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Filtrations associated to some two-to-one transformations

Christophe Leuridan

January 6, 2020

Abstract

The aim of the present paper is the study of filtrations indexed by the non-
positive integers associated to (non-invertible) measure-preserving maps. We es-
tablish a necessary and sufficient condition for the filtration associated to some
skew-products to be Kolmogorovian, i.e. to have a trivial tail σ-field at time −∞.
This condition inproves on Meilijson’s result.

More specifically, we focus on dyadic filtrations associated to two-to-one maps
provided by skew-products, like [Id, T ] or [T−1, T ]. Determining whether these
filtrations can or cannot be generated by some sequence of independent random
variables is often difficult, although Vershik’s criteria provide tools to investigate
this question.

In this paper, we revisit many classical examples of filtrations associated to two-
to-one maps provided by skew-products. The first examples are rather simple and
are given as an illustration of Vershik’s intermediate criterion. The last two ones
are much more involved and yield non-product-type filtrations. Our purpose is to
give a more complete and readable presentation of the proofs already existing.

MSC Clasification : 37A05,60J05.
Keywords : measure-preserving maps, skew products, dyadic filtrations, product-type
filtration, standardness, Vershik’s criteria, split-word process, nibbled-word process.

1 Introduction

The classification up to isomorphism of the measure-preserving maps in probabilility
spaces is one of the main topics in ergodic theory and the notion entropy is a key
tool in this theory. Classical ergodic properties (ergodicity, mixing property, exactness,
‘Bernoulliness’) are also invariant by isomorphisms, and can be used to prove that two
dynamical systems are not isomorphic.

When one works with non-invertible measure-preserving maps, it is also interesting
to study the standardness or non-standardness of ‘the’ associated filtration (indexed by
the non-positive integers). Let us explain how to construct this filtration.

1.1 Filtration associated to a measure-preserving map

Let (E, E , π) be a probability space and R be a measure-preserving map on (E, E , π).
The sequence of σ-fields (R−nE)n≥0 is non-increasing. Reverting time yields a filtration
(namely a non-decreasing family of σ-fields) indexed by the non-positive integers.
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To give a probabilistic interpretation, fix a random variable Z taking values in E,
with law π, defined on some probability space (Ω,A,P). Assume the existence of a
transition kernel K such that

∀y ∈ E, ∀B ∈ E , K(y,B) = π[Z ∈ B|R(Z) = y].

One gets a stationnary Markov process with transition kernel K by setting

∀n ≤ 0, Zn := R|n| ◦ Z.

Its natural filtration (indexed by the non-positive integers) is given by

∀n ≤ 0, FZn := σ((Zk)k≤n) = σ(Zn) = Z−1(RnE).

Of course, looking at this filtration is interesting only when the measure-preserving map
R is not invertible. In this case, many ergodic properties of R can be viewed as properties
of the filtration (FZn )n≤0 thus defined.

For example, one can check 1 that the tail σ-field at time −∞ is

FZ−∞ :=
⋂
n≤0

FZn = Z−1
( ⋂
n≤0

RnE
)
.

Therefore, the filtration (FZn )n≤0 is Kolmogorovian (namely FZ−∞ is trivial under P) if
and only if the transformation R is exact (namely

⋂
n≥0R

−nE is trivial under π).

Another interesting property is dyadicity. By definition, one says that a filtration
(Fn)n≤0 on (Ω,A,P) has independent increments if for every n ≤ 0, one can find a ran-
dom variable ξn, independent of Fn−1 such that Fn = Fn−1∨σ(ξn). Such an independent
complement is called an innovation at time n since it carries ‘the new information’ at
time n. Furthermore, if each innovation ξn is uniform on some finite set possibly de-
pending on n (respectively some set finite of constant size r), the filtration (Fn)n≤0 is
poly-adic, (respectively r-adic).

One checks that the filtration (FZn )n≤0 associated to the transformation R is dyadic
if and only if R is two-to-one, namely if for π-almost every y ∈ E, the probability
measure K(y, ·) has two atoms, each one having measure 1/2.

For example, the map R2 : x 7→ b2xc from I := [0, 1[ to itself preserves the uniform
measure on I, and is two-to-one since the associated transition kernel K is given by

∀y ∈ I, K(y, ·) =
1

2
(δy/2 + δ(1+y)/2).

Actually, R2 acts as a Bernoulli shift on the dyadic expansions. Indeed, if the dyadic
expansion of x ∈ I is

x =
∞∑
n=1

an(x)

2n
,

then the dyadic expansion of R2(x) is

b2xc =
∞∑
n=2

an(x)

2n−1
=
∞∑
n=1

an+1(x)

2n
.

1The σ-field Z−1
(⋂

n≤0 R
nE
)

is contained in FZn = Z−1(RnE) for every n ≤ 0, hence in FZ−∞.

Conversely, if A ∈ FZ−∞, then for each n ≤ 0, one can find Bn ∈ RnE such that A = Z−1(Bn). The set
B := lim infn→−∞Bn belongs to

⋂
n≤0 R

nE and one has A = Z−1(B). The reverse inclusion follows.
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Furthermore, if Z is a uniform random variable with values on I, the natural filtration

of the process (Zn)n≤0 defined by Zn = R
|n|
2 (Z) is also the natural filtration of the i.i.d.

sequence (ξn)n≤0 defined by ξn = a1−n(Z). By Kolmogorov’s zero-one law, the filtration
(FZn )n≤0 is Kolmogorovian since it is product-type (i.e. generated by some sequence
independent random variables).

Yet, Vershik [23, 24] discovered that Kolmogorovian dyadic filtrations are not nec-
essarily product-type. He provided counterexamples with the help of criteria charac-
terizing the product-type filtrations among the poly-adic filtrations. Vershik’s theory
has been transcribed into the language of stochastic processes by Émery & Schacher-
mayer [4], and later by Laurent [11, 12, 13].

In the present paper, we will apply these criteria to well-known examples of dyadic
filtrations associated to two-to-one measure-preserving maps. The existing proofs of
their productness or non-productness are scattered in the literature, are sometimes in-
completely given and difficult to read, at least for probabilists. All these exemples are
provided by skew products.

1.2 Skew products

Let F be a countable set with size ≥ 2 and µ a probability measure on F giving positive
mass to every point of F . Call S the Bernoulli shift on FZ− defined by

S(f)(n) := f(n− 1) for every f ∈ FZ− and n ∈ Z−.

Here, we define Bernoulli shifts on FZ− instead of FZ+ because we will work with
filtrations indexed by the non-positive integers.

Given a family (Tk)k∈F of invertible measure-preserving maps on some probability
space (G,G, Q), we define the skew product R = S n (Tk)k∈F by

R(f, g) := (S(f), Tf(0)(g)).

The transformation R thus defined preserves the measure µ⊗Z−⊗Q and is not inversible.
More precisely, the inverse images by R of any element (f̃ , g̃) ∈ FZ−×G are the elements
(f̃x, T−1

x g̃), where f̃x ∈ FZ− denotes the sequence obtained by concatenation of f̃ and
x, defined by (f̃x)(n) = f̃(n+ 1) for every n ≤ −1 and (f̃x)(0) = x.

Fix an FZ− × E-valued random variable Z = (ξ, γ) with law µ⊗Z− ⊗ Q. Then the
law of Z given R(Z) is given by the following transition kernel

∀(f̃ , g̃) ∈ FZ− ×G, K((f̃ , g̃), ·) =
∑
x∈F

µ{x}δ(f̃x,T−1
x g̃).

Moreover, the random variable ξ0 has law µ and is independent of R(Z) = (S(ξ), Tξ0(γ)).

We can go farther and define two processes (γn)n≤0 and (Zn)n≤0 by

∀n ≤ 0, γn := Tξn+1 ◦ · · · ◦ Tξ0(γ) and Zn := R|n|(Z) = (S|n|(ξ), γn),

From the remarks above and from the recursion relation γn = T−1
ξn

(γn−1), we derive:

• the filtration (FZn )n≤0 has independent increments and the process (ξn)n≤0 is a
sequence of innovations, i.e.

∀n ≤ 0,FZn = FZn−1 ∨ σ(ξn) with ξn independent of FZn−1;

In particular, if F is finite and µ is uniform, the filtration (FZn )n≤0 is poly-adic.
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• the processes (γn)n≤0 and (Zn)n≤0 are stationary Markov chains whose evolutions
are governed by the sequence (ξn)n≤0, since for every n ≤ 0, γn = T−1

ξn
◦ γn−1;

• if for Q-almost every z ∈ G, the images (Tk(z))k∈F are pairwise distinct, then the
processes (γn)n≤0 and (Zn)n≤0 generate the same filtration since for every n ≤ 0,
the knowledge of (γk)k≤n is sufficient to recover (ξk)k≤n.

This last remark will be used to give simpler descriptions of the filtration (FZn )n≥0.

Two questions naturally arise. First, is the tail σ-field FZ−∞ trivial, or equivalently,
is the transformation R exact? Answering this question is not always simple. The
next question is more involved: is the filtration (FZn )n≤0 product-type, i.e. can it be
generated by some sequence of independent random variables? By Kolmogorov zero-
one law, the triviality of the tail σ-field FZ−∞ is necessary. But this condition is far from
being sufficient although (FZn )n≤0 admits a sequence of innovations, namely (ξn)n≤0.
Actually, the process (ξn)n≤0 may generate a filtration which is strictly included in
(FZn )n≤0 even if FZ−∞ is trivial. However, in some cases, the filtration (FZn )n≤0 can be
generated by some other sequence of independent random variables, whereas in other
cases it cannot. Many examples are given in subsection 1.4.

1.3 Exactness of Meilijson’s skew products

In section 2, we focus on the particular case considered by Meilijson where the transfor-
mations Tk are the powers of a same invertible transformation T , namely when F ⊂ Z
and Tk = T k for every k ∈ F . In this case, the skew product R will be denoted by SnT .
We get the following characterization.

Theorem 1 Call d the greatest common divisor of all differences k − ` where k and `
range over F . Then S n T is exact (namely F−∞ is trivial) if and only if T d is ergodic.

The difficult part in theorem 1 is the implication T d ergodic ⇒ S n T exact. The
proof involves the spectral measure of T .

A weaker statement was stated by Meilijson and proved by a different method in [17].
Actually, Meilijson worked with the bilateral shift S on FZ; we use the notation S be-
cause it is natural extension S of ‘our’ unilateral shift S. The transformation S n T
considered by Meilijson is invertible and is the the natural extension of ‘our’ transfor-
mation S n T . With these notations, Meilijson stated that (see [17]):(

d = 1 and T ergodic
)
⇒ S n T is a K-automorphism,(

Tn ergodic for every n ≥ 1
)
⇒ S n T is a K-automorphism.

Our theorem 1 brings two improvements: our assumption (T d is ergodic) is weaker than
Meilijson’s ones, and our conclusion (S n T exact) is stronger than Meilijson’s one.
Indeed, the natural extension of an exact transformation is always a K-automorphism,
but the converse is not true.

J.P. Thouvenot and the referee drew my attention to the fact that an application of
theorem 1 greatly simplifies the proof of a theorem of Lindenstrauss, Peres and Schlag
(Theorem 1.4 in [16]), which states that any Bernoulli system of entropy h ∈]0,∞] has
K-partitions of conditional entropy η for any η ∈]0, h]. In section 2, we give a more
complete presentation of this theorem before proving it with the help of theorem 1.
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1.4 Examples of two-to-one skew products

Consider again skew products Sn (Tk)k∈Z. These skew products are two-to-one when F
is a pair {k1, k2} and µ is the uniform measure on F . Then, when one only looks at the
second component in the product FZ−×E, the apparent effect of Sn(Tk)k∈F is to apply
at random Tk1 or Tk2 , that is why the skew product is simply denoted by [Tk1 , Tk2 ]. In
this case, the innovations (ξn)n≥0 are uniform on the pair F , so the filtration (Fn)n≥0

is dyadic. We now present classic examples of such transformations, from the simplest
to the hardest, where the associated filtration (FZn )n∈Z is known to be product-type or
not product-type.

