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Cevian operations on distributive lattices

Introduction

It has been known since the seventies that for any Abelian lattice-ordered group (from now on ℓ-group) G, the distributive lattice Id c G of all finitely generated (equivalently principal) ℓ-ideals of G is completely normal, that is, it satisfies the statement (∀a, b)(∃x, y)(a ∨ b = a ∨ y = x ∨ b and x ∧ y = 0) .

Delzell and Madden found in [START_REF] Delzell | A completely normal spectral space that is not a real spectrum[END_REF] an example of a completely normal bounded distributive lattice which is not isomorphic to Id c G for any Abelian ℓ-group G. Since then, the problem of characterizing all lattices of the form Id c G has been widely open, possibly under various equivalent forms, one of which being the MV-spectrum problem (cf. Mundici [START_REF] Mundici | Advanced Lukasiewicz Calculus and MV-Algebras[END_REF]Problem 2]). The author's paper [START_REF] Wehrung | Spectral spaces of countable Abelian lattice-ordered groups[END_REF] settles the countable case, by proving that complete normality is then sufficient. However, moving to the uncountable case, we prove in [START_REF] Wehrung | Spectral spaces of countable Abelian lattice-ordered groups[END_REF] that the class of all lattices of the form Id c G, for Abelian ℓ-groups G with order-unit, is not closed under L ∞ω -elementary equivalence.

A remarkable additional property of lattices of the form Id c G, for Abelian ℓgroups G, was coined, under different names, on the one hand in Cignoli et al. [START_REF] Cignoli | Prime spectra of lattice-ordered abelian groups[END_REF], where it was denoted by (Id ω), on the other hand in Iberkleid et al. [START_REF] Iberkleid | Conrad frames[END_REF], where it was called "σ-Conrad". In [START_REF] Wehrung | Spectral spaces of countable Abelian lattice-ordered groups[END_REF] we express that property by an L ω1ω1 sentence of lattice theory that we call having countably based differences (cf. Subsection 2.1). This property is trivially satisfied in the countable case, but fails for various uncountable examples such as Delzell and Madden's.

In this paper we prove (cf. Theorem 7.2) that requiring countably based differences, together with complete normality, is not sufficient to characterize distributive lattices of the form Id c G for Abelian ℓ-groups G. It turns out that our counterexample also gives a strong negative answer to [START_REF] Iberkleid | Conrad frames[END_REF]Question 4.3.1], by proving that "σ-Conrad does not imply Conrad" (it was proved in [START_REF] Iberkleid | Conrad frames[END_REF] that normal-valued Conrad implies σ-Conrad). It also proves that the implication (4)⇒ [START_REF] Bigard | Groupes et Anneaux Réticulés[END_REF], in [14, § 4], is strict ( [START_REF] Iberkleid | Conrad frames[END_REF] achieved a partial result in that direction). Our main counterexample has cardinality ℵ 2 .

The proof of our main result is achieved in several steps. We observe (cf. Proposition 5.5) that for any (not necessarily Abelian) ℓ-group G, the (completely normal, distributive) lattice Cs c G of all finitely generated convex ℓ-subgroups of G carries a binary operation satisfying the identities x ≤ y ∨ (x y), (x y) ∧ (y x) = 0, and x z ≤ (x y) ∨ (y z). We call such operations Cevian operations and we call such lattices Cevian lattices (Definition 5.1).

We thus need to construct a non-Cevian completely normal distributive lattice with zero and countably based differences. In order to achieve this, we first solve the problem at diagram level, by constructing (cf. Lemma 4.3) a {0, 1}

3 -indexed commutative diagram, of countable completely normal distributive lattices with zero, which is a counterexample to a diagram analogue of a "local" form of the main question. This diagram is obtained by applying the functor Id c to a certain noncommutative 1 diagram of Abelian ℓ-groups, which we denote by A (cf. Section 4).

The proof of Lemma 4.3 rests on a lattice-theoretical interpretation, established in Proposition 3.1, of the configuration underlying Ceva's Theorem in elementary plane geometry.

Our final line of argument relies on the results of the monograph Gillibert and Wehrung [START_REF] Gillibert | From Objects to Diagrams for Ranges of Functors[END_REF], which sets up a machinery making it possible to turn certain diagram counterexamples to object counterexamples, via constructs called condensates, infinite combinatorial objects called lifters, and a technical result called the Armature Lemma. We summarize the required machinery in Section 6, and we embark on our main result's final proof in Section 7.

Since, as mentioned above, having countably based differences is an L ω1ω1 sentence, this is related to the question, stated as [18, Problem 1], whether there exists an infinite cardinal λ such that the class of all lattices of the form Id c G, for Abelian ℓ-groups G (equivalenly, Stone dual lattices of spectra of Abelian ℓ-groups), can be characterized by some class of L ∞λ sentences. In our subsequent paper [START_REF]From non-commutative diagrams to anti-elementary classes[END_REF] we prove that this is not so, by establishing the even stronger result that the class of Stone duals of spectra of all Abelian ℓ-groups with order-unit is not closed under L ∞λ -elementary equivalence.

Notation, terminology, and basic concepts

2.1. Sets, posets. Following standard set-theoretical notation, we denote by ω the first infinite ordinal and also the set of all nonnegative integers. For a natural number n, we denote by ℵ n the nth transfinite cardinal number, also denoted by ω n in case it should be viewed as an ordinal. The set of all finite subsets of a set X will be denoted by [X] <ω . We denote by P(X), or just PX, the powerset of a set X. By "countable" we will always mean "at most countable". 1 We need the non-commutativity of the diagram A-otherwise, by definition, Idc A would not be a diagram counterexample! This will be strongly illustrated in Proposition 5.5.

For any element a in a poset (i.e., partially ordered set) P , we set

P ↓ a def = {p ∈ P | p ≤ a} , P ↑ a def = {p ∈ P | p ≥ a} .
A subset X of P is -a lower subset (resp., upper subset ) of P if P ↓ x ⊆ X (resp., P ↑ x ⊆ X) whenever x ∈ X; -an ideal of P if it is a nonempty, upward directed lower subset of P ; coinitial in P if P = (P ↑ x | x ∈ X) . For posets P and Q, a map f :

P → Q is isotone if x ≤ y implies that f (x) ≤ f (y)
whenever x, y ∈ P . We let 2 def = {0, 1}, ordered by 0 < 1. We refer to Grätzer [START_REF] Grätzer | Lattice Theory: Foundation[END_REF] for standard facts on lattice theory. A distributive lattice D with zero is completely normal if for all x, y ∈ D there are u, v ∈ D such that x ≤ y ∨ u, y ≤ x ∨ v, and u ∧ v = 0. Equivalently (replacing u by u ∧ x and v by v ∧ y), x ∨ y = x ∨ v = u ∨ y and u ∧ v = 0. By a result from Monteiro [START_REF] António | L'arithmétique des filtres et les espaces topologiques, Segundo symposium sobre algunos problemas matemáticos que se están estudiando en Latino América, Julio[END_REF], this is equivalent to saying that the specialization order in the Stone dual of D is a root system (see also Cignoli et al. [6]).

For any elements a and b in a join-semilattice S, we set, following the notation in the author's paper [START_REF] Wehrung | Spectral spaces of countable Abelian lattice-ordered groups[END_REF],

a ⊖ S b def = {x ∈ S | a ≤ b ∨ x} . (2.1) 
Following [START_REF] Wehrung | Spectral spaces of countable Abelian lattice-ordered groups[END_REF], we say that S has countably based differences if a⊖ S b has a countable coinitial subset whenever a, b ∈ S.

