).

Therefore, the long-time dynamics after t0 was fully
disconnected from both the initial solute redistribution

transient, and cell-spacing rearrangement processes.

In the simplified spatiotemporal diagram of Fig. 2a
(PF simulation), the drifting motion of the cells (circles)
is made clearly visible. Different colors correspond to
different cells, and those cells on a same horizontal posi-
tion are from one microstructure at a time step. While
they grow vertically (along the x axis), they drift lat-
erally from the divergent GB (on the right-hand side)
to the convergent GB (on the left-hand side). Chang-
ing a color of a circle at the boundaries corresponds to
an appearance of a cell by tertiary branching at the di-
vergent GB and cell elimination at the convergent GB.
As illustrated in Fig. 2b, those operations at the bound-
aries occur quite regularly. A similar sink-and-source
dynamics is observed in the experiments.

We measured the spacing distribution λ(y) at different
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FIG. 3. Ratio α/α0 between the cell-tilt angle an the misorientation angle as a function of the Péclet number Pe, measured
from PF simulations for different α0 and V values. Red full squares and black solid lines: periodic arrays, and best-fitting
curves using Eq. (3) (also see Table II), respectively. Blue empty circles: modulated arrays (see text).

time steps (Fig. 2c). In the middle of the initial pattern at
t0, the spacing was slightly modulated about an average
value of, here, about 130 µm and exhibited a steep vari-
ation close to the convergent and divergent GBs. Dur-
ing the solidification run, the spacing value λM delivered
from the source propagated across the sample. At the
end of the process, the spacing distribution reached a
steady-state characterized by a large plateau, signalling
the extension of a periodic pattern from the divergent
GB over the major part of the sample width, and a steep
drop in a region close to the convergent GB. The value
of λM was larger than the average spacing at time t0.
The latter feature was systematically observed in our PF
simulations. It is also compatible with previous reports
of a progressive increase of the average primary spacing
over long timescales during DS experiments [14, 48–52].

This qualitative description of the tilted-cell pattern
dynamics opens to further questions, among which that
of the rate of the advection (vs. smoothing out) of incip-
ient (or accidental) modulations.

B. Dependence of the cell-tilt angle on the local
spacing in modulated patterns

For reference purposes, we measured the dependence
of the cell-tilt angle α on the Péclet number in periodic
arrays for the SCN-DC alloy under consideration. We
performed PF simulations with periodic boundary con-

ditions, for various values of V (= 4, 12, and 20 µm s−1),
α0 (= 5, 10, 15 and 20◦), and Ly (= λ). We let λ increase
to the upper limit λmax at which a tertiary branching
instability occurs [20], and decrease to the lower limit
λlow (Table II). Below the lower limit of a spacing, a cell
has a planar interface perpendicular to the temperature
gradient axis like a 2D ribbon shape [19].

When a cell travels laterally, its drift velocity Vd was
calculated as

Vd =

∣∣∣∣dytdt

∣∣∣∣ , (1)

where yt was the position of the cell tip along the y axis,
and t was the time. Then, the tilt angle α was calculated
by using the geometrical relation

tanα = Vd/V . (2)

The α/α0 data are shown as red full squares in the graphs
of Fig. 3 and can be used to define the function α =
α0F (Pe) in Eq. (3), which is related to the misorientation
angle α0 and the local adimensionalized spacing Pe =
λV/D.

We also measured local Vd and λ values in the modu-
lated tilted-cell patterns observed during large-scale PF
simulations. Each data set cumulates measurements
performed approximately every 63 s, 8 s, and 3 s for
V = 4, 12, and 20 µm s−1, respectively, starting from the
above defined time t0 to the end of the simulations tmax.
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We systematically discarded the sidebranching and sink-
ing cells located close to the GBs. The obtained α/α0

data are reported as blue empty circles in the graphs of
Fig. 3 along with the periodic-array measurements. The
two kinds of data are obviously close to each other. The
modulated-pattern data exhibit a substantial dispersion,
but it is worth noting that the most departing points
were measured in regions with steep λ(y) variations near
the GBs.