The first two examples are given in Vershik’s original paper [23], the former being
only mentionned at page 744, without any proof (a proof is given in [15] in a slightly
more general context).

Theorem 2 (Vershik) If T is an irrational rotation on the circle, then the filtration
associated to [T, T−1] are product-type. Hence, the natural filtration of an irrational
random walk on the circle indexed by the non-positive integers is product-type.

We shall see that the same result holds with [T, Id], or more generally with [T1, T2]
when the Ti are the translations x 7→ x+αi on R/Z provided that α1−α2 is irrational.

Let us mention two stronger results concerning [T, Id].

In [5], Feldman and Rudolph prove that the filtration associated to [T, Id] is product-
type when T is rank-1. This condition includes all pure-point spectrum transformations
and in particular irrational rotations of the circle.

Furthermore, Rudolph et Hoffman prove in [10] (part 6) that if T is an irrational
rotation on the circle, then [T, Id] is isomorphic to a unilateral Bernoulli shift.

Theorem 3 (Vershik) Let Γ = 〈a, b〉 be the free group with two generators a, b. Set
G = {0, 1}Γ endowed with the uniform measure, and call Ta, Tb the translations on G
defined by Tag(x) = g(a−1x), Tbg(x) = g(b−1x). Then the filtration associated to [Ta, Tb]
is not product-type. Hence, the natural filtration of a random walk on G with steps given
by T−1

a , T−1
b and indexed by the non-positive integers is not product-type.

The next result was conjectured by Vershik and proved by Heicklen and Hoffman
in [7].

Theorem 4 (Heicklen - Hoffman) If T is a non-trivial bilateral Bernoulli shift, then
the filtrations associated to [T, T−1] are not product-type. Hence, the natural filtration of
a symmetric random walk in a random scenery on Z indexed by the non-positive integers
is not product-type.

When T is a non-trivial bilateral Bernoulli shift, the filtration associated to [T, T−1]
is closely related to the random walk in random scenery. Our presentation of the proof
of theorem 4 relies on a non-stationary sub-process, called the nibbled-word process by
Laurent [11], which generates a dyadic but not product-type filtration. Since the study
of [T, Id] also involves (a copy of) the nibbled-word process, a very similar proof shows
that the filtration associated to [T, Id] is not product-type. Using Sinai’s theorem stating
that every automorphism of a Lebesgue space with positive entropy admits a non-trivial
bilateral Bernoulli shift as a factor, one can deduce the following generalisation.
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Corollary 5 Let T be any automorphism of a Lebesgue space with positive entropy.
Then the filtrations associated to [T, Id] and [T, T−1] are not product-type.

What happens for automorphisms with null entropy? We saw that when T is an
irrational rotation, [T, Id] and [T, T−1] provide product-type filtrations. Yet, Hoffman
constructed an automorphism T with null entropy such that [T, Id] provides a not-
product-type filtration [8].

Theorem 6 (Hoffman) One can construct an automorphism of a Lebesgue space with
null entropy such that the filtration associated to [T, Id] is not product-type.

The proofs of these results rely on Vershik’s criteria. The orginal proofs are written
in the language of ergodic theory and in an allusive way (some notations are not defined
and some proofs are omitted), so they are difficult to read, at least for probabilists. The
purpose of the present paper is to explain Vershik’s criteria with a probabilist point of
view and to provide proofs that are more accessible to non-specialists.

Plan of the paper

In section 2, we prove theorem 1 and apply it to simplify the proof of theorem 1.4.
of Lindenstrauss, Peres and Schlag [16].

In section 3, we introduce Vershik’s criteria to characterize product-type filtrations
among dyadic filtrations indexed by the non-positive integers.

In section 4, we prove theorems 2 and 3 to warm-up.

Sections 5 and 6 are devoted to the proof of theorem 4, corollary 5 and theorem 6.

Last, section 7 provides the proof of some auxiliary results.

2 Proof and applications of theorem 1

2.1 Proof of theorem 1

Let F ⊂ Z be a countable set with size ≥ 2, µ be a probability measure on F giving
positive mass to every point of F and d be the greatest common divisor of all differences
k− ` where k and ` range over Z. Call S the Bernoulli shift on FZ− (endowed with the
probability measure µ⊗Z−) defined by

S(f)(n) := f(n− 1) for every f ∈ FZ− and n ∈ Z−

and let T be an automorphism of the probability space (G,G, Q).

To prove that SnT is exact if and only if T d is ergodic, we use a characterization of
the ergodicity of T d involving the spectral measures associated to T . Let us recall the
definition of these measures. More details can be found in [3], chapter 1, section 4.

Since T is an automorphism of the probability space (G,G, Q), the Koopman oper-
ator UT : f 7→ f ◦ T from L2(Q) to L2(Q) is unitary. For every f ∈ L2(Q), there exists
a unique finite measure σf on the unit circle U of C such that

∀k ∈ Z,

∫
U
zk dσf (z) = 〈f, UkT f〉L2(Q) =

∫
G
f × (f ◦ T k) dQ.

The measure σf thus defined is called the spectral measure of UT associated to f .
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Lemma 7 Let d ≥ 1 be an integer, Ud = {z ∈ U : zd = 1} and

L2(Q)0 = {g ∈ L2(Q) :

∫
U
gdQ = 0}.

Then T d is ergodic if and only if σg(Ud) = 0 for every g ∈ L2(Q)0.

Proof. Call Pd the orthogonal projection on Ker(UdT − Id). Let f ∈ L2(Q). Then

||Pdf ||2L2(Q) = 〈f, Pdf〉L2(Q) and Pdf = lim
n→+∞

1

n

n−1∑
k=0

f ◦ T kd in L2(Q),

by Von Neumann ergodic theorem (see for example [18], chapitre 2) applied to T d. Thus

||Pdf ||2L2(Q) = lim
n→+∞

1

n

n−1∑
k=0

〈f, f ◦ T kdf〉L2(Q) = lim
n→+∞

∫
U

( 1

n

n−1∑
k=0

zkd
)

dσf (z) = σf (Ud)

by Lebesgue dominated convergence theorem, since

∀z ∈ U,
1

n

n−1∑
k=0

zkd −−−−−→
n→+∞

1Ud
(z).

But T d is ergodic if and only if Ker(UdT − Id) contains only the Q-almost surely constant
fonctions, namely if Pdf = 0 for every f ∈ L2(Q)0. Lemma 7 follows.

We will also use the following result on characteristic functions.

Lemma 8 Let µ be a probability measure on Z. Call F its support, d the greatest
common divisor of all differences k − ` where k and ` range over F . For every z ∈ U,
set

∀z ∈ U, ϕ(z) =
∑
k∈Z

µ{k}zk =
∑
k∈F

µ{k}zk.

The function ϕ thus defined is the characteristic function of µ. Then |ϕ(z)| = 1 if and
only if z belongs to Ud.

Proof. Fix k0 ∈ F and let z ∈ U.

For every z ∈ Ud and k ∈ F , zk−k0 = 1 since d divides k − k0, hence we get
ϕ(z) = zk0 , so |ϕ(z)| = 1.

Conversely, if |ϕ(z)| = 1, then equality holds in the triangle inequality

|ϕ(z)| ≤
∑
k∈F
|µ(k)zk| = 1,

so the complex numbers µ(k)zk lie on a same half-line with origin 0, namely R+z
k0 .

Since |z| = 1, we get that zk = zk0 for every k ∈ F , so zk−` = 1 for every (k, `) ∈ F 2.
But Bézout’s lemma tell us that d can be written as some (finite) linear combination
with integer coefficients of the differences k − ` where (k, `) ranges over F 2. Hence
zd = 1, which achieves the proof.

We now prove theorem 1.
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Proof. As we have done in the introduction, we fix a random variable Z = (ξ, γ) with
law π = µ⊗Z− ⊗Q, and we set for every n ≤ 0,

Zn = (S n T )|n|(Z) = (S|n|(ξ), T ξn+1+···+ξ0(γ)).

Then S n T is exact if and only if FZ−∞ is trivial, namely if E[R|FZ−∞] = E[R] a.s. for
every R ∈ L2(FZ0 ). But the set of all R ∈ L2(FZ0 ) satisfying this equality is a closed
linear subspace of L2(FZ0 ), so one needs only to consider the case where

R = I{
(ξm+1,...,ξ0)=(xm+1,...,x0)

}f(γ),

with m ≤ 0, (xm+1, . . . , x0) ∈ F |m| and f ∈ L2(Q).

Set Sn = −ξn+1 − · · · − ξ0 for every n ≤ 0 2 and sm = −xm+1 − · · · − x0. Then the
random variable R above can be written

R = I{
(ξm+1,...,ξ0)=(xm+1,...,x0)

}f(T sm(T−Sm(γ)
))
.

Since T−Sm(γ) is FZm-measurable whereas (ξm+1, . . . , ξ0) is independent of FZm, one has

E[R|FZm] = cf
(
T sm

(
T−Sm(γ)

))
with c := µ{xm+1} · · ·µ{x0}.

In the same way, for every n ≥ 0, the random variable T−Sm−n(γ) is FZm−n-measurable
whereas the random variable Sm − Sm−n = ξm−n+1 + · · ·+ ξm is independent of FZm−n
and has distribution µ∗n, so

E[R|FZm−n] = c
∑
k∈Z

µ∗n(k)(f ◦ T sm−k)
(
T−Sm−n(γ)

)
.

Call g the the orthogonal projection of f on L2(Q)0 and ϕ the characteristic function
of µ, like in lemma 8. Since the law of T−Sm−n(γ) is Q, and since T preserves Q, we get

Var
(
E[R|FZm−n]

)
= c2

∑
k,`∈Z

µ∗n(k)µ∗n(`) Cov(f ◦ T sm−k(γ), f ◦ T sm−`(γ))

= c2
∑
k,`∈Z

µ∗n(k)µ∗n(`)〈g ◦ T sm−k, g ◦ T sm−`〉L2(Q)

= c2

∫
U

( ∑
k,`∈Z

µ∗n(k)µ∗n(`)zk−`
)

dσg(z)

= c2

∫
U

∣∣∣∑
k∈Z

µ∗n(k)zk
∣∣∣2dσg(z)

= c2

∫
U
|ϕ(z)|2ndσg(z).

On the one hand, E[R|FZm−n] −−−−−→
n→+∞

E[R|FZ−∞] in L2(P ) by the backwards martingale

convergence theorem. On the other hand and |ϕ(z)| ≤ 1 for every z ∈ U with equality
if and only if z ∈ Ud. Hence, letting n go to infinity, we get

Var
(
E[R|F−∞]

)
= c2σg(Ud).

2We choose this definition with the minus signs to have the same recursion relation as in the usual
random walks, namely Sn = Sn−1 + ξn.
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Hence theorem 1 follows, by lemma 7.

Remark : the implication ‘FZ−∞ trivial =⇒ T d ergodic’ can be proved directly as
follows. Assume that FZ−∞ is trivial. By definition of d, the support F of µ is contained
in some coset r+ dZ, so the random variables ξ−n+1 + · · ·+ ξ0 takes values in nr+ dZ.

Let B ∈ G be a subset such that T−d(B) = B. Since the subsets T k(B), k ∈ Z, are
also invariant by T d, we get that for every n ≥ 0,

{γ ∈ B} =
{
T ξ−n+1+···+ξ0(γ) ∈ T rn(B)

}
=
{

(S n T )n(ξ, γ) ∈ FZ− × T rn(B)
}
.

Hence {γ ∈ B} ∈ FZ−∞, so Q(B) = P[γ ∈ B] ∈ {0, 1}. The ergodicity of T d follows.