Following [START_REF] Wehrung | Spectral spaces of countable Abelian lattice-ordered groups[END_REF], we define a join-homomorphism f : A → B, between join-semilattices, to be closed if for all a, a ′ ∈ A and b

∈ B, if b ∈ f (a) ⊖ B f (a ′ ), there exists x ∈ a ⊖ A a ′ such that f (x) ≤ b. In particular, if X is a coinitial subset of a ⊖ A a ′ , then f [X] is a coinitial subset of f (a) ⊖ B f (a ′
). We thus get the following lemma.

Lemma 2.1. Let A and B be join-semilattices and let f : A → B be a closed joinhomomorphism. For all a, a ′ ∈ A, if a ⊖ A a ′ has a countable coinitial subset, then f (a) ⊖ B f (a ′ ) has a countable coinitial subset.

For ℓ-groups we refer to Bigard et al. [START_REF] Bigard | Groupes et Anneaux Réticulés[END_REF], Anderson and Feil [START_REF] Anderson | Lattice-Ordered Groups[END_REF]. All our ℓ-groups will be written additively (even in the non-commutative case), with the lattice operations ∧ and ∨ being given higher precedence than the group operations (e.g., u + x ∧ yv = u + (x ∧ y)v). For any ℓ-group G, the lattice Cs G of all convex ℓsubgroups of G is a distributive algebraic lattice, of which the collection Cs c G of all finitely generated convex ℓ-subgroups is a sublattice; moreover, Cs c G is completely normal. The elements of Cs c G are exactly those of the form

x G def = {y ∈ G | (∃n < ω)(|y| ≤ n|x|)} , for x ∈ G (equivalently, for x ∈ G + ) .
We refer the reader to Iberkleid et al. [14, § 1.2] for a more detailed overview of the matter.

The lattice Id G of all ℓ-ideals (i.e., normal convex ℓ-subgroups) of G is a distributive algebraic lattice, isomorphic to the congruence lattice of G. The (∨, 0)semilattice Id c G of all finitely generated ℓ-ideals of G may not be a lattice (cf. Remark 5.7 for further explanation). Its elements are exactly those of the form

x ℓ G def = {y ∈ G | there are n < ω and conjugates x 1 , . . . , x n of |x| such that |y| ≤ x 1 + • • • + x n } , for x ∈ G (equivalently, for x ∈ G + ) .
As observed in [18, Subsection 2.2], the assignment Id c naturally extends to a functor from Abelian ℓ-groups and ℓ-homomorphisms to completely normal distributive lattices with zero and closed 0-lattice homomorphisms. In a similar manner, the assignment Cs c naturally extends to a functor from ℓ-groups and ℓ-homomorphisms to completely normal distributive lattices with zero and closed 0-lattice homomorphisms. Of course, if G is Abelian, then Cs G = Id G, x G = x ℓ G , and so on. For any ℓ-group G and any x, y ∈ G + , let x ∝ y hold if x ≤ ny for some positive integer n, and let x ≍ y hold if x ∝ y and y ∝ x.

2.2.

Open polyhedral cones. Throughout the paper we will denote by Q the ordered field of all rational numbers and by Q + its positive cone. For every positive integer n and every n-ary term t in the similarity type (0, +, -, ∨, ∧) of ℓ-groups (in short ℓ-term), we set

[[t(x 1 , . . . , x n ) = 0]] n def = (x 1 , . . . , x n ) ∈ (Q + ) n | t(x 1 , . . . , x n ) = 0 ,
and similarly for [[t(x 1 , . . . , x n ) > 0]] n . In particular, for every positive integer n and all rational numbers λ 1 , . . . , λ n , we get

[[λ 1 x 1 + • • • + λ n x n > 0]] n = (x 1 , . . . , x n ) ∈ (Q + ) n | λ 1 x 1 + • • • + λ n x n > 0 ;
we will call such sets open half-spaces2 of (Q + ) n . Define a basic open polyhedral cone of (Q + ) n as the intersection of a finite, nonempty collection of open half-spaces, and define a strict open polyhedral cone of (Q + ) n as a finite union of basic open polyhedral cones. Observe that no strict open polyhedral cone of (Q + ) n contains 0 as an element. For n ≥ 2, the lattice O n of all strict open polyhedral cones of (Q + ) n is a bounded distributive lattice, with zero the empty set and with unit (Q + ) n \{0}.

2.3.

Non-commutative diagrams. Several sections in the paper will involve the concept of a "non-commutative diagram". A (commutative) diagram, in a category S, is often defined as a functor D from a category P (the "indexing category" of the diagram) to S. Allowing any morphism in P to be sent to more than one morphism in S, we get D as a kind of "non-deterministic functor". Specializing to the case where P is the category naturally assigned to a poset P , we get the following definition. Definition 2.2. Let P be a poset and let S be a category. A P -indexed diagram in S is an assignment D, sending each element p of P to an object D(p) (or D p ) of S and each pair (p, q) of elements of P , with p ≤ q, to a nonempty set D(p, q) of morphisms from D(p) to D(q) , such that (1) id D(p) ∈ D(p, p) for every p ∈ P , (2) Whenever p ≤ q ≤ r, u ∈ D(p, q), and v ∈ D(q, r), v • u belongs to D(p, r).

We say that D is a commutative diagram if each D(p, q), for p ≤ q in P , is a singleton.

We will often write poset-indexed commutative diagrams in the form

D = (D p , δ q p | p ≤ q in P ) ,
where all D p are objects and all δ q p : D p → D q are morphisms subjected to the usual commutation relations (i.e., δ p p = id Dp , δ r p = δ r q • δ q p whenever p ≤ q ≤ r); hence D(p, q) = δ q p . If P is a directed poset we will say that D is a direct system. The following construction will be briefly mentioned in Proposition 4.1, which will play a prominent role in our forthcoming paper [START_REF]From non-commutative diagrams to anti-elementary classes[END_REF]. Definition 2.3. Let I be a set, let S be a category with all I-indexed products, let P be a poset, and let D be a P -indexed diagram in S. Denoting by P I the I-th cartesian power of the poset P , we define a P I -indexed diagram D I in S by setting

(1) D I (p i | i ∈ I) def = i∈I D(p i );
(2) whenever p = (p i | i ∈ I) and q = (q i | i ∈ I) in P I with p ≤ q, D I (p, q) consists of all morphisms of the form i∈I f i where each f i ∈ D(p i , q i ).

A lattice-theoretical version of Ceva's Theorem

The goal of this section is to establish Proposition 3.1. This result solves a problem, mostly of lattice-theoretical nature, on open polyhedral cones in dimension three; its proof involves the main configuration underlying Ceva's Theorem in elementary plane geometry.

Although we will only need to apply Proposition 3.1 to the ordered field Q of all rational numbers, it does not bring any additional complexity to state it over an arbitrary totally ordered division ring k. For such a ring, we set

k + def = {x ∈ k | x ≥ 0} , k ++ def = {x ∈ k | x > 0} , k + def = k + ∪ {∞}
, where we declare that x < ∞ whenever x ∈ k + .

For all x, y ∈ k + , we write

[x, y] def = t ∈ k + | x ≤ t ≤ y , [x, y[ def = t ∈ k + | x ≤ t < y ,
and so on. We denote by O(k + ) the set of all finite unions of intervals of k + of one of the forms [0, x[ , ]y, ∞], or ]x, y[ with x, y ∈ k + . For a nonzero pair (x, y) of elements of k + , the expression x -1 y is given its usual meaning in k if x > 0, and extended to the case where x = 0 (thus y > 0) by setting 0 -1 y = ∞.