We finally recall that the following law:

α

α0
≡ F (Pe) = 1− 1

1 + f Peg
, (3)

where f and g are alloy-dependent constants, has been
previously proposed for a general, yet empirical descrip-
tion of the F (Pe) function [28–33]. Best-fit adjustments
of that law with our periodic-array data points are shown
in the graphs of Figs. 3a-f. The corresponding constants
f and g are listed in Table II. Two comments are in or-
der. First, the parameters f and g at a fixed α0 (see
the data for α0 = 15◦ in Table II) vary when V is
changed. In other words, PF simulations of confined-
3D patterns show that the parameters can change when
V > 15Vc, where the critical velocity Vc = DG/∆T0 with
∆T0 = mc∞(1/k−1), as observed in the 2D patterns [33].
On the other hand, the α/α0 = F (Pe) function exhibits
the same “universality” for 2D arrays at V < 15Vc [28].
Second, the best-fitting curves agree relatively well with
the PF simulations, but not perfectly. Considering that
not only the F (Pe) function, but also the derivative of
that function will be used later on in this paper for a
quantitative analysis of the spatiotemporal dynamics of
tilted-cell arrays, we think that using the (interpolated)
results of the PF simulations in the models presented in
the next section is more reliable than using the approxi-
mate law of Eq. (3).

TABLE II. Control parameters (pulling velocity V and misori-
entation angle α0) of PF simulations using periodic tilted-cell
arrays. λlow (λmax): lower (upper) limit of the spacing inter-
val. f and g: fitting parameters in Eq. (3). The fitting curves
are shown in Fig. 3 as black lines.

V [µms−1] α0 [◦] λlow [µm] λmax [µm] f [-] g [-]

4

5 22.5 301.5 0.433 2.118

10 22.5 313.5 0.416 2.114

15 22.5 322.5 0.389 2.108

20 22.5 337.5 0.356 2.101

12 15 16.9 220.2 0.165 2.226

20 15 10.3 190.8 0.094 2.557

C. Theoretical models of propagative spacing
selection

We insert here the definition of the two models that we
use for the analysis of our numerical and experimental
data presented in the next section.

1. Geometrical model

We propose a simple “geometrical” model based on a
discrete treatment of the lateral motion of individual cells
to describe the spatiotemporal evolution of the spacing
of tilted-cell patterns. We make the reasonable assump-
tion that the growth orientation of a tilted cell within an
array with a slowly varying spatial modulation of spac-
ing is described locally by the α/α0 = F (Pe) function
determined for a periodic array (red squares in Fig. 3).
This assumption yields the evolution equation

dyi
dt

= −Vd = −V tan

[
α0F

(
yi − yi+1

D/V

)]
, (4)

for the lateral coordinate yi of the tip of the ith cell
shown schematically in Fig. 4, where the local spacing
between two cell tips is taken equal to yi − yi+1 (with
the positive y axis pointing to the right and the cell in-
dex i increasing from right to left). We note that, in the
framework of this simple phenomenological model, the lo-
cal spacing influencing the growth orientation of the ith

could be chosen as well as yi−1− yi or any weighted sum
p(yi−yi+1) + (1−p)(yi−1−yi), with p varying from 0 to
1, of the spacings defined with the two neighboring cell
tips. We investigated different values of p and empirically
found that p = 1 gave the best predictions. This finding
suggests, as previously announced by J. Deschamps [54],
that the lateral velocity of a cell in the array is more
strongly influenced by the spacing with its front neigh-
bor, towards which it is traveling, than its rear neighbor.

Incoming Outgoing λ 

Vd 

yi yi+1 yi+2 yi-1 

FIG. 4. Schematic tilted-cell array far away from any GB. λ:
primary spacing. Vd: lateral drift velocity. Red circles: cell
tips. Within such a region of the pattern, the cell density is
conserved.
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This assertion is moreover supported by the finding in
Ref. [33] that the asymmetry of the shape of a tilted cell
is typically strong on the side of the preceding neighbor
cell (here, cell i+1), whereas it is much less pronounced
on the side of the following cell (here, cell i-1). In all
numerical solutions of the geometrical model presented
here, we will therefore use the value p = 1. This geomet-
rical model quantitatively predicts the spacing evolution
of tilted cells away from the convergent and divergent
GBs observed in experiments [54].

In order to account for the source-sink dynamics at
the two GBs, we create a new cell with a spacing λM
when the distance of the tip of the right-most cell closest
to the divergent GB (right edge of the sample) exceeds
λM (source), and we remove the left-most cell when its
distance to the convergent GB (left edge of the sample)
becomes smaller than λe. Eq. (4) defines a set of coupled
ordinary different equations for the time-evolution of cell
tips that are solved using an Euler explicit time stepping
scheme with a time step ∆t = 0.1 s for the experiments
and simulations. The above conditions for cell creation
and removal are checked at each time step.