2.2 A question of Sinai on K-partitions

In the whole section, (E, E , π) denotes a non-trivial Lebesgue probability space and τ
an automorphism of (E, E , π).

To any random variable X on (E, E , π) with values in R (or more generally in any
Polish space), we associate the measurable partition (X−1(r))r∈R of E.

Rokhlin’s theory shows that there is a bijective correspondance between the mea-
surable partitions up to the null sets and the sub-σ-fields of E up to the null sets.

By definition, τ is a K-automorphism if there exists some sub-σ-field S0 of E such
that

• τ−1S0 ⊂ S0 (equivalently, the family (τkS0)k∈Z is non-decreasing);

• ∨n∈Z τ
−nS0 = E modulo π (equivalently τkS0 → E as k → +∞);

• ⋂n∈Z τ
−nS0 = {∅, E} modulo π (equivalently τkS0 → {∅, E} as k → −∞).

Such a σ-subalgebra S0 is called a K-sub-σ-field, and the measurable partition ξ0 cor-
responding to S0 is called a K-partition.

Bernoulli automorphisms are K-automorphisms. Indeed, if γ is an independent
generator of a Bernoulli automorphism, then the partition

∨
n≤0 τ

−nγ is a K-partition.

The following question was raised by Sinai: fix a (non-trivial) K-automorphism τ
on a Lebesgue space (E, E , π). Given a K-partition ξ0, what are the possible values for
the conditional entropy

Hc(ξ0) := H
(
ξ0

∣∣ ∨
n≥1

τ−nξ0

)
?

Before going on, it is worth giving a few explanations. Call S0 the σ-field corre-
sponding to ξ0.

• Since the family (τkS0)k∈Z is non-decreasing, one has Hc(ξ0) = H(ξ0|τ−1ξ0).

• If γ is a countable generator of τ with finite entropy, then
∨
n≤0 τ

−nγ is a K-
partition whose conditional entropy equals h(τ).

• Even if ξ0 is uncountable, Hc(ξ0) can still be finite; in this case the conditional law
of ξ0 given

∨
n≥1 τ

−nξ0 is almost surely carried by some random countable set.

9



• One has Hc(ξ0) > 0. To see this, we argue by contradiction, assuming that Hc(ξ0)
equals 0. Then ξ0 would be measurable with regard to

∨
n≥1 τ

−nS0; by translation,
ξ−1 would be measurable with regard to

∨
n≥2 τ

−nS0, and so on, hence ξ0 would
be measurable with regard to the tail σ-field

⋂
n∈Z τ

−nS0, which is assumed to be
trivial. By translation, each σ-field τ−nS0 would be trivial, so E itself would be
trivial.

• One hasHc(ξ0) ≤ h(τ). Indeed, one may assume that ξ is the partition (X−1(r))r∈R
associated to some real random variable X. Then

Hc(ξ0) = H
(
X
∣∣(X ◦ τn)n≥1

)
= sup

f
H
(
f ◦X

∣∣(X ◦ τn)n≥1

)
,

where the supremum above is taken over all Borel functions f : R → R taking
countably many values. But given such a function f , the discrete random variable
f ◦X yields a countable partition ξf of E, so

h(τ) ≥ h(τ, ξf ) = H
(
ξf
∣∣ ∨
n≥1

τ−nξf
)

= H
(
f ◦X

∣∣(f ◦X ◦ τn)n≥1

)
≥ H

(
f ◦X

∣∣(X ◦ τn)n≥1

)
.

The statement follows.

• The inequality Hc(ξ0) ≤ h(τ) may be strict.

Using results obtained by den Hollander and Steif [9] on generalizations of the
[T, T−1] process, Vershik shows in [26] that if τ is Bernoulli with infinite entropy, then
Hc(ξ0) can attain any value in ]0,+∞].

In [16] (Theorem 1.4), Lindenstrauss, Peres and Schlag show that when τ is Bernoulli
(with finite or infinite entropy), Hc(ξ0) can attain any value in ]0, h(τ)].

Using Austin’s theorem [1] (every ergodic automorphism is isomorphic to the direct
product of some Bernoulli shift and some automorphism with arbitrary small entropy),
one sees that this conclusion still holds when τ is only assumed to be a K-automorphism.
Let us explain why. Given ε > 0, Austin’s theorem ensures that τ is isomorphic to
S × T , where S is Bernoulli and h(T ) ≤ ε, and both factors S and T are necessarily
K-automorphisms. Fix a K-partition ζ0 of T . Then Hc(ζ0) ≤ h(T ) ≤ ε. For every
K-partition η0 of S, the partition η0 ⊗ ζ0 is a K-partition of S × T and Hc(η0 ⊗ ζ0) =
Hc(η0) +Hc(ζ0). Since Hc(η0) can attain any value in ]0, h(S)], Hc(η0 ⊗ ζ0) can attain
any value in ]Hc(ζ0), h(S) +Hc(ζ0)], therefore any value in ]ε,Hc(τ)− ε].

Let us come back to the particular case of Bernoulli shifts. The proof given by
Lindenstrauss, Peres and Schlag relies on the following theorem (Theorem 1.1 in [16]).

Theorem 9 (Lindenstrauss, Peres, Schlag) Endow the space {−1, 1}Z with the
probability measure µ̃⊗Zp , where µ̃p = (1 − p)δ−1 + pδ1. For every λ ∈ [1/2, 1[, define a

stationnary process (Y
(λ)
n )n∈Z on the probability space ({−1, 1}Z, µ̃⊗Zp ) by

∀ω ∈ {−1, 1}Z, Y (λ)
n (ω) :=

∑
k≥0

ωn+kλ
k.

Then there exists a Lebesgue-negligible subset N of [1/2, 1[, which does not depend on p
such that for all p ∈ [1/3, 2/3] and λ ∈ [1/2, 1[\N such that H(p) + log2 λ > 0,
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• the left tail σ-field
⋂
n∈Z σ((Yk)k≤n) is trivial,

• H(Y
(λ)

0 |σ((Y
(λ)
n )n≤−1)) = H(p) + log2 λ.

Hence, if T denotes the shift operator defined on {−1, 1}Z by T (ω)n = ωn−1, the parti-

tion ξ
(λ)
0 of {−1, 1}Z associated to the random variable Y

(λ)
0 is a K-partition of T and

Hc(ξ
(λ)
0 ) = H(p) + log2 λ.

The proof of this theorem involves very technical analytic estimates. The major
difficulty is to show that the left tail σ-field is trivial.

As suggested by Thouvenot and the referee, we show below that an application of our
theorem 1 yields a simpler proof. Our construction involves Meilijson’s skew products
and uses Ornstein’s theorem stating that Bernoulli automorphisms having the same
entropy are isomorphic.

2.3 Alternative proof using Meilijson’s skew products

Let F = {0, 1} and Λ be a finite non-empty alphabet.

Let S be the unilateral shift on FZ− defined by S(f)(n) = f(n − 1), and S be the
bilateral shift on FZ defined by the same formula.

Let T be the bilateral shift on ΛZ defined by T (g)(n) = g(n− 1).

Fix p ∈]0, 1[ and set µp = (1−p)δ0 +pδ1. Let ν be any probability measure on Λ. We
endow FZ− , FZ and ΛZ with their product σ-fields and with the probability measures

P = µ⊗Z− , P = µ⊗Z, and Q = ν⊗Z.

Hence S, S and T are Bernoulli shifts.

The skew products S o T and S o T are the transformations on FZ− × ΛZ and
FZ × ΛZ given by S o T (f, g) =

(
S(f), T f(0)(g)

)
and S o T (f, g) =

(
S(f), T f(0)(g)

)
.

These transformations preserve the probability measures P ⊗Q and P ⊗Q.

The next result is classical.

Proposition 10 The transformation S o T is Bernoulli with entropy H(µp) + pH(ν).

Proof. One may assume that Λ = [[1, s]]. Set qj = ν{j} for each j ∈ [[1, s]]. Call
γ = {C0, . . . , Cs} the partition of FZ × ΛZ defined by

C0 := {(f, g) ∈ FZ × ΛZ : f(0) = 0},
Cj := {(f, g) ∈ FZ × ΛZ : (f(0), g(0)) = (1, j)} if j 6= 0.

Then (P ⊗ Q)(Cj) = rj , where r0 = 1 − p and rj = pqj for every j ∈ [[1, s]]. We claim
that the partition γ is an independent generator of S o T , so S o T is Bernoulli and

h(S o T ) = H(γ) = (1− p) log2(1− p) +

s∑
j=1

pqj log2(pqj) = H(µp) + pH(ν).

Hence what we have to prove is that the translated partitions γn = (SoT )−nγ for n ∈ Z
are independent and generate the product σ-field on FZ × ΛZ.

11



To check this, introducing random variables is helpful. Endow the space FZ × ΛZ

with the probability measure P⊗Q. Call (Xn)n∈Z and (Yn)n∈Z the coordinate processes
associated to the factors FZ and ΛZ. Under the probability measure P ⊗Q, these two
processes are independent, the random variables (Xn)n∈Z are i.i.d. with law µp and the
random variables (Yn)n∈Z are i.i.d. with law ν.

We define a ‘random walk’ (Σn)n∈Z on Z and indexed by Z by

Σn =
∑

1≤i≤n
Xi if n ≥ 0, Σn = −

∑
n+1≤i≤0

Xi if n ≤ 0.

Since Σn − Σn−1 = Xn ∈ {0, 1} for every n ∈ Z, the process (Σn)n∈Z is non-decreasing
and almost surely visits every integer.

To the partition γ = {C0, . . . , Cs}, we associate a discrete random variable, still
denoted by γ and taking values in [[0, s]], as follows: for each (f, g) ∈ FZ × ΛZ, we call
γ(f, g) the index of the only block of the partition γ which contains (f, g), so γ(f, g) = j
whenever (f, g) ∈ Cj . Observe that γ = X0Y0, i.e. γ = 0 on the event [X0 = 0], whereas
γ = Y0 on the event [X0 6= 0].

Given n ∈ Z, the random variable associated partition γn is γ◦(SoT )n = X−nYΣ−n .
Indeed, a recursion shows that for every (f, g) ∈ FZ × ΛZ,

(S o T )n(f, g) =
(
S
n
(f), T f(0)+···+f(−n+1)(g)

)
if n ≥ 0,

(S o T )n(f, g) =
(
S
n
(f), T−f(1)−···−f(|n|)(g)

)
if n ≤ 0,

so

(X0, Y0)(S o T )n(f, g) =
(
f(−n)), g(−f(0)− · · · − f(−n+ 1))

)
if n ≥ 0,

(X0, Y0)(S o T )n(f, g) =
(
f(−n), g(f(1) + · · ·+ f(−n))

)
if n ≤ 0,

Now, fix N ≥ 0 and j−N , . . . , jN in [[0, q]]. Call I the subset of all i ∈ [[−N,N ]] such
that ji 6= 0 and Ic its complement in [[−N,N ]]. For every n ∈ [[−N,N ]], set

sn =
∑

1≤i≤n
1I(i) =

∣∣I ∩ [[1, n]]
∣∣ if n ≥ 0,

sn = −
∑

n+1≤i≤0

1I(i) = −
∣∣I ∩ [[n+ 1, 0]]

∣∣ if n ≤ 0.

On the event
[
(X−nYΣ−n , . . . , XnYΣn = (j−n, . . . , jn)

]
, we have Σi = si for every i ∈ I.

Thus[
(X−nYΣ−n , . . . , XnYΣn = (j−n, . . . , jn)

]
=
⋂
i∈Ic

[Xi = 0] ∩
⋂
i∈I

[Xi = 1;Ysi = ji].

Since the integers (si)i∈I are all different, we get

(P ⊗Q)
[
(X−nYΣ−n , . . . , XnYΣn = (j−n, . . . , jn)

]
=

∏
i∈Ic

(1− p)×
⋂
i∈I

(pqj)

=
∏

i∈[[−N,N ]]

rj .