Proposition 3.1. Let k be a totally ordered division ring. For all integers i, j with In all the figures involved in Section 3, open polyhedral cones of (k + ) 3 will be represented by their intersection with the 2-simplex

1 ≤ i < j ≤ 3, let U ij ∈ O(k + ) and set C ij def = (x 1 , x 2 , x 3 ) ∈ (k + ) 3 | (x i , x j ) = (0, 0) and x -1 i x j ∈ U ij . Suppose that the following statements hold: (1) 0 ∈ U 12 ∩ U 23 ∩ U 13 ; (2) [0, ∞[ ⊆ U 12 and [0, ∞[ ⊆ U 23 ; (3) C 12 ∩ C 23 ⊆ C 13 ⊆ C 12 ∪ C 23 . Then there are x, y ∈ k ++ such that U 12 = [0, x[ , U 23 = [0,
(x 1 , x 2 , x 3 ) ∈ (k + ) 3 | x 1 + x 2 + x 3 = 1 ,
and points will be represented by their homogeneous coordinates, so 0, 0, 1 Proof of Claim. (cf. Figure 3.4). Suppose that U 12 is not initial. From Assumptions (1) and ( 2) it follows that the second leftmost interval of U 12 has one of the forms ]x,

x, y, z = {(λx, λy, λz) | λ ∈ k \ {0}} . 1, 0, 0 0, 1, 0 0, 0, 1 1, x, 0 U 12 0, 1, y U 23 1, 0, xy U 13 Figure 3.1. A Ceva configuration U12 U23 U13 U12 U23 U13 U12 U23 U13 C12 C13 C23
1, 0, 0 0, 1, 0 1, u, 0 1, x, 0 0, 1, y 0, 1, v 1, 0, xy 1, 0, xv 1, u, xy 1, x, xy 
x ′ [ or ]x, x ′ ] where 0 < x < x ′ ≤ ∞ (and x ′ = ∞ in the second case). Pick any u ∈ ]x, x ′ [ ; observe that u ∈ U 12 , that is, (1, u, xy) ∈ C 12 . The ele- ment v def = u -1 xy belongs to ]0, y[, thus to U 23 ; that is, (1, u, xy) ∈ C 23 . Using Assumption (3), it follows that (1, u, xy) ∈ C 13 , whence also (1, x, xy) ∈ C 13 . By Assumption (3) again, it follows that either (1, x, xy) ∈ C 12 or (1, x, xy) ∈ C 23 .
In the first case, x ∈ U 12 , a contradiction. In the second case, y ∈ U 23 , a contradiction.

Claim 2.

From now on we shall write

U 12 = [0, x[ where x ∈ k ++ . Claim 3. The set U 13 contains [0, xy[.
Proof of Claim. (cf. Figure 3.5). We need to prove that every element t ∈ [0, xy[ belongs to U 13 . Let first t = 0. We need to prove that (1, 0, 0) ∈ C 13 , which holds owing to Assumption [START_REF] Adámek | Locally Presentable and Accessible Categories[END_REF]. Suppose from now on that t > 0. There are u ∈ ]0, x[ In the first case, x ∈ U 12 , a contradiction. In the second case, x -1 z ∈ U 23 , thus

and v ∈ ]0, y[ such that t = uv. Observe that u ∈ U 12 and v ∈ U 23 . It follows 0, 0, 1 1, 0, 0 0, 1, 0 1, x, 0 1, u, 0 0, 1, v 0, 1, y 1, x, xy 1, u, xy 1, 0, xy Figure 3.4. Illustrating the proof of Proposition 3.1, Claim 2 that (1, u, uv) ∈ C 12 ∩ C 23 , thus, by Assumption (3), (1, u, uv) ∈ C 13 , that is, t ∈ U 13 . Claim 3. 0, 0, 1 1, 0, 0 0, 1, 0 1, u, 0 1, x, 0 0, 1, v 0, 1, y 1, u, uv
x -1 z < y, a contradiction. This completes the proof that U 13 ⊆ [0, xy[. Now apply Claim 3. Claim 4. (where [START_REF] Baker | Free vector lattices[END_REF] = {1, 2, 3}, 12 = 21 = {1, 2}, and so on). We define A 123 as the Abelian ℓ-group defined by the generators a, a ′ , b, c subjected to the relations

0, 0, 1 1, 0, 0 0, 1, 0 1, x, 0 0, 1, v 0, 1, x -1 z 1, 0, xy 1, 0, z 1, x, z
0 ≤ a ≤ a ′ ≤ 2a ; 0 ≤ b ; 0 ≤ c .
Further, we define the following ℓ-subgroups of A 123 :

• A 12 is the ℓ-subgroup of A 123 generated by {a, b};

• A 13 is the ℓ-subgroup of A 123 generated by {a ′ , c}; • A 23 is the ℓ-subgroup of A 123 generated by {b, c}; • A 1 is the ℓ-subgroup of A 123 generated by {a}; • A 2 is the ℓ-subgroup of A 123 generated by {b}; • A 3 is the ℓ-subgroup of A 123 generated by {c}; • A ∅ = {0}.
It is easy to see that each A p , for p ∈ P [START_REF] Baker | Free vector lattices[END_REF], can also be defined by generators and relations in a natural way; for example A 12 is the Abelian ℓ-group defined by the generators a, b subjected to the relations 0 ≤ a and 0 ≤ b, and so on. In particular,

A 1 ∼ = A 2 ∼ = A 3 ∼ = Z. The diagram A is the P[3]-indexed diagram of
Abelian ℓgroups, whose vertices are the A p where p ∈ P [START_REF] Baker | Free vector lattices[END_REF] and whose arrows are the loops at every vertex together with the following ℓ-embeddings:

• For every p ∈ P [START_REF] Baker | Free vector lattices[END_REF], A(∅, p) consists of the zero map α p ∅ from A ∅ to A p . • For all distinct i, j ∈ [3], A(i, ij) consists of the single map α ij i , defined as the inclusion map from A i into A j , except in case i = 1 and j = 3, in which case α ij i = α 13 1 is the unique ℓ-homomorphism sending a to a ′ . We emphasize this by marking the arrow α 13 1 with a thick line on Figure 4.1. 4.1. On that picture, each node is highlighted by its canonical generators: for example, A 123 is marked A 123 (a, a ′ , b, c), A 13 is marked A 13 (a ′ , c), and so on. We emphasize that the diagram A of Abelian ℓ-groups is not commutative (for A(1, 123) has two elements). However, it has the following remarkable property, involving the construction of the I-th power of a diagram (cf. Definition 2.3), which we will fully bring to use in [START_REF]From non-commutative diagrams to anti-elementary classes[END_REF]. Proof. Although A is not a commutative diagram, it only barely fails to be so since its only non-commutative square is [START_REF] Adámek | Locally Presentable and Accessible Categories[END_REF][START_REF]An infinite combinatorial statement with a poset parameter[END_REF][START_REF] Grätzer | Lattice Theory: Foundation[END_REF]123), and then the inequalities

• For all distinct i, j ∈ [3], A(ij,
A 123 (a, a ′ , b, c) A 12 (a, b) A 13 (a ′ , c) A 23 (b, c) A 1 (a) A 2 (b) A 3 (c) Each α p ∅ is the zero map A ∅ → A p A ∅ = {0}
a ≤ a ′ ≤ 2a yield the statement (α 123 12 • α 12 1 )(x) ≤ (α 123 13 • α 13 1 )(x) ≤ 2(α 123 12 • α 12 1 )(x) whenever x ∈ A 1 .
It follows that for all p ≤ q in P[3] and all f, g : A p → A q in A, the statement f (x) ≤ 2g(x) and g(x) ≤ 2f (x) , for every x ∈ A p , which we shall denote by f ≍ 2 g, holds. It follows easily that if p i ≤ q i in P[3] and f i , g i : A pi → A qi whenever i ∈ I, then i∈I f i ≍ 2 i∈I g i . Hence, Id c i∈I f i = Id c i∈I g i , so there is exactly one arrow from i∈I A pi to i∈I A qi in A I .