2. Nonlinear advection equation

To complement the discrete geometrical model, we de-
rive an equation for the slow spatiotemporal evolution of
λ treated as a continuous function of the lateral position
y. This equation can be readily obtained from the con-
servation of the total number of cells in the array away
from the edges where cells can be created or eliminated.
For this, we define the cell density (number of cell per
unit length of the array) ρ ≡ λ−1. The cell density obeys
the continuity equation

∂tρ− ∂y [Vd · ρ] = 0 . (5)

This equation is simply the statement that, in the ab-
sence of cell creation or elimination, the change of the
total number cells in a segment of the array away from
the sample edges (Fig. 4), which is much larger than
the cell spacing but much smaller than the characteristic
scale of variation of λ, must be equal to the difference of
flux of cells entering or leaving through the left and right
boundaries of this segment. Note that the minus sign
of the second term in the continuity equation originates
from the fact that the local drift velocity of cells towards
the left is defined positively (Vd ≥ 0) while the positive
y axis points towards the right. Substituting ρ = 1/λ in
Eq. (5), we obtain the advection equation for λ

∂tλ = Vλ∂yλ , (6)

where we have defined

Vλ ≡ Vd − λ
dVd
dλ

. (7)

This equation is nonlinear because, as before, Vd is a
nonlinear function of λ defined by Vd = V tanα =

V tan(α0F (Pe)) where the local growth orientation α =
α0F (Pe) and hence the drift velocity Vd is assumed to
be a function of the local spacing. In addition, Vλ
using Eq. (3) can be negative at a low spacing, how-
ever non-uniform arrays in both the simulations and
the experiments select a spacing larger than the one at
Vλ = 0 µm s−1. Hence, we do not consider such con-
ditions in the current article. Note that, using the
standard relations between a frequency ω ≡ Vdkω and a
wave number kω = 2π/λ of traveling waves, Vλ defined
by Eq. (7) can also be written in form of a group velocity
Vλ = dω/dkω.

Eq. (6) is reminiscent of Burgers’ equation [53], which
is well-known to form shocks. In contrast, in the simu-
lations shown in Fig. 2c, the front separating regions of
larger and smaller spacing propagates at a nearly con-
stant velocity without becoming steeper, as would be ex-
pected if shock formation was present. The shock-less
behavior can be related the fact that the drift velocity is
predominantly a linear function of λ in the front region.
Hence, the drift velocity can be expanded in the form

Vd(λ) = Vd(λp) + [dVd/dλ]λ=λp
(λ− λp) + . . . (8)

up to small O((λ−λp)2) corrections, where λp is defined
as the “median spacing”, which is the characteristic value
of λ in the propagating front region. It is arbitrarily de-
fined here as the value of λ that is half way between the
smaller and larger values of λ in regions ahead and be-
hind the front, respectively, where λ is spatially uniform.
Indeed, values of α (blue circles in Fig. 3), and hence the
drift velocity Vd = V tanα ≈ V α for small α, are to a
good approximation of a linear function using the dimen-
sionless spacing. Substituting the approximation Eq. (8)
into Eq. (7) yields the prediction

Vλ ≈ Vd(λp)− [dVd/dλ]λ=λp
λp . (9)

There are two implications of this result. First, the ad-
vection velocity is approximately constant in the entire
front separating large and small spacings regions, such
that the front simply propagates in a shape-preserving
manner with a velocity Vλ without forming shocks. Sec-
ond, since the slope of the drift velocity-spacing relation
is positive ([dVd/dλ]λ=λp > 0), the front propagation ve-
locity Vλ is typically several fold smaller than the local
drift velocity Vd(λp) in the front region. In fact Vλ de-
fined by Eq. (9) is the λ = 0 intercept of a straight line
fit of the Vd(λ) curve and this intercept must always be
smaller than Vd(λp). We use Eq. (9) to predict the front
propagation velocity in simulations and experiments. For
the simulations, we compute Vd and its slope using the
growth orientation vs. spacing relation α/α0 = F (Pe)
determined from simulations with periodic arrays of dif-
ferent spacing (red full squares in Fig. 3) and λp ex-
tracted from simulations. We have also computed Vλ as
the λ = 0 intercept of a straight line fit of the α/α0 vs.
Pe values measured on the propagating front during sim-
ulations (blue empty circles in Fig. 3), and found that
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the two methods predict values of Vλ within 16% of each
other. We only report in this paper values of Vλ com-
puted with the first method for the simulations. For the
experiments, the slope dVd/dλ is estimated by a best-fit
line of Eq. (3) that is fit to the experimental measure-
ments (empty blue diamonds in Fig. 10b), then we com-
pute Vλ at λp. The λ = 0 intercept of a straight line fit
of the α/α0 vs. Pe values measured on the propagating
front during experiments is also close to the computed
Vλ.