The independence of the random variables (XnYΣn)n∈Z follows.
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Moreover, the sequences (Xn)n∈Z and (Ym)m∈Z can be recovered from (XnYΣn)n∈Z.
Indeed, for every n ∈ Z, Xn = 1[XnYΣn 6=0]. For every m ∈ Z, the random variable
Im = inf{n ∈ Z : Σn ≥ m} is completely determined by sequence (Xn)n∈Z and almost
surely finite; on the almost sure event [Im ∈ Z], one has ΣIm = m and XIm = 1, so
Ym = XImYΣIm

.

The proof is complete. �

We now use Theorem 1 to get a K-partition of SoT and we compute its conditional
entropy.

Proposition 11 Keep the notations of proposition 10. Let Z be the canonical projection
(f, g) 7→ (f

∣∣
Z−
, g) from FZ×ΛZ to FZ− ×ΛZ. Call C the product σ-field on FZ− ×ΛZ,

Z0 = Z−1C and ζ0 the measurable partition of FZ × ΛZ associated to Z. Then ζ0 is a
K-partition and

Hc(ζ0) = H
(
ζ0

∣∣(S o T )−1ζ0

)
= H(µp).

Proof. Define the coordinate processes (Xn)n∈Z and (Yn)n∈Z, and the ‘random walk’
(Σn)n∈Z as above. Then Z = ((Xk)k≤0, (Yn)n∈Z) can be viewed as a random variable
on FZ− × ΛZ whose law is P ×Q.

By construction, (S × T ) ◦ Z = Z ◦ (S o T ). Since Z ◦ (S o T ) is a measurable
function of Z, we derive (S × T )−1(Z0) ⊂ Z0.

The sequence (Yn)n∈Z is the second component of Z and for each n ∈ Z, X−n
is the 0-coordinate of the first component of Z ◦ (S × T )n. Therefore, the σ-fields
((S × T )−n(Z0))n∈Z generate the product σ-field C on FZ × ΛZ.

Now, define a stationary Markov process (Zn)n∈Z by Zn = Z ◦ (S × T )−n and call
(FZn )n≤0 its natural filtration. Then for all n ∈ Z, (S × T )nZ = Z−1

n C ⊂ FZn and for
n ≤ 0, we have Zn = (S × T )−n ◦Z. By Theorem 1, the measure-preserving map S × T
is exact since T is ergodic, hence the tail σ-field FZ−∞ is trivial. But⋂

n∈Z
(S × T )nZ ⊂ FZ−∞.

Hence, ζ0 is a K-partition of S × T .

Last,

H
(
ζ0

∣∣(S o T )−1ζ0

)
= H

(
Z|Z ◦ (S o T )

)
= H

(
Z|(S o T ) ◦ Z)

)
= H(X0) = H(µp),

since the knowledge of Z is equivalent to the knowledge of X0 and (SoT )(Z) and since
X0 is independent of (S o T )(Z). �

Let us now derive a simpler proof of Theroem 1.4 of Lindenstrauss, Peres, Schlag [16].

First, consider the case where τ has a finite entropy. By Ornstein’s theorem,
(bilateral) Bernoulli shifts with same entropy are isomorphic. Hence, τ is isomor-
phic to the Cartesian product of n skew products S o T like above, provided that
n × (H(µp) + pH(ν)) = h(τ). Let ξ0 be the partition corresponding to ζ⊗n0 via this
isomorphism. Then ξ0 is a K-partition and Hc(ξ0) = Hc(ξ0|τ−1ξ0) = n×H(µp). Since
the only constraint on the integer n ≥ 1, the probability p ∈]0, 1[ and the probability
measure ν is the relation n × (H(µp) + pH(ν)) = h(τ), the value of Hc(ξ0) can attain
any real number in ]0, h(τ)].
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The case where τ has an infinite entropy can be trated in a similar way by choosing a
sequence (pn)n≥1 of parameters in ]0, 1[ and a sequence (νn)n≥1 of probability measures
on finite alphabets (Λn)n≥1 in such a way that

∑
n≥1H(µpn) is the target value and∑

n≥1 pnH(νn) = +∞, and by considering an infinite Cartesian product of Meiljson’s
skew products (Sn o Tn)n≥1 like above. �

3 Vershik’s tools

In this section, we introduce Vershik’s standardness criteria. Most of the material of
this section is abridged from [14].

3.1 Immersion, productness and standardness

Unless otherwise specified, the filtrations (Fn)n≤0 considered here are defined on a given
probability space (Ω,A,P), are indexed by the non-positive integers, and have essentially
separable σ-field F0. This means that F0 can be generated by countably many events
(modulo the null sets), or equivalently that the Hilbert space L2(F0) is separable.

An important notion in the theory of filtrations is the notion of immersion.

Definition 12 Let (Fn)n≤0 and (Gn)n≤0 be two filtrations. One says that (Fn)n≤0 is
immersed in (Gn)n≤0 if for every n ≤ 0, Fn ⊂ Gn and F0 and Gn are conditionally
independent with regard to Fn. An equivalent definition is that every martingale in
(Fn)n≤0 is still a martingale in (Gn)n≤0.

We refer the reader to [4] or [12] to find more details on this notion. In the present
paper, the immersions will follow from the next lemma.

Lemma 13 Let (Fn)n≤0 and (Gn)n≤0 be two filtrations such that Fn ⊂ Gn for every
n ≤ 0. If (Fn)n≤0 and (Gn)n≤0 admit a common sequence of innovations, then (Fn)n≤0

is immersed in (Gn)n≤0.

We now introduce the notion of standard filtration.

Definition 14 A filtration (Fn)n≤0 is standard if it is isomorphic to another filtration
(possibly defined on another probability space) which is immersed in some product-type
filtration (having also essentially a separable final σ-field).

Actually, when Vershik defined standardness, he considered only poly-adic filtra-
tions, and he defined standardness as productness: according to Vershik’s definition,
standard poly-adic filtrations are product-type poly-adic filtrations. Fortunately, these
two definitions of standardness coincide on poly-adic filtrations.

Theorem 15 Every poly-adic filtration immersed in some product-type filtration is also
product-type.

Actually, this non-trivial statement is a key result in Vershik’s theory and relies on
Vershik’s second level criterion, stated later in this section.
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We now introduce the three Vershik’s properties (first level, intermediate and second
level, according to the terminology used by Émery, Schachermayer and Laurent) which
leads to the three corresponding Vershik’s criteria. Defining the three Vershik’s proper-
ties is interesting since each of them helps to understand the other ones, although we
essentially use Vershik’s intermediate criteria in the present paper.

3.2 Vershik’s first level property

Let (Fn)n≤0 be a poly-adic filtration: for each n ≤ 0 one can find a uniform random
variable ξn with values in some finite set Fn such that ξn is an innovation at time n of
the filtration (Fn)n≤0, namely

Fn = Fn−1 ∨ σ(ξn) mod P, with ξn independent of Fn−1.

One can check that the sequence of sizes (|Fn|)n≤0 is uniquely determined. This sequence
is called the adicity of the filtration (Fn)n≤0.

When (Fn)n≤0 is dyadic, the set Fn can be chosen to be independent of n. For
example, we will take F = {0, 1} (respectively F = {−1, 1}) when we work with the
filtration associated to [Id, T ] (respectively [T, T−1]).

A first important thing to understand is the way to get any sequence of innovations
from the original one.

Lemma 16 From (ξn)n≤0, one can get another sequence of innovations as follows: for
each n ≤ 0, fix any Fn−1-measurable random permutation Σn on Fn and set ηn = Σn(ξn).
Conversely, every sequence of innovations of (Fn)n≤0 with values in the sets (Fn)n≤0

can be obtained in this way.

The next important thing to understand is that two different systems of innovations
may carry a different information. The simplest example is the situation where (ξn)n≤0

are (independent and) uniform on {−1, 1} and ηn = ξn−1ξn for every n ≤ 0. By
lemma 16, (ηn)n≤0 is still a sequence of innovations, but it carries less information that
the sequence (ξn)n≤0, since ξ0 is independent of (ηn)n≤0.

This remark opens the possibility for the filtration (Fn)n≤0 to be product-type even
if it is not generated by the original sequence of innovations (ξn)n≤0. The example of
the simple irrational random walk on the circle R/Z, indexed by Z−, whose filtration
is product-type although it is not generated by the sequence of steps, shows that this
situation can actually occur, as we shall see in section 4.

The possibility or the impossibility of choosing a good sequence of innovations to
approach a given random variable leads to Vershik’s first level property.

Fix a separable complete metric space (A, d), endowed with the Borel σ-field. Denote
by L1(F0;A) the set of all classes modulo almost sure equality of F0-mesurable random
variables X taking values in A, such that for some (equivalently, for all) a ∈ A, the
real-random variable d(a,X) is integrable. Endow L1(F0;A) with the distance defined
by D(X,Y ) = E[d(X,Y )].

Definition 17 (First level Vershik property) Let X ∈ L1(F0;A). One says that X
satisfies Vershik’s first level property if for every ε > 0, one can approach X by some
measurable function of finitely many innovations of the filtration (Fn)n≤0 so that the
distance in L1(F0;A) is at most ε.
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3.3 Vershik’s intermediate property

For the sake of simplicity, we focus on r-adic filtrations only, although the definitions and
theorems below can be extended to all poly-adic filtrations. Actually, the simplifications
occur essentially in the notations, since we work whith the powers F h of a fixed set F
instead of products like

∏
−h+1≤k≤0 Fk.

In the whole subsection, we fix an r-adic filtration (Fn)n≤0 and a sequence (ξn)n≤0 of
innovations taking values in a set F of size r ≥ 2. As before, (A, d) denotes a separable
complete metric space, endowed with the Borel σ-field.

The definition of Vershik’s intermediate criterion relies on split-words processes,
on the quotients of `1-metrics on the sets AF

h
, h ≥ 0 by the action of r-ary tree

automorphisms, and on the notion of dispersion.

Definition 18 (Split-word processes with given final value and innovations)
Let X ∈ L1(F0;A). For every n ≤ −1, there exists an Fn-measurable random map Wn

from F |n| to A such that for each (xn+1, . . . , x0) ∈ A|n|, X = Wn(xn+1, . . . , x0) almost
surely on the event {(ξn+1, . . . , ξ0) = (xn+1, . . . , x0)}. Such a random map is almost
surely unique. The process (Wn, ξn)n≥0 thus defined is the split-word process associated
to X, to the filtration (Fn)n≤0 and to the innovations (ξn)n≤0.

The existence and the essential uniqueness that legitimise the definition above will
be established in section 7, lemma 49.

Note that W0 is the map which sends the empty sequence () ∈ F 0 on X. Informally,
if we want at time n ≤ 0 to predict the future value of X, there are 2|n| possible (non
necessarily distinct) values, one for each possible value of (ξn+1, . . . , ξ0). By definition,
Wn(xn+1, . . . , x0) is the value of X that we will get if (ξn+1, . . . , ξ0) = (xn+1, . . . , x0).

The recursion formula Wn(xn+1, . . . , x0) = Wn−1(ξn, xn+1, . . . , x0) shows that the
process (Wn, ξn)n≤0 is an inhomogeneous Markov chain and that (ξn)n≤0 is a sequence

of innovations of the the filtration (FW,ξn )n≤0. Hence the filtration (FW,ξn )n≤0 is immersed
in the filtration (Fn)n≤0.

If one fixes a total order on the set F and endowes each F |n| with the lexicographic
order, then each Wn can be viewed as a word of length 2|n| on the alphabet A, namely the
word (Wn(xn+1, . . . , x0))(xn+1,...,x0)∈F |n| . Furthermore, Wn is the left half or the right
half of Wn−1 according to the value of ξn. This explains the terminology ‘split-word
process’ used. Note that the alphabet A can be uncountable and that the successive
letters are not assumed to be independent unlike in the standard split-word process
considered by Smorodinsky [21], Laurent [11] and Ceillier [2].