Finally, every A I (p), for p ∈ P I , is an Abelian ℓ-group, thus Id c A I (p) is a completely normal distributive lattice with zero. Whenever p ≤ q in P I , every member of A I (p, q) is an ℓ-homomorphism, thus, by [18, Proposition 2.6], every member of Id c A I (p, q) is a closed 0-lattice homomorphism.

In the present paper we will only need the case where I is a singleton: For p ≤ q in P[3], we shall denote by α q p the unique arrow from A p to A q in A. For example, α 123

1 = Id c (α 123 12 • α 12 1 ) = Id c (α 123 13 • α 13 1
). The elements

a 1 def = a A123 = a ′ A123 , a 2 def = b A123 , a 3 def = c A123 (4.2) 
all belong to A 123 .

Our main technical lemma is the following. p is the identity map on D p . For p < q in P[3], the map δ q p : D p → D q is defined as follows: • Whenever p ∈ {∅, 1, 2, 3}, η p is the unique isomorphism from A p onto D p .

• If p = ∅ we have no choice, namely δ p ∅ = 0. • δ 12 1 (1) = δ 13 1 (1) = δ 23 2 (1) def = [[x 1 > 0]] 2 . • δ 12 2 (1) = δ 13 3 (1) = δ 23 3 (1) def = [[x 2 > 0]] 2 . • δ 123 ij (X) def = (x 1 , x 2 , x 3 ) ∈ (Q + ) 3 | (x i , x j ) ∈ X , whenever 1 ≤ i < j ≤ 3 and X ∈ O 2 . • δ 123 i (1) = [[x i > 0]] 3 whenever i ∈ [3]. We represent the diagram D in
D 123 = O 3 D 12 = O 2 D 13 = O 2 D 12 = O 2 D 1 = 2 D 2 = 2 D 3 = 2 Each δ p ∅ is the zero map D ∅ → D p D ∅ = {0}
• Now we describe η p for p ∈ {12, 13, 23} :

η 12 t(a, b) A12 = η 13 t(a ′ , c) A13 = η 23 t(b, c) A23 def = [[t(x 1 , x 2 ) = 0]] 2 ,
for every binary ℓ-term t. • We finally describe η 123 :

η 123 t(a, a ′ , b, c) A123 def = [[t(x 1 , x 1 , x 2 , x 3 ) = 0]] 3 ,
for every 4-ary ℓ-term t. This makes sense because for all x 1 , x 2 , x 3 ∈ Q + , the quadruple (x 1 , x 1 , x 2 , x 3 ) satisfies the defining relations of A 123 .

Claim 2. The family η def = (η p | p ∈ P [START_REF] Baker | Free vector lattices[END_REF]) is a natural transformation from A to D. Furthermore, η p is an isomorphism whenever p = 123.

Proof of Claim. The statement about isomorphisms easily follows from the Baker-Beynon duality for finitely presented Abelian ℓ-groups (cf. Baker [START_REF] Baker | Free vector lattices[END_REF], Beynon [START_REF] Beynon | Duality theorems for finitely generated vector lattices[END_REF]). Now in order to verify that η is a natural transformation, it suffices to prove that η q • α q p = δ q p • η p whenever p is a lower cover of q in P [START_REF] Baker | Free vector lattices[END_REF]. This is trivial if p = ∅, in which case both composed maps are zero. If p = 1 and q = 13, we compute

(η 13 • α 13 1 ) a A1 = η 13 a ′ A13 = [[x 1 > 0]] 2 , (δ 13 1 • η 1 ) a A1 = δ 13 1 (1) = [[x 1 > 0]
] 2 , so we are done in that case. The other cases, where p has one element and q two elements, are handled similarly.

If p = 13 and q = 123, we compute, for every binary ℓ-term t,

(η 123 • α 123 13 ) t(a ′ , c) A13 = η 123 t(a ′ , c) A123 = [[t(x 1 , x 3 ) = 0]] 3 , (δ 123 13 • η 13 ) t(a ′ , c) A13 = δ 123 13 [[t(x 1 , x 2 ) = 0]] 2 = [[t(x 1 , x 3 ) = 0]]
3 , so we are done in that case. The other cases, where p ∈ {12, 23} and q = 123, are handled similarly.

Claim 2.

Now we argue by contradiction, by supposing that the c ij satisfy Conditions (1)-( 4) from the statement of Lemma 4.3. For i = j in [START_REF] Baker | Free vector lattices[END_REF], it follows from Condition (1)

that c ij = c ij A123 for some c ij ∈ A + ij . The set C ′ ij def = η ij c ij Aij belongs to D ij = O 2 ,
thus it is determined by its intersection with the segment (1-simplex) (x, y) ∈ (Q + ) 2 | x + y = 1 , which is a finite union of relatively open intervals of that segment. Hence, there exists

U ij ∈ O(Q + ) such that C ′ ij = (x, y) ∈ (Q + ) 2 \ {(0, 0)} | x -1 y ∈ U ij . (4.3) Setting C ij def = η 123 (c ij ) = δ 123 ij (C ′ ij ), we get C ij = (x 1 , x 2 , x 3 ) ∈ (Q + ) 3 | (x i , x j ) = (0, 0) and x -1 i x j ∈ U ij if i < j , (x 1 , x 2 , x 3 ) ∈ (Q + ) 3 | (x i , x j ) = (0, 0) and x -1 j x i ∈ U ij if i > j .
(4.4) By applying the homomorphism η 123 to Conditions (2)-( 4), we thus obtain, setting

P i def = [[x i > 0]] 3 , the following relations: (C1) P i ⊆ P j ∪ C ij whenever {i, j} is either {1, 2} or {2, 3}. (C2) C ij ∩ C ji = ∅ whenever {i, j} is either {1, 2} or {2, 3}. (C3) C 12 ∩ C 23 ⊆ C 13 ⊆ C 12 ∪ C 23 .
By (C1) and since (1, 0, 0) ∈ P 1 \ P 2 , we get (1, 0, 0) ∈ C 12 , that is (cf. (4.4)), 0 ∈ U 12 . Similar arguments yield the relations 0 ∈ U 23 and 0 ∈ U 13 . Similarly, since (0, 1, 0) ∈ P 2 \ P 1 and by (C1), we get (0, 1, 0

) ∈ C 21 , that is (cf. (4.4)), ∞ ∈ U 21 . Since U 21 ∈ O(Q + ), it follows that U 21 contains an interval of the form [z, ∞].
From (C2) it follows that U 12 ∩ U 21 = ∅, thus U 12 is a bounded subset of Q + . We thus have proved that U 12 is a bounded subset of Q + containing 0 as an element. By a similar argument, U 23 is a bounded subset of Q + containing 0 as an element. Therefore, the assumptions of Proposition 3.1 are satisfied, so there are λ, µ ∈ Q ++ such that

U 12 = [0, λ[ , U 23 = [0, µ[ , and U 13 = [0, λµ[ . (4.5) 
From U 12 = [0, λ[ and (4.3) it follows that Since the quadruple (1, 2, λ, λµ) of rational numbers satisfies the defining relations of A 123 , there exists a unique ℓ-homomorphism f : A 123 → Q sending (a, a ′ , b, c) to (1, 2, λ, λµ). By applying f to the right hand side inequality of (4.8), we obtain that λµ = (2λµλµ) + ∝ 0, a contradiction.