The nonlinear advection equation, i.e. Eq. (6), neglects
the effect of “phase diffusion”, which generically relaxes
spatially modulated nonequilibrium patterns towards a
spatially uniform spacing [55]. This effect could be incor-
porated by the addition of a diffusion term Dλ∂

2λ/∂y2

on the right-hand-side of Eq. (6). While “phase diffu-
sion” has been shown to strongly influence the stability
of lamellar eutectic growth patterns [56, 57], its effect on
array patterns of deep cells and dendrites in the presence
of crystalline anisotropy turns out to be much weaker.
We explicitly computed Dλ by PF simulations of well-
oriented (α0 = 0) arrays in which we analyzed the decay
of slowly varying spatial modulations of the spacing and
found Dλ to have a very small value (Dλ ≈ 20.1 µm2s−1),
which would have a negligible effect on front propagation
in the present PF simulations and experiments. The de-
tails to estimate Dλ are shown in Appendix A.

D. Comparison of phase-field simulations with
theoretical models

We performed systematic PF simulations of confined-
3D arrays of tilted cells by varying the misorientation
angle α0 and the solidification velocity V (also see Sec-
tion III A and Fig. 2). Let us first focus on the effect of
the misorientation angle. We considered four different α0

values, namely, 5, 10, 15, and 20◦, and kept the velocity
V = 4 µm s−1. The spatiotemporal evolution of the cor-
responding DS patterns is shown in the graphs of Fig. 5a.
In each of those graphs, the measured λ(y) (symbols) are
plotted at successive simulation times from t0 to tmax.
For all considered α0 values, the propagation of the spac-
ing λM delivered from the source towards the inner-grain
region is clearly visible. In the simulations, the selected
spacings at the divergent GB are typically λM ≈ 180,
192, 201, and 218 µm for α0 = 5, 10, 15, and 20◦, re-
spectively. As mentioned above, λM was systematically
larger than the initial average spacing at t0. Note that
most simulations reached a steady-state regime, with a
uniform λM plateau and a steep drop near the sink, ex-
cept for the smaller misorientation angle α0 = 5◦, that is
obviously for a very slow lateral drift velocity.

We implemented the geometrical model (Section
III C 1) by using, for each pair of V and α0 data, the
spacing profile at t0 as an initial condition (red continu-
ous line). We let cells move with an instantaneous local
velocity Vd(Pe) that was linearly interpolated from the

ordered array simulations of Fig. 3. We used the steady-
state values of λM for the cell branching criterion close
to the divergent GB, and manually set the cell elimina-
tion limit to λe = 54 µm at the convergent GB for the
V = 4 µm s−1 simulations (gray shaded area on the right
and left side, respectively, in the graphs of Fig. 5a). The
calculated spacing profiles are shown in the form of con-
tinuous lines in Fig. 5a. They superimpose remarkably
well with the simulation results, in consideration of the
simplicity of the geometrical model, and bring a clear
evidence to the general dynamical scheme that can be
summarized as follows: advection and elimination of the
initial modulations, formation of a propagation front of a
λ = λM plateau, and convergence towards a steady-state
profile.

There are slight discrepancies between the geometrical
model and the PF simulations, which can be essentially
classified according to two separate features. First, the
shape of the steep-drop region close to the convergent
GB is not fully reproduced. This is in agreement with
our observation (Section III B) that the local cell-drift
dynamics may severely depart from the Vd(Pe) law of
an ordered-array if the spacing gradients are large. Sec-
ond, the prediction by the geometrical model is appar-
ently less reliable for α0 = 5◦. We can advance that a
phase-diffusion process can predominate for a vanishing
misorientation and induce spreading of the propagation
front that cannot be fairly reproduced by the geometrical
model.

We tested the prediction using a group velocity, i.e.
Vλ in Eq. (7) (see Section III C 2). For each PF simula-
tion, we defined a median spacing λp between the initial
average spacing at t0 (close to the lower plateau of a λ
distribution) and λM (Table III). The position of the
spacing λp propagates from an initial position y0 at t0
towards the sink, as schematically indicated by the black
arrows in Fig. 5a. We followed this propagation as a
function of time by linearly interpolating the positions
yp that correspond to λp in the λ(y) profiles at different
times. We reported the quantity Y = |yp− y0| as a func-
tion of t− t0 in the graphs of Fig. 5b. It appears clearly
that the propagation is essentially linear, and that the

TABLE III. Calculated Vd and Vλ at the median spacings λp
in confined-3D array simulations.