We now give a formal model of the automorphism group Gh of the r-ary tree with
given height h ≥ 0. Call

Th =

h⋃
i=0

F i

the set of all sequences of elements of F with length ≤ h. The set Th can be viewed as
the set of all vertices of a r-ary tree with height h ≥ 0: the root is the empty sequence
(), and the r children of a given vertex (x0, . . . , xi−1) ∈ F i with i ≤ h−1 are the vertices
(x0, . . . , xi−1, xi) where xi ranges over F .

Assume now that h ≥ 1. To each family of permutations σ ∈ S(F )Th−1 , we associate
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a permutation gσ ∈ S(Th) preserving this tree structure by setting

gσ(x1, . . . , xi) =
(
σ() (x1) , σ(x1) (x2) , . . . , σ(x1, . . . , xi−1) (xi)

)
for every (x1, . . . , xi) ∈ Th. In this formula, the permutation σ(x1, . . . , xi−1) acts on the
subtrees under the vertex (x1, . . . , xi−1) and the permutations associated to the shortest
sequences are performed first.

Note that for every σ, τ ∈ S(F )Th−1 , gτ ◦ gσ = gτσ if one defines τσ by

τσ(x1, x2, . . . , xi) = τ
(
gσ(x1, . . . , xi)

)
◦ σ
(
x1, x2, . . . , xi

)
.

This justifies the following definition.

Definition 19 (Automorphism group of the r-ary tree Th) The set Gh := S(F )Th−1

endowed with the multiplication thus defined is a group and is isomorphic to the group
({gσ : σ ∈ Gh}, ◦), so we view Gh as the automorphism group of the r-ary tree Th. We

get an action of the group Gh on the set AF
h

by setting

∀(σ,w) ∈ Gh ×AF
h
, σ · w := w ◦ g−1

σ .

When F = {−1, 1}, the set S(F ) is the pair {Id,−Id}. Figure 1 below gives an
example of the action of such an automorphism on T3. The left part of figure 3.3
represents T3, the values of σ on each vertex of T2 (the + and - stand for Id and −Id)
and w: the images of the elements of {−1, 1}3 ordered in lexicographic order are denoted
by a,b,c,d,e,f,g,h. The right part indicates the images of each vertex of T3 and σ · w.
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Figure 1: The map σ : T2 → {−1, 1} is represented by the symbols 	 and ⊕ on all
vertices of the left tree but the leaves. The permutation gσ : T3 → T3 sends each vertex
of the left tree on the vertex on the right tree corresponding to the same label. The maps
w : {−1, 1}3 → A and gσ · w : {−1, 1}3 → A can be identified with the words abcdefgh
and feghdcab respectively.

We now define a metric on AF
h

and a metric modulo the r-ary tree automorphisms.

Definition 20 (Metric and pseudo-metric on AF
h
) For every u and v in AF

h
, set

δ−h(u, v) = δh(u, v) =
1

2h

∑
(x1,...,xh)∈Fh

d
(
u(x1, . . . , xh), v(x1, . . . , xh)

)
,

d−h(u, v) = dh(u, v) = min
g∈Gh

δh(u, g · v).
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In this definition, we use indifferently the index h or −h to handle lighter notations
in the next subsection, in which the height h will be equal to −n, where n ≤ 0 is an
instant prior to time 0.

The metric δ−h = δh is just the Hamming distance, normalized to vary between 0
and 1. It invariant under the action of the group Gh (each automorphism of the tree Th
induces a permutation on the leaves, i.e. on the set F h). The pseudo-metric d−h = dh
measures the shortest distance between the orbits modulo the action of the group Gh.

Remind the definition Gh := S(F )Th−1 given above. If h ≥ 2, choosing an element σ
in Gh is equivalent to choosing independently the permutation σ() in S(F ) and the |F |
elements (σx1)x1∈F in Gh−1 := S(F )Th−2 , where σx1(x2, . . . , xi) = σ(x1, x2, . . . , xi) for
every i ∈ [[0, h−1]] and (x1, . . . , xi) ∈ F i. From this observation, we derive the following
recursion relation (which is still valid when h = 1).

Proposition 21 Let h ≥ 1. For every u and v in AF
h
, set

dh(u, v) = min
ς∈S(F )

1

|F |
∑
x1∈F

dh−1

(
u(x1, ·), v(ς(x1), ·)

)
.

Last, we need to define the dispersion of random variables taking values in any
pseudo-metric space.

Definition 22 (Dispersion of an integrable random variable) Let (E, E) be any
measurable space, e be a measurable pseudo-distance on (E, E), and X be a random
variable with values in (E, E). By definition, the dispersion of a random variable X with
regard to e, denoted by disp(X, e), is the expectation of e(X ′, X ′′) where X ′ and X ′′ are
two independent copies of X defined on a same probability space.

We can now define Vershik’s intermediate property.

Definition 23 (Vershik’s intermediate property) Let X ∈ L1(F0;A). Denote by
(Wn, ξn)n≥0 the split-word process associated to X, to the filtration (Fn)n≤0 and to
the sequence of innovations (ξn)n≤0. One says that X satisfies Vershik’s intermediate
property if disp(Wn, dn)→ 0 as n→ −∞.

The next proposition shows that Vershik’s intermediate property can be rephrased
infn≤0 disp(Wn, dn) = 0 and that it depends only on the random variable X and the
filtration (Fn)n≤0.

Proposition 24 The quantities disp(Wn, dn) are a non-decreasing function of n and
they do not depend on the sequence of innovations (ξn)n≤0.

Let us explain informally why the second part is true. By lemma 16, replacing
(ξn)n≤0 with another sequence of innovations interchanges the letters in each word Wn

according to a random automorphism of the r-ary tree with height |n|. This operation
preserves the dispersion of the words Wn since the pseudo-metrics dn identify words
which are in the same orbit modulo the tree isomorphisms.

Proposition 24 will be proved at subsection 7.2 and will help us to show that Vershik’s
first level and intermediate properties are equivalent.
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3.4 Vershik’s second level property

Keep the notations of the last subsection. Vershik’s second level property relies on the
construction of a tower of measures with the help of Kantorovich-Rubinstein metrics.

Definition 25 (Kantorovich-Rubinstein metric) Let (E, ρ) be a non-empty sepa-
rable metric space. Call E′ the set of all probability measures on (E,B(E)) having a
finite first moment, namely the set of all probability measures µ on (E,B(E)) such that
for some (equivalently, for all) a ∈ E,∫

E
ρ(a, x) dµ(x) < +∞.

The Kantorovich-Rubinstein metric on E′ is defined by

ρ′(µ, ν) = inf
π∈Π(µ,ν)

∫
E2

ρ(x, y) dπ(x, y),

where Π(µ, ν) denotes the set of all probability measures on (E2,B(E2)) with margins µ
and ν.

One can check that the metric ρ′ is measurable with regard to the topology of
narrow convergence. The topology defined by ρ′ is finer than the topology of narrow
convergence, and these two topologies coincide when (E, ρ) is compact.

The space (E′, ρ′) is still a separable metric space, thus the construction above can
be iterated. Moreover, (E′, ρ′) is complete (or compact) whenever (E, ρ) is.

Definition 26 (Progressive predictions and Vershik’s second level property)
Let X ∈ L1(F0;A). The Vershik’s progressive predictions of X with regard to (Fn)n≤0

are the random variables πnX ∈ L1(Fn;A(n)) defined recursively by π0X = X taking
values in (A(0), d(0)) = (A, d), and for every n ≤ −1, πnX = L(πn−1X|Fn), taking
values in (A(n), d(n)) = ((A(n−1))′, (d(n−1))′). One says that X satisfies Vershik’s second
level property if disp(πnX, d

(n))→ 0 as n→ −∞.

Actually the quantities disp(πnX, d
(n)) considered in Vershik’s second level property

are the same as the quantities disp(Wn, dn) considered in Vershik’s intermediate prop-
erty, so these two properties are equivalent. One can check that they are also equivalent
to the first level property. The equality disp(πnX, d

(n)) = disp(Wn, dn) follows from the
next proposition, which can be be proved by recursion.

Proposition 27 Define recursively the map in : AF
|n| → A(n) for every n ≤ 0 by

i0 = IdA and for every n ≤ 0

in−1(w) =
1

|F |
∑
x∈F

δin(w(x,·)).

Then in is an isometry from the pseudo-metric space (AF
|n|
, dn) to the metric space

(A(n), d(n)). Moreover, given X ∈ L1(F0;A), the Vershik’s progressive predictions of
X can be derived from the split-word process (Wn)n≤0 associated to X by the formula
πnX = in(Wn).
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3.5 Vershik’s standardness criteria

We keep the notations of the last subsection. Since the three Vershik’s properties (first
level, intermediate, and second level) are equivalent (see subsection 7.2 and Theorem
4.9 in [14]), we do not distinguish them below. We can now state Vershik’s standardness
criteria.

Theorem 28 (Vershik standardness criteria), Let (Fn)n≤0 be an r-adic filtration
such that F0 is essentially separable. Then (Fn)n≤0 is product-type if and only if for ev-

ery separable complete metric space (A, d), every random variable in L1(F0;A) satisfies
Vershik’s property.

Considering every integrable random variable with values in any separable complete
metric space makes a lot of generality. Actually, the properties below simplify a bit the
verification of Vershik’s criteria.

Proposition 29 (Stability properties)

1. The set of all random variables in L1(F0;A) which satisfy Vershik’s property is
closed in L1(F0;A).

2. If X ∈ L1(F0;A) satisfies Vershik’s property then every measurable function of X
with values in some separable complete metric space satisfies Vershik’s property.

3. Let n ≤ 0 and X ∈ L1(Fn;A). Endow F with the discrete metric and A × F |n|
with the product metric. If X satisfies Vershik’s property, then the random variable
(X, ξn+1, . . . , ξ0) with values in the product A× F |n| satisfies Vershik’s property.

These stability properties allow us to restrict the class of separable complete metric
spaces considered. For example, one can consider only R endowed with the usual metric,
or the class of all finite subsets of N endowed with the discrete metric. And in many
cases, the checking work can be reduced much more.

Proposition 30 (Natural filtrations of Markov processes) Let (Xn)n≤0 be a (pos-
sibly inhomogeneous) Markov process in which each random variables Xn takes values in
some separable bounded complete metric space (possibly depending on n). Assume that
the filtration (FXn )n≤0 is r-adic.

1. Then (FXn )n≤0 is product-type if and only if each Xn satisfies Vershik’s property.

2. When the Markov process (Xn)n≤0 is stationary, (FXn )n≤0 is product-type if and
only X0 satisfies Vershik’s property.

4 First examples of application of Vershik’s criterion

In this section, we apply Vershik’s criterion to two rather simple situations, namely
[T, T−1] where T is an irrational rotation on the circle, and [Ta, Tb] where Ta and Tb are
shifts related to the free group with generators a and b.
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4.1 [T, T−1] when T is an irrational rotation on the circle

Endow T := R/Z with the quotient pseudo-metric d of the usual metric on R, and
with the uniform measure Q. Actually, d is a translation-invariant metric on T, and is
bounded above by 1/2. Fix an irrational real number α, denote by α its equivalence
class in T and call T the translation x 7→ x+α on T. Let F = {−1, 1}, µ be the uniform
law on F , and set π := µ⊗Z− ⊗Q.