η 12 c 12 A12 = (x 1 , x 2 ) ∈ (Q + ) 2 \ {(0, 0)} | x -1 1 x 2 < λ = [[λx 1 -x 2 > 0]] = η 12 (λa -b) + A12 . Since η 12 is an isomorphism (cf. Claim 2), it follows that c 12 A12 = (λa -b) + A12 , that is, c 12 ≍ (λa -b) + within A 12 . ( 4 

Cevian operations

In this section we shall define Cevian operations on certain distributive lattices with zero. The existence of a Cevian operation is a strong form of complete normality. It will turn out that such operations exist on all lattices of the form Cs c G (cf. Proposition 5.5) or Id c G where the ℓ-group G is representable (cf. Proposition 5.10). Obviously, every Cevian lattice is completely normal. The main example of Wehrung [19, § 6] shows that the converse fails at cardinality ℵ 2 . We will shortly see that there is no such counterexample in the countable case (cf. Corollary 5.6). We will also find a new completely normal non-Cevian example of cardinality ℵ 2 , with additional features, in Theorem 7.2. Lemma 5.2. Let be a binary operation on a distributive lattice D with zero, satisfying both (Cev2) and (Cev3). Then (x y)∧(y z) ≤ x z for all x, y, z ∈ D.

Proof. It follows from (Cev3) that

x y ≤ (x z) ∨ (z y) .

(5.1)

Further, it follows from (Cev2) that (y z) ∧ (z y) = 0. Therefore, meeting (5.1) with y z and using the distributivity of D, we obtain (x y) ∧ (y z) ≤ (x z) ∧ (y z) ≤ x z .

Lemma 5.3.

(1) Any product of a family of Cevian lattices is Cevian.

(2) Any homomorphic image of a Cevian lattice is Cevian.

(3) Any ideal of a Cevian lattice is Cevian.

Proof. Ad (1). Let i be a Cevian operation on D i for each i ∈ I. On the product [START_REF] Anderson | Lattice-Ordered Groups[END_REF]. Let f : D ։ E be a surjective lattice homomorphism and let D be a Cevian operation on D. Then E is also a distributive lattice with zero. For each x ∈ E, pick a preimage x of x under f , and set x E y def = f x D y for all x, y ∈ E. Then E is a Cevian operation on E.

D def = i∈I D i , set x y def = (x i i y i | i ∈ I). Ad ( 
Ad (3). Say that a Cevian operation on D is normalized if x y ≤ x for all x, y ∈ D. For every Cevian operation , the variant operation ′ defined by

x ′ y def = x ∧ (x y) , for all x, y ∈ D ,
is a normalized Cevian operation on D. In particular, every ideal I of D is closed under ′ , thus ′ defines, by restriction, a (normalized) Cevian operation on I.

For any elements x and y in an ℓ-group G, set x y def = (xy) + = xx ∧ y; write x G y instead of x y if G needs to be specified.

Lemma 5.4. The operation G , defined on G, satisfies the statements (Cev2) and (Cev3), for any (not necessarily Abelian) ℓ-group G.

Proof. (Cev2) is easy: (x y) ∧ (y x) = (xx ∧ y) ∧ (yx ∧ y) = x ∧ yx ∧ y = 0. For the right hand side inequality of (Cev3), observe that x ≤ (x y) + y and y ≤ (y z) + z, thus x ≤ (x y) + (y z) + z, and thus xz ≤ (x y) + (y z). Since 0 ≤ (x y) + (y z), it follows that x z = (xz) + ≤ (x y) + (y z). 

x = (x G y) + (x ∧ y) that x ⊆ y ∨ x G y , that is, x ⊆ y ∨ (x
(x y) ∧ (y x) = x G y ∩ y G x = (x G y) ∧ (y G x) = 0 ;
whence (Cev2) holds. By using Lemma 5.4, we also get

x z = x G z ⊆ x G y ∨ y G z = (x y) ∨ (y z) ; whence (Cev3) holds.
The main result of the author's paper [START_REF] Wehrung | Spectral spaces of countable Abelian lattice-ordered groups[END_REF] states that every countable completely normal distributive lattice with zero is isomorphic to Id c G for some Abelian ℓgroup G. Consequently, by Proposition 5.5, we get: Corollary 5.6. A countable distributive lattice with zero is Cevian iff it is completely normal.

Remark 5.7. The result of Proposition 5.5 cannot be extended to Id c G for arbitrary ℓ-groups G. Indeed, we proved in Růžička et al. [START_REF] Růžička | Distributive congruence lattices of congruence-permutable algebras[END_REF]Theorem 6.3] that every countable distributive (∨, 0)-semilattice is isomorphic to Id c G for some ℓ-group G. In particular, Id c G may fail to be a lattice, and even if it is a lattice, it may fail to be completely normal (consider a square with a new zero element added).

Recall that an ℓ-group is representable if it is a subdirect product of totally ordered groups. Equivalently (cf. Bigard et al [5, Proposition 4.2.9]), G satisfies the identity (2x) ∧ (2y) = 2(x ∧ y). We will see shortly (cf. Proposition 5.10) that the kind of counterexample following from the results of [17, § 6] does not occur within the class of representable ℓ-groups.

Incidentally, it follows from [17, Corollary 3.9] that not every distributive (∨, 0)semilattice is isomorphic to Id c G for an ℓ-group G.

Lemma 5.8. Let x, y, u, v be elements in a representable ℓ-group G. Then

(u + x -u) ∧ (v + y -v) ≤ (u + x ∧ y -u) ∨ (v + x ∧ y -v) .
(5.2)

Proof. It suffices to consider the case where G is totally ordered; so, by symmetry, we may assume that x ≤ y. Then the right hand side of (5.2) is equal to (u+x-u)∨(v+x-v), which lies above u+x-u, thus above (u+x-u)∧(v+y-v).

Lemma 5.9. Let G be a representable ℓ-group and let x, y ∈ G + . Then

x ℓ ∩ y ℓ = x ∧ y ℓ . Consequently, Id c G is a distributive lattice.
Proof. We prove the nontrivial containment. Any element of x ℓ lies, in absolute value, below a finite sum of conjugates of x; and similarly for y ℓ and y. The following result shows that the non-commutativity of the diagram A can be read on the commutative diagram Id c A.

Theorem 5.12. Let G = (G p , γ q p | p ≤ q in P[3]) be a P[3]-indexed commutative diagram of ℓ-groups and ℓ-homomorphisms and let η = (η p | p ∈ P [START_REF] Baker | Free vector lattices[END_REF]) be a natural transformation from Cs c G to Id c A. Then η i = 0 for some i ∈ {1, 2, 3}.

Proof. Suppose otherwise. For each i ∈ [START_REF] Baker | Free vector lattices[END_REF], there exists

c i ∈ G + i such that η i ( c i Gi ) = 0. Since Id c A i ∼ = {0, 1}, it follows that η i ( c i Gi ) = 1. Set b i def = γ 123 i ( c i Gi ) and c ij def = η 123 ( b i G123 b j G123
) (an element of Id c A 123 ), for all distinct i, j ∈ [START_REF] Baker | Free vector lattices[END_REF]. Hence, the element

c ij = (η 123 • Cs c γ 123 ij ) γ ij i (g i ) Gij γ ij j (g j ) Gij = (α 123 ij • η ij ) γ ij i (g i ) Gij γ ij j (g j ) Gij belongs to the range of α 123 ij . Furthermore, for each i ∈ [3], η 123 ( b i G123 ) = (η 123 • Cs c γ 123 i )( b i Gi ) = (α 123 i • η i )( b i Gi ) = α 123 i (1) = a i
(we defined the a i in (4.2)). By using (the argument of) Proposition 5.5, together with Lemma 5.2, it follows that the elements c ij , where i = j in [START_REF] Baker | Free vector lattices[END_REF], satisfy Assumptions (2)-(4) of the statement of Lemma 4.3; a contradiction. By using Proposition 5.10, we thus obtain Corollary 5.13. There is no P[3]-indexed commutative diagram G of ℓ-groups (resp., representable ℓ-groups) and ℓ-homomorphisms such that Cs c G ∼ = Id c A (resp., Id c G ∼ = Id c A).