V [µm s−1] α0 [◦] λp [µm] Vd [µm s−1] Vλ [µm s−1]

4

5 145 0.2339 0.0955

10 145 0.4641 0.1828

15 165 0.7419 0.2958

20 165 0.9691 0.3466

12 15 105 2.6261 1.5786

20
15 85 4.8155 3.3664

15 105 5.0832 3.9957
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FIG. 5. Spatiotemporal evolution of the primary spacing λ and spacing-propagation dynamics for α0 = 5◦ (first row), 10◦

(second row), 15◦ (third row), and 20◦ (fourth row) at V = 4 µm s−1 (PF simulations). In the graphs of (a), we reported the
spacing profiles measured from the simulations (symbols), and calculated (solid lines) using the geometrical model (Section
III C 1), with the PF distribution at time t0 as a initial condition. Different symbols (and color online) are corresponded to
different times. Right (left) gray shaded areas: location of the source (sink) in the model. Arrows are used to schematically
trace the position yp of the median spacing λp. In the graphs of (b), we reported the abscissa yp corresponding to λ = λp in
the corresponding graphs of (a) as a function of time t− t0, using, for convenience, Y = |yp− y0| = 0 for t = t0 (circles). Slopes
of the straight lines correspond to Vλ (solid lines) and Vd (dashed lines). See text for definitions.

spacing propagation velocity, i.e. the slope of a linear
fit of the Y(t− t0) data (black empty circles), compares
well with the group velocity Vλ calculated with Eq. (7),
i.e. the slope of the red continuous lines. It can also be
seen that Vd (the slope of the blue dashed lines) is much
larger than both Vλ and the Y(t− t0) slope. The calcu-
lated Vd and Vλ at a given spacing λp for α0 are listed in
Table III. It is worth mentioning that the calculated Vλ
in Table III is always close to the intercept of a linearized
Vd(λ) (Section III C 2).

We also performed PF simulations at higher V (12 and
20 µm s−1), and kept α0 = 15◦ as a constant (Fig. 6a).
As in the above cases, λM is substantially larger than the

initial average spacing, and it propagates from the source.
In addition, a steady-state spacing profile is reached with
a large uniform λM plateau. The region of the spacing
drop near the sink is narrower as V increases. The quan-
titative agreement between the geometrical model and
the PF simulations also seems all the better as V in-
creases.

We again measured the position of the median spacing
λp (105 µm for V = 12 µm s−1; 85 µm for V = 20 µm s−1;
see black arrows in Fig. 6a) as a function of time. The
results are shown in Fig. 6b. Here as well, the spacing
propagation is well predicted by the group velocity Vλ
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–and not by Vd (Table III).

In practice, the value of Vλ (for the chosen λp values)
and the ratio Vλ/Vd increases as V increases (Fig. 7). If
one refers to the relation F (Pe) for α0 = 15◦ (Fig. 3),
it should be noticed that α ≈ α0 is reached for lower
Pe values when V increases. Then, the derivative term
in Eq. (7) becomes negligible (because dVd/dλ ∼ dα/dλ
vanishes), which leads to Vλ → Vd. Accordingly, it is
indeed expected that the propagation rate of the spacing
approaches Vd (Vλ/Vd → 1) when V increases.

In most PF simulations of tilted-cell patterns, a long-
lived steady-state was observed after the λM plateau
had formed. Overall, their main features were negli-
gibly sensitive to the small-scale dynamics of the ter-
tiary branching (amplification of and competition be-
tween sidebranches). However, an anomalous event at
the source can entail a marked modification of the tilted-
cell pattern on a large scale. In Fig. 8a, one can see the
growth and the propagation of two cells with a spacing
significantly smaller than λM . The initial pattern (bot-

tom of Fig. 8a) was in a steady-state situation (similar
to that corresponding to the final time in the graph of
Fig. 6a for α0 = 15◦ and V = 20 µm s−1). The simulta-
neous growth of two incipient sidebranches close to the
divergent GB, and their transformation into two individ-
ual small-spacing cells is clearly seen (Fig. 8a). This in-
duces a persistent depression in the spacing profile, which
both travels laterally and smoothes out (Fig. 8b). This
anomalous event did not occur additionally during the
simulation, and a steady-state configuration was recov-
ered. Again, the geometrical model predicts this complex
behavior quite well as illustrated in Fig. 8b. We also fol-
lowed the propagation of the depression in the spacing
profile (with λp = 105 µm). As shown in Fig. 8c, the
corresponding Y data from t1 = 1358 s closely align with
the linear law of slope Vλ (see Table III). In the PF sim-
ulations, this complex behavior was only occurred at this
condition, i.e. relatively large α0 and V .