The transformation [T, T−1] preserves π since T is an automorphism of (T,B(T), Q)
and [T, T−1] is exact by Theorem 1 (T 2 is ergodic since 2α is irrational). Equivalently,
‘the’ filtration associated to [T, T−1] is Kolmogorovian, and we have to show that it
is standard. To study this filtration, we fix a random variable

(
(ξk)k∈Z, γ

)
with law

µ⊗Z ⊗Q and we define a ‘random walk’ on Z and indexed by Z by

Sn := −ξn+1 − · · · − ξ0 if n ≤ 0,

Sn := ξ1 + · · ·+ ξn if n ≥ 0,

with the convention S0 = 0. Hence Sn − Sn−1 = ξn for every n ∈ Z.

For every n ∈ Z, set γn = T−Snγ = γ − Snα and Zn = ((ξk+n)n≤0, γn). Then for
every n ≤ 0, γn = γn−1− ξnα. As observed in the introduction, the process (γn)n∈Z is a
stationary Markov chain governed by the sequence (ξk)k∈Z, and ‘the’ filtration associated
to [T, T−1], i.e. (FZn )n≤0, is also the natural filtration of (γn)n≤0. By proposition 30,
one only needs to check that γ0 satisfies Vershik’s first level property.

Fix ε > 0. Since the subset Z + 2αZ+ is dense in R, the balls (B(2`α, ε/2))`∈Z+

cover T. By compactness, one can extract a finite covering (B(2`α, ε/2)`∈[[0,L]]. By
translation, one can replace [[0, L]] by any interval [[m,m + L]] with m ∈ Z. Hence
given an integer N ≥ 0, the random balls (B(2Skα, ε/2))k∈[[0,N ]] cover T as soon as
max(S0, . . . , SN )−min(S0, . . . , SN ) ≥ L. This happens with probability ≥ 1−ε provided
the integer N is sufficiently large.

Fix such an integer N and consider the stopping time

τ := inf{t ≥ −N : d(α(St − S−N ), γt) < ε/2}
= inf{t ≥ −N : d(2α(St − S−N ), γ−N ) < ε/2}.

Then the balls (B(2α(St − S−N ), ε/2))t∈[[−N,0]] cover T with probability ≥ 1 − ε since
(ξ−N+1, . . . , ξ0) has the same law as (ξ1, . . . , ξN ). Hence P [τ ≤ 0] ≥ 1− ε.

For each t ∈ [[−N + 1, 0]], the event {τ < t} = {τ ≤ t − 1} belongs to FZt−1, thus
the random variable ηt := (1{t≤τ} − 1{t>τ})ξt is an innovation at time t of the filtration

(FZn )n≤0. The random variable

γ̃0 := α

0∑
t=−N+1

ηt

is a measurable function of η−N+1, . . . , η0. Observe that whereas γ0 = γτ +αSτ whereas

on the event{τ ≤ 0}, γ̃0 = α
τ∑

t=−N+1

ξt − α
0∑

t=τ+1

ξt = α(Sτ − S−N ) + αSτ ,

so d(γ̃0, γ0) = d(α(Sτ − S−N ), γτ ) < ε/2 on this event. Hence

E[d(γ̃0, γ0)] ≤ ε

2
P [τ ≤ 0] +

1

2
P[τ > 0] ≤ ε

2
+
ε

2
= ε.

The proof is complete.
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Alternative proof using Vershik’s intermediate criterion. The split-word pro-
cess associated to the random variable γ0 and to the innovations (ξn)n≤0 is (Wn, ξn)n≤0,
where Wn is the map from {−1, 1}|n| to T defined by

∀n ≤ 0,Wn(xn+1, . . . , x0) = γn − α(xn+1 + · · ·+ x0).

To show that disp(Wn, dn) → 0 as n → −∞, we consider two independent copies γ′n
and γ′′n of the random variable γn, defined on a same probability space (Ω,A,P) and
call W ′n and W ′′n the corresponding copies of Wn.

Let ε > 0. Set

τn(xn+1, . . . , x0) = inf
{
t ∈ [[n, 0]] :

∣∣γ′n − γ′′n − 2α(xn+1 + · · ·+ xt)
∣∣ ≤ ε/2},

with the convention inf ∅ = +∞. Since the validity of the inequality τn(xn+1, . . . , x0) ≤ t
depends only on (xn+1, . . . , xt), we can define an automorphism of the binary tree with
height |n| as follows: for every t ∈ [[−n,−1]] and (xn+1, . . . , xt) ∈ {−1, 1}t+n,

σn(xn+1, . . . , xt) = −Id if t < τn(xn+1, . . . , x0),

σn(xn+1, . . . , xt) = −Id if t ≥ τn(xn+1, . . . , x0).

If τn(xn+1, . . . , x0) = t ∈ [[−n, 0]], then

W ′n(xn+1, . . . , x0)−W ′′n (gσ(xn+1, . . . , x0)) = γ′n − α(xn+1 + · · ·+ x0)− γ′′n
+α(−xn+1 − · · · − xt + xt+1 + · · ·+ x0)

= γ′n − γ′′n − 2α(xn+1 + · · ·+ xt).

Hence d
(
W ′n(xn+1, . . . , x0),W ′′n (gσ(xn+1, . . . , x0)

)
≤ ε/2 whenever τn(xn+1, . . . , x0) ≤ 0.

Since d is bounded above by 1/2, we get

disp(Wn, dn) ≤ dn(W ′n,W
′′
n ◦ gσ) ≤ ε

2
+

1

2
× 1

2|n|

∑
(xn+1,...,x0)∈{−1,1}|n|

1{τn(xn+1,...,x0)>0}.

In this formula, the mean over all (xn+1, . . . , x0) ∈ {−1, 1}|n| is the probability that a
random walk on T with uniform initial position and with uniformly steps in {−α, α}
does not attain the ball B(0, ε/2) in at most |n| steps. This probability goes to 0, so
disp(Wn, dn)→ 0 as n→ −∞. Hence γ(0) satisfies Vershik’s intermediate criterion.

Remark 31 Let α1 and α2 be two real numbers α1 and α2 such that α1−α2 is irrational.
Call Ti the translations x 7→ x + αi on T. Then the filtration associated to [T1, T2] is
product-type.

Proof. Let α = (α1 − α2)/2 and β = (α1 + α2)/2. Consider again the process (γn)n∈Z
defined above. The process (γ′n)n∈Z defined by γ′n = γn−nβ generates the same filtration
as (γn)n∈Z, which is product-type by theorem 2. But for every n ≤ 0,

γ′n = γn−1 − ξnα− nβ = γ′n−1 − ξnα− β =

∣∣∣∣ γ′n−1 − α1 if ξn = 1
γ′n−1 − α2 if ξn = −1

.

Since T1(x) 6= T2(x) for every x ∈ R/Z, one deduces that the natural filtration of the
process (γ′n)n≤0 is ‘the’ filtration associated to [T1, T2].
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4.2 Filtration associated to [Ta, Tb], where Ta and Tb are shifts related
to the free group with generators a and b

We prove the following slight generalization of Vershik’s theorem:

Let Γ = 〈a, b〉 be the free group with two generators a, b. Let A be a countable
alphabet endowed with the discrete metric d and with a probability measure ν which
gives a positive probability to each letter. The translations Ta and Tb on the set G = AΓ

defined by Tag(x) = g(a−1x) and Tbg(x) = g(b−1x) preserve the measure Q := ν⊗Γ.
Moreover, the filtration associated to [Ta, Tb] is not product-type. Hence, the natural
filtration of a random walk on G with steps given by T−1

a , T−1
b and indexed by the

non-positive integers is not product-type.

Let γ be a random variable taking values in G, with law Q and ξ = (ξn)n≤0 be a
sequence of independent uniform random variables taking values in F := {a, b}, inde-
pendent of γ. Set Z = (ξ, γ). Then ‘the’ filtration associated to [Ta, Tb] is the natural
filtration of the process (Zn)n≤0 defined by

Zn = [Ta, Tb]
|n|(Z) =

(
(ξk+n)n≤0, γn

)
where γn = Tξn+1 ◦ · · · ◦ Tξ0(γ).

A recursion shows that for every n ≤ 0 and y ∈ Γ,

γn(y) = γ
(
ξ−1

0 · · · ξ−1
n+1y

)
.

We want to apply Vershik’s intermediate criterion to the random variable γ(1), where
1 is the identity element of the group Γ. Since γ(1) = γn(ξn+1 · · · ξ0) and since random
map γn is FZn -measurable, the split-words process (Wn, ξn)n≤0 associated to the random
variable γ(1) and to the innovations (ξn)n≤0 is given by

∀n ≤ 0, ∀(xn+1, . . . , x0) ∈ F |n|, Wn(xn+1, . . . , x0) = γn(xn+1 · · ·x0).

Since Γ is the free group generated by a and b, the map (xn+1, . . . , x0) 7→ xn+1 · · ·x0

from F |n| to Γ is injective, so the ‘letters’ of the ‘word’ Wn, namely the random vari-
ablesWn(xn+1, . . . , x0) where (xn+1, . . . , x0) ∈ F |n| are independent and equidistributed.
Therefore, up to the numbering of the positions, the process (Wn, ξn)n≤0 is the process
studied by Smorodinsky in [21].

Let δn be the Hamming distance on AF
|n|

(defined as the proportion of sites at

which two maps in AF
|n|

disagree), Gn the automorphism group of the binary tree with
height |n| and dn be the quotient pseudo-distance of dn by Gn. Let γ′ and γ′′ be two
independent copies of γ, defined on a same probability space (Ω,A,P). Then γ′ and
γ′′ are also independent copies of γn. Call W ′n and W ′′n the corresponding copies of Wn,
and Sn the number of sites in F |n| at which W ′n and W ′′n disagree.

Since Γ is the free group generated by a and b, the map (xn+1, . . . , x0) 7→ xn+1 · · ·x0

from F |n| to Γ is injective. Since γ′ and γ′′ are two independent i.i.d processes, we derive
that Sn has a binomial distribution with parameters 2|n| and p, where

p = 1−
∑
z∈A

ν{z}2 > 0.

By the large deviation inequality (see lemma 50), one gets for every ε ∈]0, p[,

P [δn(W ′n,W
′′
n ) ≤ ε] = P [Sn ≤ 2|n|ε] ≤ fp(ε)2|n| where fp(ε) =

(p
ε

)ε(1− p
1− ε

)1−ε
.
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For every σ ∈ Gn, the random map W ′′n ◦ σ is independent of W ′n and has the same

law as Wn. Since the size of Gn is 22|n|−1, we get

P
[
dn(W ′n,W

′′
n ) ≤ ε

]
= P

[
∃σ ∈ Gn : δn(W ′n,W

′′
n ◦ gσ) ≤ ε

]
≤ 1

2

(
2fp(ε)

)2|n|
.

The limit of 2fp(ε) as ε tends to 0 is 2(1− p).
If p > 1/2, then choosing ε sufficiently small yields P [dn(W ′n,W

′′
n ) ≤ ε] → 0 as

n→ −∞, so disp(Wn, dn) remains bounded away from 0 since

disp(Wn, dn) = E
[
dn(W ′n,W

′′
n )
]
≥ εP

[
dn(W ′n,W

′′
n ) ≤ ε

]
.

Hence the random variable γ(1) does not satisfy Vershik’s criterion.

If p ≤ 1/2, one can fix a positive integer d and consider the split-word process
associated to the random variable (γ(1), . . . , γ(ad−1)) with values in Ad, namely the

process (W̃n)n≤0 where W̃n is the map from F |n| to A given by

W̃n(xn+1, . . . , x0) =
(
γn(xn+1 · · ·x0), . . . , γn(xn+1 · · ·x0a

d−1)
)
.

Replacing γn with γ′ and γ′′ yields two independent copies W̃ ′n and W̃ ′′n . Since the
products xn+1 · · ·x0a

k with (xn+1, . . . , x0) ∈ F |n| and k ∈ [[0, d− 1]] are all different, the

number of sites in F |n| at which W̃ ′n and W̃ ′n disagree has a binomial distribution with
parameters 2|n| and pd, where

pd = 1−
(∑
z∈A

ν{z}2
)d
.