A crash course on P -scaled Boolean algebras and condensates

In order to turn the diagram counterexample (Lemma 4.3) to an object counterexample (Theorem 7.2), we will need to apply a complex, technical result of category theory called the Armature Lemma, introduced in Gillibert and Wehrung [START_REF] Gillibert | From Objects to Diagrams for Ranges of Functors[END_REF]Lemma 3.2.2]. In order to help the reader get a feel of the machinery underlying that tool, we shall devote this section to giving a flavor of that machinery.

6.1. P -scaled Boolean algebras, normal morphisms, 2[p]. For an arbitrary poset P , a P -scaled Boolean algebra is a structure

A = A, (A (p) | p ∈ P ) ,
where A is a Boolean algebra, every A (p) is an ideal of A, A = (A (p) | p ∈ P ) within the ideal lattice of A, and A (p) ∩ A (q) = (A (r) | r ≥ p, q) whenever p, q ∈ P . For P -scaled Boolean algebras A and B, a morphism from A to B is a homomorphism f : A → B of Boolean algebras such that f [A (p) ] ⊆ B (p) for every p ∈ P . If f is surjective and f [A (p) ] = B (p) for every p, we say that f is normal. The category of all P -scaled Boolean algebras is denoted by Bool P . It has all small directed colimits and all finite products.

We prove in [11, Corollary 4.2.7] that a P -scaled Boolean algebra A is finitely presented (in the sense of Gabriel and Ulmer [START_REF] Gabriel | Lokal Präsentierbare Kategorien[END_REF], Adámek and Rosický [START_REF] Adámek | Locally Presentable and Accessible Categories[END_REF]) within Bool P iff A is finite and for every atom a of A, the ideal a A def = p ∈ P | a ∈ A (p) has a largest element, then denoted by |a| A . Finitely presented members of Bool P approximate well the whole class:

-(cf. [11, Proposition 2.4.6]) Every member of Bool P is a monomorphic directed colimit of a direct system of finitely presented members of Bool P . -(cf. [11, Proposition 2.5.5]) Every normal morphism in Bool P is a directed colimit, within the category Bool 2 P of all arrows of Bool P , of a direct system of normal morphisms between finitely presented members of Bool P . For every p ∈ P , we introduced in [11, Definition 2.6.1] the P -scaled Boolean algebra

2[p] def = 2, (2[p] (q) | q ∈ P )
where we define 2[p] (q) as {0, 1} if q ≤ p, {0} otherwise. 6.2. Norm-coverings, ω-lifters, F(X), π X

x . Following [11, Definition 2.1.2], we say that a poset P is -a pseudo join-semilattice if the set U of all upper bounds of any finite subset X of P is a finitely generated upper subset of P ; then we denote by ▽X the (finite) set of all minimal elements of U ; supported if it is a pseudo join-semilattice and every finite subset of P is contained in a finite subset Y of P which is ▽-closed, that is, ▽Z ⊆ Y whenever Z is a finite subset of Y ; -an almost join-semilattice if it is a pseudo join-semilattice in which every principal ideal P ↓ a is a join-semilattice.

We observed in [11, § 2.1] the non-reversible implications join-semilattice ⇒ almost join-semilattice ⇒ supported ⇒ pseudo join-semilattice .

Following [11, § 2.6], a norm-covering of a poset P is a pair (X, ∂) where X is a pseudo join-semilattice and ∂ : X → P is an isotone map. For such a norm-covering, we denote by F(X) the Boolean algebra defined by generators ũ, where u ∈ X, and relations ṽ ≤ ũ , whenever u ≤ v in X ;

ũ ∧ ṽ = ( w | x ∈ ▽ {u, v}) , whenever u, v ∈ X ;

1 = ( w | w ∈ ▽∅) .
Furthermore, for every p ∈ P , we denote by F(X) (p) the ideal of F(X) generated by {ũ | u ∈ X , p ≤ ∂u}. The structure F(X) def = F(X), (F(X) (p) | p ∈ P ) is a P -scaled Boolean algebra [START_REF] Gillibert | From Objects to Diagrams for Ranges of Functors[END_REF]Lemma 2.6.5].

In [START_REF] Gillibert | From Objects to Diagrams for Ranges of Functors[END_REF] we also introduce, for every x ∈ X, the unique morphism π X x : F(X) → 2[∂x] that sends every ũ, where u ∈ X, to 1 if u ≤ x and 0 otherwise. This morphism is normal (cf. [START_REF] Gillibert | From Objects to Diagrams for Ranges of Functors[END_REF]Lemma 2.6.7]).

We will also need here a specialization of the concept of λ-lifter (obtained by setting λ = ℵ 0 and X = set of all principal ideals of X) introduced in [11, § 3.2]. Definition 6.1. A principal ω-lifter of a poset P is a norm-covering (X, ∂) of P such that (1) the set X = def = {x ∈ X | ∂x is not maximal in P } is lower finite; (2) X is supported;

(3) For every map S : X = → [X] <ω , there exists an isotone section σ of ∂ such that S(σ(p)) ∩ σ(q) ⊆ σ(p) for all p < q in P .

6.3. The construction A⊗ S. Let a category S have all nonempty finite products and all small directed colimits. Let S = (S p , σ q p | p ≤ q in P ) be a P -indexed direct system in S. The functor -⊗ S : Bool P → S is first defined on all finitely presented members of Bool P , as follows. If A is finitely presented, we set

A ⊗ S def = (S |a|A | a ∈ At A) .
In This defines a functor from the finitely presented members of Bool P to S. Since every member of Bool P is a small directed colimit of a direct system of finitely presented objects, it follows, using [START_REF] Gillibert | From Objects to Diagrams for Ranges of Functors[END_REF]Proposition 1.4.2], that this functor can be uniquely extended, up to isomorphism, to a functor from Bool P to S that preserves all small directed colimits. This functor will also be denoted by -⊗ S. For a P -scaled Boolean algebra A, the object A ⊗ S will be called a condensate of S.

In the particular case where ϕ is a normal morphism, ϕ ⊗ S is a directed colimit of projection morphisms (i.e., canonical morphisms X × Y → X). Now in all the cases we will be interested in, S will be a category of models of first-order languages, so projection morphisms are surjective, thus so are their directed colimits. Hence, in all those cases, if ϕ is a normal morphism, then ϕ ⊗ S is surjective.

A non-Cevian lattice with countably based differences

Throughout this section, we shall consider P -scaled Boolean algebras with P = P[3] = {∅, 1, 2, 3, 12, 13, 23, 123} (cf. (4.1)). Since P has exactly three join-irreducible elements (viz. 1, 2, 3), it follows from Gillibert and Wehrung [START_REF]An infinite combinatorial statement with a poset parameter[END_REF]Proposition 4.2] that the relation denoted there by (ℵ 2 , <ℵ 0 ) ❀ P holds. This means that for every mapping F : P(ω 2 ) → [ω 2 ] <ω , there exists a one-to-one map f :

P ֒→ ω 2 such that F (f [P ↓ x)) ∩ f [P ↓ y] ⊆ f [P ↓ x] whenever x ≤ y in P .
Now define X as the poset denoted by P ω 2 in the proof of [START_REF] Gillibert | From Objects to Diagrams for Ranges of Functors[END_REF]Lemma 3.5.5], together with the canonical isotone map ∂ : X → P . That is,

X = (a, u) | a ∈ P , u : U → ω 2 with a = U
with componentwise ordering (≤ on the first component, extension ordering on the second one), and ∂(a, u) = a whenever (a, u) ∈ X. It follows from (the proof of) [11, Lemma 3.5.5] that X is lower finite and that furthermore, it is, together with the map ∂, a principal ω-lifter of P (cf. Definition 6.1).