E. Comparison of theoretical models and
experiment

Fig. 9a shows a time series of snapshots of a tilted-cell
array (α0 = 15.5 ± 0.5◦) during a DS experiment of the
SCN-0.3mol% DC alloy. The image at t0 ≈ 4000 s is
taken just after the last event of a series of cell elimina-
tions (horizontal red line on the bottom of the spatio-
temporal diagram of Fig. 9b), which occurred during the
early stages of the experiment. On average, the primary
spacing λ evolved from about 130 µm (before cell elimi-
nations) to 180 µm (plateau region). The cell-tilt angle
was falling between about 8 and 12◦, and was thus sub-
stantially lower than α0, as expected. Fig. 9b shows a
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15◦; V = 20 µm s−1), shown every 12 s from t = 1238 s
(bottom) to 1298 s (top). The transformation of two incip-
ient sidebranches at the source into two small-spacing cells
is highlighted by the two dashed lines. (b) Spacing profiles
(symbols) at different times, starting from the top pattern
(purple square) of (a). Solid lines: geometrical model (color
online for different times). (c) Symbols: spacing propagation
Y(t − t1) for λp = 105 µm from t1 = 1358 s. Solid (dashed)
line: linear law with the slope Vλ (Vd).

simplified spatiotemporal diagram corresponding to this
experiment (such an image is built by recording a line
normal to the growth direction at a fixed position be-
hind the cell tips at regular time intervals, and piled up
along an axis representing the time). It reveals that the
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FIG. 9. Tilted-cell array during a directional-solidification
experiment in a 100 µm thick sample of a SCN-0.3mol% DC
alloy (V = 4 µm s−1; G = 75 ± 5 K cm−1). (a) Snapshots
at times t0 ≈ 4000 s, t1 = t0 + 600 s, t2 = t0 + 1350 s,
t3 = t0 + 2100 s, t4 = t0 + 2850 s, t5 = t0 + 3600 s, and
t6 = t0 + 4500 s. (b) Simplified spatiotemporal diagram.
Same horizontal dimension as in the snapshots of (a). Vertical
dimension: ≈ 6300 s (25.2 mm) of solidification time (length).
Horizontal line: time t0.

cellular array is entirely “replaced” by cells created near
the source more than twice over the solidification time.
As in the PF simulations, new cells are regularly created
by tertiary branching (see, e.g., the images at times t5
and t6 in Fig. 9a) at the divergent GB source, and elim-
inated at the convergent GB sink –one can note some
occurrences of a surface dendrite along the sample edge
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during the same experiment). Solid line: best-fitting curve
using Eq. (3) with f = 0.558 and g = 1.17. (c) Symbols:
abscissa Y corresponding λp = 163 µm as a function of time
t− t0. Solid (dashed) lines: slope Vλ (Vd).

at the convergent GB.

The evolution of the spacing profile from time t0 to t6 is
shown in Fig. 10a. At t0, the λ distribution exhibits steep
modulations, which are a trace of the cell eliminations
during the initial transient. At this stage, the average
spacing was relatively close to the value λM delivered at
the source –this feature contrasts with PF simulations,
but is of minor importance as concerns the rest of the
dynamics. As in the simulations, the initial modulations
of the spacing profile simultaneously smooth out, and are
advected laterally towards the convergent GB. Moreover,
in the end of the experiment, the spacing profile presents

a wide plateau with an essentially uniform spacing λM ,
starting from the source and extending over the major
part of the sample, and a narrow region close to the sink,
within which the spacing drops.

For further analysis, we measured the dependence of
F (Pe) in Eq. (3), as it could be extracted from the mod-
ulated patterns during the experiment of Fig. 9. If one
refers to the PF simulations (Fig. 3), those data can be
expected to be quite close to a F (Pe) law that would
characterize perfectly periodic patterns, in spite of their
large dispersion (note that producing periodic tilted-cell
arrays with various, controlled values of λ is out of reach
experimentally). We then used a best-fit procedure for
adjusting F (Pe) in Eq. (3) with D/V = 67.5 µm to the
experimental data. We obtained f = 0.558 and g = 1.17.
The red fitting curve with these parameters in Fig. 10b
can describe the experimental measurements (blue dia-
monds).