If d is chosen sufficiently large, pd > 1/2 so the same argument as above applies and the
random variable (γ(1), . . . , γ(ad−1)) does not satisfy Vershik’s criterion.

In all cases, the natural filtration of the process (Zn)n≤0 is not product type. The
proof is complete.

Remark 32 The same argument as the argument given at the end of subsection 5.3
shows that this conclusion still holds if the discrete alphabet (A, d) is replaced by any
separable complete metric space.

5 Proof of theorem 4 and corollary 5

We now focus with the transformation [T, T−1], when T is a Bernoulli shift. We will see
at the end of the section why the situation is essentially the same if one looks at [T, Id].

Thus, in the whole section, F denotes the pair {−1, 1}, so S(F ) = {−Id, Id}, and µ
denotes the uniform law on the pair F . We fix a separable complete metric space (A, d),
called alphabet A, endowed with a non-trivial probability measure Q. Let T be the shift
on G = AZ defined by T (g)(s) = g(s− 1). Then the transformation [T, T−1] is the map
from FZ− ×AZ to itself defined by

[T, T−1](f, g) =
((
f(k − 1)

)
k≤0

,
(
g(s− f(0))

)
s∈Z

)
.

This maps preserves the probability measure π = µ⊗Z− ⊗ ν⊗Z.
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Let (ξn)n∈Z and γ = (γ(s))s∈Z be two independent random variables with respective
laws µ⊗Z and ν⊗Z, defined on same probability space (Ω,A,P). Then Z :=

(
(ξn)n≤0, γ)

)
is a random variable with law π. By definition, ‘the’ filtration associated to [T, T−1] is
the filtration (FZn )n≤0 generated by the process (Zn)n≤0 where

∀n ≤ 0, Zn = [T, T−1]−n(Z) =
(
(ξk+n)k≤0, (γ(s− ξ0 − · · · − ξn+1))s∈Z)

)
.

5.1 Random walk in a random scenery and nibbled words process

Let (Sn)n∈Z be the ‘random walk’ on Z and indexed by Z given by

Sn = −ξn+1 − · · · − ξ0 if n ≤ 0,

Sn = ξ1 + · · ·+ ξn if n ≥ 0,

with the convention S0 = 0. The random variables (ξn)n∈Z are the steps fo this sym-
metric simple random walk since Sn − Sn−1 = ξn for every n ∈ Z.

The i.i.d. process γ is independent of this random walk and we view it as a random
scenery: the random variable γ(s) is the color at the site s. At time n, the position
of the symmetric random walk is Sn, and the color seen at this position is γ(Sn). The
process ((ξn, γ(Sn)))n∈Z is called a random walk in a random scenery and the shifted
map γ(Sn + ·) is the scenery viewed from the position Sn. A survey of the results
involving [T, T−1] and the random walk in a random scenery (in Zd) can be found in
Steif’s paper [22]. 3

From the process
(
(ξn, γ(Sn + ·))

)
n≤0

, we derive a process (Wn, ξn)n≤0 by setting

Wn =
(
γ(Sn + i)

)
i∈In where In = I|n| = {−|n|, 2− |n|, . . . , |n| − 2, |n|}.

Note that In is exactly the set of all possible values of the sum xn+1 + · · · + x0 when
xn+1, · · · , x0 range over F = {−1, 1}. The next properties of process (Wn, ξn)n≤0 follow
immediatly from its definition. Such a process was studied by Laurent in [11] and called
nibbled-word process.

Proposition 33 (Properties of the process (Wn, ξn)n≤0) For every n ≤ 0,

• the random word Wn is FZn -measurable since it is the image the random variable
γ(Sn + ·) by the canonical projection on AIn.

• the random word Wn is made with |n| + 1 letters chosen independently in the
alphabet A according to the law ν ;

• since Wn =
(
Wn−1(ξn + k)

)
k∈In, one gets Wn from Wn−1 by suppressing the first

letter if ξn = 1 and the last letter if ξn = −1 ;

• the random variable ξn is uniform on F = {−1, 1} and independent on FZn−1,

therefore on FW,ξn−1 = σ
(
(Wk, ξk)k≤n−1

)
.

3For every n ≤ 0, Zn =
(
(ξk+n)k≤0, γ(Sn + ·)

)
so (FZn )n≤0 is the natural filtration of the process

(ξn, γ(Sn + ·))n≤0. Actually, (FZn )n≤0 is also the natural filtration of the process (γ(Sn + ·))n≤0 since
T−1(g) 6= T (g) for ν⊗Z− -almost every g ∈ AZ. Using the recurrence of the symmetric simple random
on Z, one could check that (FZn )n≤0 is also the natural filtration of the process

(
(ξn, γ(Sn))

)
n∈Z. We

shall not use these refinements in the present paper.
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As a result, (ξn)n≤0 is a sequence of innovations of the filtration (FW,ξn )n≤0, so

(FW,ξn )n≤0 is dyadic. But (ξn)n≤0 is also a sequence of innovations of the larger filtration

(FZn )n≤0, hence (FW,ξn )n≤0 is immersed in (FZn )n≤0.

Therefore, to prove that (FZn )n≤0 is not product-type, it is sufficient to prove that

(FW,ξn )n≤0 is not product-type. By Theorem 28, is is sufficient to check that the random
variable γ(0) = γ(S0) = W0(0) does not satisfy the Vershik property. We will work with
the Vershik intermediate property, so we introduce the split-word process associated to
γ(0) and to the innovations (ξn)n≤0. This processus is closely related to the nibbled-word
process introduced above. Some notations are necessary to spell out this relation.

Definition 34 Let n ≤ 0. Call sn the map from F |n| to In defined by sn(xn+1 · · · , x0) =

xn+1 + · · ·+ x0. To every word w ∈ AIn, we associate its extension w = w ◦ sn ∈ AF |n|.

Figure 2 illustrates the example example where n = −3 and w sends −3,−1, 1, 3
on a, b, c, d respectively (so w is identified with the word abcd). Each element of F 3 is
viewed as a leaf of the binary tree with height 3. The map w send the elements of F 3

in lexicographic order on a, b, b, c, b, c, c, d.

abcd

abc

1

ab

1

a

1

b

1

bc

1

b

1

c

1

bcd

1

bc

1

b

1

c

1

cd

1

c

1

d

1

Figure 2: w : F 3 → A when w = abcd ∈ AI3 .

Proposition 35 The split-word process associated to the random variable γ(0) and to
the innovations (ξn)n≤0 is (Wn, ξn)n≤0. This process generates the same filtration as the
nibbled-word process (Wn, ξn)n≤0.

Proof. For every n ≤ 0, the random map Wn is FZn -measurable and

γ(0) = γ(Sn + ξn+1 + . . .+ ξ0) = Wn(ξn+1 + . . .+ ξ0) = Wn(ξn+1, . . . , ξ0),

so γ(0) coincides with Wn(xn+1 · · · , x0) on the event
{

(ξn+1, . . . , ξ0) = (xn+1 · · · , x0)
}

.
Last, Wn generates the same filtration as Wn since the map w 7→ w ◦ sn from AIn to
AF

|n|
is injective. The result follows.

To negate Vershik’s intermediate criterion, we use the metric δn and the pseudo-
metric dn on AF

|n|
introduced in definition 20. We have to show that disp(Wn, dn) does

not tend to 0 as n goes to −∞. This leads us to search positive lower bounds for the
expectation of dn(u, v), where u and v are chosen independently in AIn according to the
law ν⊗In
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5.2 Key-lemmas

Keep in mind the notations introduced in section 3. We begin with the case where A
is countable and d is the discrete metric on A. Thus, δn is the Hamming metric on
AF

|n|
(normalized to vary between 0 and 1), and δn is the quotient pseudo-metric by

the action of the automorphism group of the binary tree with height |n|.
To get a positive lower bound of disp(Wn, dn) for arbitrary large (negative) integers

n, we will make a recursion. The next lemma will help us to start the recursion. This
lemma is stated and its proof is outlined in [7].

Before stating it, we must define the adjoint of a word. To handle with non-negative
integers, we denote by h, or by H the height of the trees considered.

Definition 36 Let w ∈ AIh. Call wr ∈ AIh the word obtained by reversing the word w,
namely wr(i) = w(−i) for every i ∈ Ih.

If w can be identified with a word compound with two alternating letters (for example
ababa . . .), we define its adjoint w∗ ∈ AIh as the word obtained from w by switching these
two letters (for example babab . . .).

Otherwise, we define its adjoint by w∗ = wr.

Note that the only possibility for w∗ 6= wr only when w is a word with odd length
and compound with two alternating letters; in this case, w is palindromic. Moreover,
the reversal map and the adjoint map are involutions and they commute.

Lemma 37 Let u, v ∈ AIh. Then u and v belong to the same orbit under the action of
Gh if and only if v = u or v = u∗.

Proof. The ‘if’ part will not be used in the sequel and can be proved directly. Indeed,
ur = σ · u where σ ∈ S(F )Th−1 is the map which sends every vertex of Th−1 on −Id.
Moreover, if u = abab... then for every (x1, . . . , xh) ∈ F h, u(x1, . . . , xh) is a or b according
the number of 1 among x1, . . . , xh is even or odd. The converse holds for u∗(x1, . . . , xh).
Therefore, ur = σ · u where σ ∈ S(F )Th−1 is the map which sends the root () on −Id
and every other vertex on Id.

We now prove the ‘only if’ part, by recursion on h. The result is immediate when
h = 0 or h = 1.

Let h ≥ 2. Assume that the result holds at the rank h − 1. Let u, v ∈ AIh and
σ ∈ F Th−1 such that v = u ◦ gσ.

1. Case where σ() = Id. Call σ1 et σ−1 the elements of F Th−2 defined by σ1(x) =
σ(1, x) and σ−1 = σ(−1, x) for every x ∈ Th−2. Let u+ = (u(i + 1))i∈Ih−1

and u− =
(u(i−1))i∈Ih−1

be the words obtained from u by suppressing the first and the last letter.
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Then for every (x1, . . . , xh) ∈ F h,

vx1(x2, . . . , xh) = vx1(x2 + · · ·+ xh)

= v(x1 + · · ·+ xh)

= v(x1, . . . , xh)

= u(x1, gσx1
(x2, . . . , xh))

= u
(
x1 + sh−1

(
gσx1

(x2, . . . , xh)
))

= ux1

(
sh−1

(
gσx1

(x2, . . . , xh)
))

= ux1

(
gσx1

(x2, . . . , xh)
)
.

Using the recursion hypothesis, we get{
v− = u− ◦ gσ−1

v+ = u+ ◦ gσ1

so

{
v− = u− or (u−)∗

v+ = u+ or (u+)∗
.

Four cases have to be considered.

1. If v− = u− and v+ = u+, then v = u.

2. If v− = u− and v+ = (u+)∗, then

• either u+ has the form ababa... and v+ has the form babab, hence the equality
v− = u− entails a = b, so v+ = u+ and v = u;

• or (u+)∗ = (u+)r, hence the equalities v− = u− and v+ = (u+)r yield that
for every i ∈ Ih−1 \ {h− 1}, u+(i) = u−(i+ 2) = v−(i+ 2) = v+(i) = u+(−i),
so (u+)r = ur and v = u.

3. If v− = (u−)∗ and v+ = u+, we get in the same way v = u.

4. If v− = (u−)∗ and v+ = (u+)∗, then at least one of the three following cases below
occurs:

• u+ has the form ababa . . . and v+ has the form babab . . ., so the equality
v− = (u−)∗ forces the alternation of the letters a and b to occur from the
very beginning of the words u and v, and v = u∗.

• u− has the form ababa . . . and v− has the form babab . . ., so we get in the
same way that v = u∗.