We apply the Armature Lemma to the following data:

• S is the category of all distributive lattices with zero with 0-lattice homomorphisms; • A is the subcategory of S whose objects are the completely normal members of S with countably based differences, and whose morphisms are the closed 0-lattice homomorphisms; • Φ is the inclusion functor from A into S. 

= (D i , δ j i | i ≤ j in I) is a direct system in A. Hence, D = (δ i [D i ] | i ∈ I) (directed union) ; (7.1)
For all i ∈ I and all x, y

∈ D i , δ i (x) = δ i (y) ⇒ (∃j ≥ i) δ j i (x) = δ j i (y) . (7.
2) It is straightforward to verify, using (7.1) and (7.2), that D is a completely normal distributive lattice with zero (for this we do not need the assumption that the δ j i are closed maps).

Let i ∈ I, let x, x ′ ∈ D i and y ∈ D such that δ i (x) ≤ δ i (x ′ ) ∨ y. By (7.1), there are j ∈ I and y ∈ D j such that y = δ j (y); since I is directed, we may assume that j ≥ i. By (7.2), there exists k ≥ j such that δ

k i (x) ≤ δ k i (x ′ ) ∨ δ k j (y). Since the map δ k i is closed, there is z ∈ D i such that x ≤ x ′ ∨ z and δ k i (z) ≤ δ k j ( 
y). Now the latter inequality implies that δ i (z) ≤ δ j (y) = y, thus completing the proof that the map δ i is closed. Now let x, y ∈ D. We claim that x⊖ D y has a countable coinitial subset. By (7.1), there are i ∈ I and x, y ∈ D i such that x = δ i (x) and y = δ i (y). Since D i has countably based differences, x ⊖ Di y has a countable coinitial subset. Since, by the paragraph above, δ i is closed and by Lemma 2.1, it follows that x ⊖ D y has a countable coinitial subset. Therefore, D has countably based differences. By Lemma 7.1, F(X) ⊗ A (cf. Section 6) denotes the same object in A as in S. Denote it by B.

Theorem 7.2. The structure B is a non-Cevian completely normal distributive lattice with zero and countably based differences. It has cardinality ℵ 2 .

Proof. Since B is an object of A, it is a completely normal distributive lattice with zero and countably based differences. Since X has cardinality ℵ 2 , so does F(X), and so F(X) is the directed colimit of a diagram, indexed by a set of cardinality ℵ 2 , of finitely presented P -scaled Boolean algebras; since all A p are countable, it follows that B = F(X) ⊗ A has cardinality at most ℵ 2 .

We claim that B has cardinality exactly ℵ 2 . Indeed, for every ξ < ω 2 , denote by u ξ the constant function on the singleton {123} with value ξ. The pair v ξ def = (123, u ξ ) belongs to X with p ≤ 123 = ∂v ξ whenever p ∈ P ; thus ṽξ ∈ F(X) (p) .

Hence, the Boolean subalgebra V ξ def = {0, ṽξ , ¬ṽ ξ , 1} of F(X), endowed with the ideals

V (p) ξ def = {0, ṽξ } , if p = ∅ , V ξ , if p = ∅ , for p ∈ P ,
defines a finitely presented P -scaled Boolean algebra V ξ , and the inclusion map from V ξ into F(X) defines a morphism V ξ → F(X) in Bool P , which in turns yields a morphism e ξ : V ξ ⊗ A → F(X) ⊗ A in A. Now pick any u ∈ A 123 \ {0}.

Using the canonical isomorphisms V ξ ⊗ A ∼ = A 123 × A ∅ ∼ = A 123 , it can be verified that the elements e ξ (u), for ξ < ω 2 , are pairwise distinct. (Think of e ξ (u) as the constant map with value u on the clopen subset of the Stone space of F(X) associated to v ξ .) Finally, towards a contradiction, we shall suppose that B has a Cevian operation . Set X (k) def = {x ∈ X | ∂x has height k within P } , for every nonnegative integer k. In particular, X (k) is nonempty iff k ∈ {0, 1, 2, 3}, so X is the disjoint union of X (0) , X (1) , X (2) , X (3) . Further, X (1) = ∂ -1 {1, 2, 3}.

For each x ∈ X, the map ρ x def = π X x ⊗ A is a surjective lattice homomorphism from B onto A ∂x (cf. 2.6.7, 3.1.2, and 3.1.3 in [START_REF] Gillibert | From Objects to Diagrams for Ranges of Functors[END_REF]). In particular, if x ∈ X (1) , then ∂x ∈ {1, 2, 3}, thus A ∂x ∼ = {0, 1}, and we may pick b Since all B x are finite, they are finitely presented within S, thus we can apply the Armature Lemma [START_REF] Gillibert | From Objects to Diagrams for Ranges of Functors[END_REF]Lemma 3.2.2] to those data, with the B x in place of the required S x and the identity of B in place of χ. We get an isotone section σ : P ֒→ X of ∂ such that the family σ(p) | p ≤ q in P ) to A. This means that for all p ≤ q in P , the square represented in Figure 7.1 is commutative.

x ∈ B such that ρ x (b x ) = 1. For those x, B x def = {0, b x } is a 0-sublattice of B. Now for each x ∈ X (2) ∪ X (3) , it

B σ(q)

A q We have thus proved that the elements c ij , for i = j in [START_REF] Baker | Free vector lattices[END_REF], satisfy Conditions (1)-(4) in the statement of Lemma 4.3; a contradiction. We obtain the following object (as opposed to diagram) version of Corollary 5.13. Corollary 7.3. There exists a non-Cevian bounded completely normal distributive lattice with countably based differences, of cardinality ℵ 2 . Hence, B ′ is not a homomorphic image of Cs c G for any ℓ-group G or of Id c G for any representable ℓ-group G.

Proof. Let B ′ be obtained by adding a new top element to B. Since B is an ideal of B ′ and B is not Cevian, neither is B ′ (cf. Lemma 5.3).

The last part of the statement of Corollary 7.3 follows immediately, using Lemma 5.3, from Propositions 5.5 and 5.10.

Remark 7.4. A blunt application of [START_REF] Gillibert | From Objects to Diagrams for Ranges of Functors[END_REF]Lemma 3.4.2] (called there CLL) to the non-lifting result obtained in Corollary 5.13 would have yielded, in the statement of Corollary 7.3, a counterexample of cardinality ℵ 3 (as opposed to ℵ 2 ). In order to get around that difficulty, we are applying here the Armature Lemma to the result of Lemma 4.3, which can be viewed as a "local" version of Corollary 5.13. This technique was first put to full use in Gillibert [START_REF]Categories of partial algebras for critical points between varieties of algebras[END_REF]. It was instrumental in the proof, in Gillibert deep paper [START_REF] Gillibert | The possible values of critical points between varieties of lattices[END_REF], that the congruence class of any finitely generated lattice variety V determines the pair consisting of V and its dual variety. Remark 7.5. In the sequel [START_REF]From non-commutative diagrams to anti-elementary classes[END_REF] to the present paper, we investigate an apparently innocuous extension of the construction A ⊗ S, denoted there by A ⊗ λ Φ S. This construction, applied to S def = A (the diagram introduced in Section 4) yields for example that for any infinite cardinal λ, the class of principal ideal lattices of all Abelian ℓ-groups with order-unit is not closed under L ∞λ -elementary equivalence.