We followed the same procedure as above for imple-
menting the geometrical model. We used the spacing
profile at t0 (Fig. 10a) as an initial condition, and set
λM = 175 µm and λe = 54 µm. The agreement be-
tween the experimental data and the geometrical model
is good, in spite of the significantly large uncertainties
on the F (Pe) law, and the large amplitude of the ini-
tial λ modulations. The profile at the end of the ex-
periment (green diamonds) is quite faithfully reproduced
by the geometrical model. We also analysed the spacing
propagation by following the abscissa Y corresponding to
λp = 163 µm (the black arrow in Fig. 10a). The results
are shown in Fig. 10c. Here again, the measured Y(t−t0)
data (black diamonds) essentially follow a linear varia-
tion. In the present case, the slope of this variation is es-
sentially close to the group velocity Vλ = 0.3568 µm s−1

(the slope of red continuous line), within experimental
accuracy. It is much lower than Vd = 0.6664 µm s−1 (the
slope of blue dashed line), as it could be expected from
the analysis of the PF simulations.

IV. CONCLUSIONS

We have used thin-sample phase-field (PF) simulations
and experiments to investigate the effect of a finite crys-
tal misorientation on the selection of finger-shaped cellu-
lar/dendritic array patterns that form during directional
solidification of binary alloys. Previous studies have char-
acterized the relationship between the tilt angle α of the
pattern and the spacing λ in a situation where λ is spa-
tially uniform [28–33]. The present study focused on the
more general situation where the array spacing is spa-
tially non-uniform. For a misoriented monocrystal, non-
uniformity originates from the creation or elimination of
cells at the two lateral edges of the sample and can give
rise to different spatial non-uniformities of spacing de-
pending on whether tertiary branching at the divergent
boundary is regular or irregular. Our main finding is
that the spatial modulation of spacing propagates later-
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ally at a velocity that is generally slower than the lateral
drift velocity Vd = V tanα of cell/dendrite tips when λ
is spatially uniform.

We have shown that this nontrivial behavior follows
from the requirement that cells must move so as to con-
serve their total number away from boundaries. This
conservation law yields a continuity equation for the lin-
ear density of cells along the array, which transforms into
a nonlinear advection equation for the spacing with an
advection velocity Vd − λ dVd/dλ. The latter is gener-
ally less than Vd since the tilt angles, and hence Vd, are
monotonously increasing functions of λ. The difference
between the two velocities is more pronounced for cells
with strong diffusive interactions (Pe = λV/D of order
unity) than for well-developed dendrites (Pe � 1) since
the slope dVd/dλ is a decreasing function of Pe.

We have further found that, to a good approximation,
Vd depends linearly on λ over the limited range of varia-
tion of λ when the spacing is non-uniform. This implies
that the advection velocity is nearly uniform even when
the spacing is non-uniform, and thus that the spatial
modulation of spacing is advected in a shape-preserving
manner without forming shocks, which generically form
when the advection velocity is a strongly varying func-
tion of the underlying field as in Burgers’ equation [53].
This is best exemplified by the propagation of a front
separating regions of large and small uniform spacings
when tertiary branching at the divergent boundary is reg-
ular. The front propagation thus selects a spacing that is
closer to the largest stable spacing λmax, independently
of the initial conditions. The selected spacing is gener-
ally significantly larger than the initial spacing selected
by the transient growth competition between neighbor-
ing cells, which falls closer to the smallest stable spacing
λmin [15, 16, 20–22, 25].

Front propagation is a relatively slow process, espe-
cially for small misorientation since V tanα0 is an upper
bound of the advection velocity. In the present simula-
tions and experiments the time to establish a larger uni-
form spacing propagatively is at least an order of mag-
nitude larger than the duration of the cell elimination
transient leading to the establishment of the initial non-
uniform spacing. Therefore, in the light of the present
results, the spacing distribution is expected to strongly
depend on the duration of the experiment even in the
simplest case where tertiary branching at the divergent
boundary creates cells with a constant spacing. When
tertiary branching at the divergent boundary is irregular
so as to create cells with highly variable spacings, the
spacing variation can become undulatory. Undulations
are advected towards the convergent boundary but also
sporadically created at the divergent boundary, such that
a steady-state uniform distribution of spacing may never
be reached even at arbitrarily large time.