Problem. Let D be a Cevian lattice with zero and with countably based differences. Is there an Abelian ℓ-group G such that D ∼ = Id c G?

The counterexample given in Remark 5.11 shows that "Cevian" alone is not sufficient to get representability as Id c G, while Corollary 7.3 shows that "countably based differences" alone is also not sufficient. On the other hand, both "Cevian" and "countably based differences" are preserved under retracts, while it is not known whether any retract of a lattice of the form Id c G, for G an Abelian ℓ-group, has this form (cf. [START_REF] Wehrung | Spectral spaces of countable Abelian lattice-ordered groups[END_REF]Problem 2]). This would rather suggest a negative answer to the Problem above.
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Corollary 4 . 2 .

 42 The diagram A def = Id c A is commutative diagram of completely normal distributive lattices with zero and closed 0-lattice homomorphisms.

Lemma 4 . 3 . 1 )

 431 There is no family (c ij | i = j in [3]) of elements of A 123 satisfying the following statements: (Each c ij belongs to the range of α 123 ij . (2) a i ≤ a j ∨ c ij whenever {i, j} is either {1, 2} or {2, 3}. (3) c ij ∧ c ji = 0 whenever {i, j} is either {1, 2} or {2, 3}. (4) c 12 ∧ c 23 ≤ c 13 ≤ c 12 ∨ c 23 . Proof. We shall introduce a P[3]-indexed commutative diagram D of bounded distributive lattices with 0-lattice homomorphisms. We set D ∅ def = {0}, D 1 = D 2 = D 3 = 2 def = {0, 1}, and D p def = O k (cf. Subsection 2.2) whenever p ∈ {12, 13, 23, 123} has k elements. Each δ p

Figure 4 . 2 .

 42 The verification of the following claim is straightforward.Claim 1. D is a commutative diagram of bounded distributive lattices with 0-lattice homomorphisms.

Figure 4 . 2 .

 42 Figure 4.2. The diagram D

. 6 )

 6 Similar arguments, using (4.5), yield the relations c 23 ≍ (µbc) + within A 23 and c 13 ≍ (λµa ′c) + within A 13 . (4.7) Condition (4), together with (4.6) and (4.7), thus yields (λab) + ∧ (µbc) + ∝ (λµa ′c) + ∝ (λab) + ∨ (µbc) + within A 123 . (4.8)

Definition 5 . 1 .

 51 Let D be a distributive lattice with zero. A binary operation on D is Cevian if the following conditions hold: (Cev1) x ≤ y ∨ (x y) for all x, y ∈ D; (Cev2) (x y) ∧ (y x) = 0 for all x, y ∈ D; (Cev3) x z ≤ (x y) ∨ (y z) for all x, y, z ∈ D. A distributive lattice with zero is Cevian if it has a Cevian operation.

Proposition 5 . 5 .

 55 Let G be an ℓ-group. Then Cs c G is a Cevian lattice. Proof. For any x ∈ Cs c G, pick γ(x) ∈ G + such that x = γ(x) and set x y def = γ(x) G γ(y) , for all x, y ∈ Cs c G . Let x, y, z ∈ Cs c G with respective images x, y, z under γ. It follows from the equation

  particular, 2[p] ⊗ S = S p . For a morphism ϕ : A → B between finitely presented P -scaled Boolean algebras and an atom b of B, we define b ϕ as the unique atom of A such that b ≤ ϕ(b ϕ ). Then the product morphism ϕ ⊗ S def = σ |b|B |b ϕ |A | b ∈ At B goes from A⊗ S to B⊗ S.

  • S def = A = Id c A, where A is the diagram introduced in Section 4. Lemma 7.1. A is a subcategory of S, closed under all small directed colimits and finite products.Proof. The statement about finite products is straightforward. Now let(D, δ i | i ∈ I) = lim -→ Dwithin the category of all distributive lattices with zero and 0-lattice homomorphisms, where D

  follows from the lower finiteness of X that the 0-sublattice B x of B generated by all elements of B of the form either b u or b u b v , where u, v ∈ X (1) ↓ x, is finite 3 . For any x ∈ X, B x is thus a finite 0-sublattice of B. Denote by ϕ x : B x ֒→ B the inclusion map, and by ϕ yx : B x ֒→ B y the inclusion map in case x ≤ y. HenceB def = (B x , ϕ y x | x ≤ y in X) is an X-indexed commutative diagram in S.

χ

  = (χ p | p ∈ P ) def = (ρ σ(p) ↾ B σ(p) | p ∈ P ) is a natural transformation from Bσ def = (B σ(p) , ϕ σ(q)

Figure 7 . 1 .

 71 Figure 7.1. The natural transformation χ For each p ∈ {1, 2, 3}, σ(p) ∈ X (1) thus B σ(p) = 0, b σ(p) and χ p (b σ(p) ) = ρ σ(p) (b σ(p) ) = 1 , so, using the commutativity of the diagram of Figure 7.1 with q def = 123,

Finally, the inequalities (b σ( 1 )

 1 b σ(2) ) ∧ (b σ(2) b σ(3) ) ≤ b σ(1) b σ(3) ≤ (b σ(1) b σ(2) ) ∨ (b σ(2) b σ(3) )hold (use Lemma 5.2), thus, applying χ 123 , we getc 12 ∧ c 23 ≤ c 13 ≤ c 12 ∨ c 23 .

  123) consists of the single map α 123 ij , which is the inclusion map from A ij into A 123 . , which is also the inclusion map from A 3 into A 123 . • A(1, 123) consists of the two distinct maps α 123 12 • α 12 1 (which is also the inclusion map) and α 123 13 • α 13 1 (which sends a to a ′ ) from A 1 into A 123 . The diagram A is partly represented in Figure

	• A(2, 123) consists of the single map α 123 2	= α 123 12 • α 12 2 = α 123 23 • α 23 2 , which
	is also the inclusion map from A 2 into A 123 .
	• A(3, 123) consists of the single map α 123 3	= α 123 13 • α 13 3 = α 123 23 • α 23 3

  This follows immediately from Lemma 5.8. Proposition 5.10. Let G be a representable ℓ-group. Then Id c G is naturally (in the functorial sense) a homomorphic image of Cs c G. In particular, it is a Cevian lattice.Proof. By Lemma 5.3 and Proposition 5.5, it suffices to prove that Id c G is a homomorphic image of Cs c G. By Lemma 5.9, the assignment x → x ℓ defines a meet-homomorphism from Cs c G onto Id c G, and this naturally in G. It is obviously a surjective join-homomorphism.Remark 5.11. We observed in[START_REF] Wehrung | Spectral spaces of countable Abelian lattice-ordered groups[END_REF] Example 10.6] that the class of all lattices of the form Id c G, with G an Abelian ℓ-group, is not closed under homomorphic images. Since every Abelian ℓ-group is representable and by Proposition 5.10, it follows that not every Cevian distributive lattice with zero is isomorphic to Id c G for some Abelian ℓ-group G.

	By Bigard
	et al. [5, Théorème 1.2.16], it thus suffices to prove that (u+x-u)∧(v+y-v) belongs
	to x ∧ y

ℓ whenever u, v ∈ G.

This will include "degenerate" cases such as the one where all λ i are zero (resp., positive) and should not cause any problem in the sequel.

In the original statement of the Armature Lemma, we need Bx to be defined whenever x is a certain kind of ideal of X. However, since (X, ∂) is a principal lifter of P , it suffices here to consider the case where x is a principal ideal, which is then identified to its largest element.