While the present study focused on a misoriented
monocrystal, we expect the insights to be relevant for in-
terpreting experimental observations in polycrystals with
multiple grains terminated by divergent or convergent

grain boundaries. Similarly to the sample edges, those
boundaries can act as sources and sinks of cells, respec-
tively. While tertiary branching has been found to de-
pend in a non-trivial way on grain-boundary bicrystallog-
raphy [30, 40], propagation of spacing non-uniformities
inside each grain should be governed by the same geo-
metrical model and advection equation developed here
for a misoriented monocrystal. The extension of those
models to spatially extended three-dimensional patterns
is an interesting future prospect.
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APPENDIX A: PHASE DIFFUSION

We performed an independent PF simulation using a
well-oriented grain (the upper image of Fig. A1a) in or-
der to obtain an estimate of the phase diffusion coefficient
Dλ, independently of any drifitng motion of the cells. For
this simulation, we used the same material and numer-
ical parameters as above for a directional-solidification
run of a SCN-0.24wt% camphor alloy at V = 4 µm s−1

and G = 19 K cm−1 (see Table I). First, we carried out
a PF simulation with α0 = 10◦ over t = 8000 s. As we
observed previously in Fig. 5a, an array at t = 8000 s
was spatially non-uniform on the scale of the simulation
box. Using this misoriented and non-uniform array, we
abruptly changed the crystal angle to α0 = 0◦. Then,
the entire cells in the misoriented array becomes well-
oriented approximately after 2000 s. Hence, we measured
the spacing distribution from this point t = 0 s (the up-
per image of Fig. A1a) to 8000 s (the lower image of
Fig. A1a). As illustrated in Fig. A1a-b, the spacing dis-
tribution slowly relaxed towards uniformity, keeping the
mean spacing λm constant.

Fig. A1b shows the spacing distribution at t = 0 s
(blue squares) and t = 8000 s (red circles). Except close
to the edges, that is, for a system size L = 2200 µm com-
prised between y0 = 100 µm and y1 = 2300 µm (meaning
that the gray regions in Fig. A1b are excluded from the
analysis), the spacing distribution can be well fitted by a
cosine function of the form:

λ(y, t) = Aλ(t) cos

(
π(y − y0)

L
+ φ0

)
+ λm , (A1)

where Aλ(t) is a time-dependent spacing amplitude,
while λm, y0, and a phase shift φ0 remain fixed over time.
We estimated λm = 155 µm and φ0 = 3.4. This being
defined, we computed Aλ(t) every 1000 s from t = 0 s to
t = 8000 s (black circles in Fig. A1c).
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FIG. A1. Relaxation of a non-uniform spacing array. We per-
formed a PF simulation at V = 4 µm s−1 and G = 19 K cm−1

using a well-oriented grain (the upper image in a) to estimate
a phase diffusivity Dλ. Initial λ relax slowly towards the mean
spacing λm = 155 µm over 8000 s (the lower image in a). The
simulation measurements (symbols in b) show a cosine distri-
bution Eq. (A1) (continuous lines) away from the boundaries
(gray regions in b). We measure the time-dependent spacing
amplitude Aλ(t) every 1000 s (black circles in a), and the fit-
ting curve (red line in c) of Eq. (A3) with Dλ = 20.1 µm2s−1

agrees well with the simulation measurements.

Considering a linear-response regime, the relaxation of
a smoothly modulated, well-oriented cellular pattern can
be described by a diffusion-like equation:

∂tλ = Dλ∂yyλ . (A2)

Our fitting procedure above consists of solving this equa-
tion considering the lowest Fourier mode with a wave
vector π/L. Accordingly, the time-dependent amplitude
Aλ(t) is given by:

Aλ(t) = A0
λ exp

(
−π

2Dλ

L2
t

)
, (A3)

where A0
λ = 40.9 µm is the amplitude at t = 0 s.

Then, Dλ can be estimated using a best-fit adjustment
to the Aλ(t) data (black circles in Fig. A1c). This yields
here Dλ = 20.1 µm2s−1. The effective diffusion time
L2/Dλ = 310000 s (L = 2.5 mm) is then at least one
order of magnitude larger than the values of the time
L/Vλ over which a spacing modulation is transported
from one edge to the other in tilted-cell patterns, even
for small misorientation angles (see Table III). It may be
noted that the phase diffusion coefficient in a tilted-cell
array may differ from the present value of Dλ, however
a quantitative difference is not expected to be as large
as questioning substantially our conclusion. In brief, we
bring a clear evidence that phase diffusion is essentially
negligible as far as the propagative dynamics of tilted-cell
patterns is concerned.
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