• v+ = (u+)r and v− = (u−)r, namely for every i ∈ Ih−1, v(i+ 1) = u(−i+ 1)
and v(i − 1) = u(−i − 1). Hence, for every j ∈ Ih−2, v(j + 2) = u(−j) =
v(j − 2), so v has the form ababa.... Therefore, u = ababa... = v if h is odd,
and u = babab... = v∗ if h is even.

2. Case where σ() = −Id. Since vr = u ◦ g−σ and −σ() = Id, the first case already
proved can be applied to u et vr, so vr = u or vr = u∗, which yields the desired result.

Hence, in all cases, one has v = u or v = u∗. The proof is complete.

The next lemma will provide the recursion step. It is buried in the proof of Heicklen
and Hoffman [7] but deserves to be given separately for the sake of clarity. The proof
we give is close to Hoffman’s proof but we change some constants and use sharpest
inequalities to get better bounds.
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Lemma 38 Let C ≥ 2, η > 0, ε = (1 − 3C−2)η > 0 and two integers entiers h ≥ 1 et
H ≥ C6h. Set D = H − h.

If u, v ∈ AIH satisfy dH
(
u, v
)
< ε, then there exists i, j, k, l in ID such that |i| ≤

C(
√
H −

√
h), |j| ≤ C(

√
H −

√
h), j − i > 2C

√
h and

dh

(
u(i+ ·)|Ih , v(k + ·)|Ih

)
< η,

dh

(
u(j + ·)|Ih , v(l + ·)|Ih

)
< η.

Proof. Fix σ ∈ S(F )TH−1 such that δH
(
u , v ◦ gσ

)
< ε.

Split each H-uple x = (x1, . . . , xH) ∈ FH into y = (x1, . . . , xD) ∈ FD and z =
(xD+1, . . . , xH) ∈ F h. Set s(y) = x1 + . . .+ xD, s(z) = xD+1 + · · ·+ xH and call σy the
element of S(F )Th−1 defined by σy(z1, . . . , zi) = σ(y, z1, . . . , zi) for every 0 ≤ i ≤ h− 1
and (z1, . . . , zi) ∈ F i. Then

u(x) = u
(
s(y) + s(z)

)
= u

(
s(y) + ·

)
|Ih(z),

and

v
(
gσ(x)

)
= v
(
s
(
gσ(y)

)
+ s
(
gσy(z)

))
= v
(
s
(
gσ(y)

)
+ ·
)∣∣∣
Ih

(
gσy(z)

)
.

Thus

δH
(
u, v ◦ gσ

)
= 2−D

∑
y∈FD

δh

(
u(s(y) + ·)|Ih , v

(
s
(
gσ(y)

)
+ ·
)
|Ih ◦ gσy

)
≥ 2−D

∑
y∈FD

dh

(
u(s(y) + ·)|Ih , v

(
s
(
gσ(y)

)
+ ·
)
|Ih
)
.

Let
E1 =

{
y ∈ FD : dh

(
u(s(y) + ·)|Ih , v (s(gσ(y)) + ·) |Ih

)
≥ η

}
,

E2 =
{
y ∈ FD : |s(y)| > C(

√
H −

√
h)
}

and E = FD \ (E1 ∪ E2).

Since δH
(
u, v ◦ gσ

)
< ε, Markov inequality shows that µ⊗D(E1) ≤ ε/η = 1− 3C−2.

But when y is chosen according to the probability measure µ⊗D, s(y) has expectation
0 and variance D, so Bienaymé-Chebycheff inequality yields

µ⊗d(E2) ≤ H − h
C2(
√
H −

√
h)

2

=
1

C2
×
√
H +

√
h√

H −
√
h

=
1

C2
×
(

1 +
2√

H/h− 1

)
≤ 9

7C2
since

√
H/h ≥ C3 ≥ 8.

Hence

µ⊗d(E) ≥ 3

C2
− 9

7C2
=

12

7C2
.
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But s(FD) = ID = {2k −D : k ∈ [[0, d]]} and for every k ∈ [[0, d]],

µ⊗d
{
y ∈ FD : s(y) = 2k −D

}
=

1

2D

(
D

k

)
≤
√

2

πD
,

by lemma 51 in section 7. Since 2C
√
h ≥ 4, any interval J ⊂ R with length 2C

√
h

contains at most (3/2)C
√
h points of ID, so

µ⊗d
{
y ∈ FD : s(y) ∈ J

}
≤ 3

2
C
√
h×

√
2

πD

=
3
√

2

2
√
π
× C√

C6 − 1

≤ 4
√

2√
7π
× 1

C2
since C6 − 1 ≥ 63

64
C6

<
12

7C2
.

Since µ⊗d(E) ≥ 12/(7C2), we deduce that max s(E)−min s(E) > 2C
√
h. Choosing y1

and y2 in E achieving the minimum and the maximum of s over E and setting i = s(y1),
j = s(y2), k = s

(
gσ(y1)

)
, l = s

(
gσ(y2)

)
yields the result.

We now introduce some notations to continue the proof.

Notations 39 For every H ∈ Z+ and C > 0, we define the C-middle of IH by

IH,C = IH ∩ [−C
√
H,C

√
H].

For every u ∈ AIH , C > 0 and ε > 0, let

Θε,C(u) =
{
w ∈ AIH : ∃v ∈ AIH , w = v on IH,C and dH

(
u, v
)
< ε
}
.

Last, set
pH(ε, C) = max

u∈AIH
P
[
W−H ∈ Θε,C(u)

]
.

Remark 40 The larger is C, the smaller is the set Θε,C(u). If C ≥
√
H, IH,C = IH so

Θε,C(u) is the set of all w ∈ IH such that dH(u,w) < ε. Therefore, in all cases,

P
[
dH(u,W−H) < ε

]
≤ P

[
W−H ∈ Θε,C(u)

]
≤ pH(ε, C),

so
E
[
dH(u,W−H)

]
≥ εP

[
dH(u,W−H) ≥ ε

]
≥ ε(1− pH(ε, C)).

Since this inequality holds for every u ∈ AIH , we get

disp(W−H , dH) ≥ ε(1− pH(ε, C)).

The remark above explains the interest to bound ε(1 − pH(ε, C)) away from 0 to
negate Vershik’s intermediate criterion. The last lemma provides the inequality below.

Corollary 41 Take, like in the previous lemma, C ≥ 2, η > 0, ε = (1 − 3C−2)η > 0
and two integers h ≥ 1 and H ≥ C6h. Then

pH(ε, C) ≤ C2H3ph(η, C)
2
/2.
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Proof. Let X = (Xk)k∈IH be a random word whose letters are chosen independently
and according to the law ν.

On the event
{
X ∈ Θε,C(u)

}
, the exists some v ∈ AIH such that X coincide with v

on IH,C and dH
(
u, v
)
< ε. Let D = H − h. The last lemma provides the existence of

i, j, k, l in ID tels such that |i| ≤ C(
√
H −

√
h), |j| ≤ C(

√
H −

√
h), j − i > 2C

√
h and

dh
(
v(i+ ·)|Ih , u(k + ·)|Ih

)
< η,

dh
(
v(j + ·)|Ih , u(l + ·)|Ih

)
< η.

The inequalities satisfied by i and j entail

i+ Ih,C ⊂ IH,C , j + Ih,C ⊂ IH,C , and (i+ Ih,C) ∩ (j + Ih,C) = ∅.
Therefore, the random variables X(i+·)|Ih and X(j+·)|Ih coincide on Ih,C with v(i+·)|Ih
et v(j + ·)|Ih and they are independent.

This shows that this event
{
X ∈ Θε,C(u)

}
is contained in the union of the events{

X(i+ ·)|Ih ∈ Θη,C(u(k + ·)|Ih) ; X(j + ·)|Ih ∈ Θη,C(u(l + ·)|Ih)
}

over all (i, j, k, l) satisfying the conditions above. Each one of these events has probability
≤ ph(η, C)2, and since C(

√
H −

√
h) ≤ C

√
H − 1, the number of 4-uples (i, j, k, l)

considered is bounded above by (C
√
H)2/2× (D + 1)2 ≤ C2H3/2. The result follows.

5.3 End of the proof

We begin with the case where the alphabet (A, d) is countable and endowed with
the discrete metric.

To prove theorem 4, we show that γ(0) does not satisfy Vershik’s intermediate crite-
rion. By remark 40, it suffices to find sequences (Ck)k≥0, (Hk)k≥0, and (εk)k≥0 tending
respectively to +∞, +∞ and ε∞ > 0, such that the probabilities pHk(εk, Ck) tend to 0.
Lemma 37 and corollary 41 enable us to do that.

Lemma 42 Let q be the mass of the heaviest atom of ν (so 0 < q < 1). Define the
sequences (Ck)k≥0, (Hk)k≥0, (εk)k≥0 and (αk)k≥0 by C0 = 2, H0 equals the square of

some even positive integer, ε0 = 2−H0, α0 = 2qC0
√
H0+1 and for every k ≥ 1,

Ck = k + 1, Hk = C6
kHk−1, εk = εk−1(1− 3C−2

k ), αk = C2
kH

3
k α

2
k−1/2.

Then for every k ∈ N,
pHk(εk, Ck) ≤ αk.

Moreover, the sequence (εk)k≥0 has a positive limit and if H0 is large enough, the se-
quence (αk)k≥0 tends to 0.

Proof. We make a recursion on the integer k.

Given u, v ∈ AIH0 , the inequality dH0

(
u, v
)
< ε0 = 2−H0 holds only when u and v

belong to a same orbite under the action of GH0 , namely when v = u or v = u∗, thanks
to lemma 37. But IH0,C0 =

{
2j − C0

√
H0 : j ∈ [[0, C0

√
H0]]

}
, hence for every u ∈ AIH0 ,

P[X ∈ Θε0,C0(u)] ≤ P[X = u sur IH0,C0 ] + P[X = u∗ sur IH0,C0 ]

≤ 2qC0
√
H0+1 = α0.
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Hence pH0(ε0, C0) ≤ α0

Let k ≥ 1. Assume pHk−1
(εk−1, Ck−1) ≤ αk−1. Then corollary 41 applied to C =

Ck ≥ 2, h = Hk−1, H = C6h = Hk, η = εk−1 and ε = (1− 3C−2
k )η = εk yields

pHk(εk, Ck) ≤ C2
kH

3
k pHk−1

(εk−1, Ck)
2/2

≤ C2
kH

3
k pHk−1

(εk−1, Ck−1)2/2 since Ck ≥ Ck−1

≤ C2
kH

3
k α

2
k−1/2 = αk,

which achieves the recursion.

Next,

εk = ε0

k∏
i=1

(
1− 3

(i+ 1)2

)
−−−→
k→∞

ε0

∏
n≥2

(
1− 3

n2

)
= 2−H0

sin(π
√

3)

−2π
√

3
> 0.

Last, equality log2 αk = 2 log2 αk−1 + 3 log2Hk + 2 logCk − 1, yields by recursion

2−k log2 αk = log2 α0 +

k∑
i=1

2−i(3 log2Hi + 2 log2Ci − 1),

= (2
√
H0 + 1) log2 q + 3 log2H0

+18

k∑
i=1

2−i log2((i+ 1)!) + 2

k∑
i=1

2−i log2(i+ 1).

But

+∞∑
i=1

2−i log2((i+ 1)!) =

+∞∑
i=1

2−i
i+1∑
j=2

log2 j =

+∞∑
j=2

log2 j

+∞∑
i=j−1

2−i = 4

+∞∑
j=2

2−j log2 j.

Hence

2−k log2 αk −−−−→
k→+∞

(2
√
H0 + 1) log2 q + 3 log2H0 + 76

∞∑
j=1

2−j log2 j.

Since log2 q < 0 and

76

∞∑
j=1

2−j log2 j < 55, 7 < +∞,

we get a negative limit provided H0 is large enough, which yields the convergence of
(αk)k≥0 to 0. The proof is complete

Remark 43 When q = 1/2, one can choose H0 = 442 = 1936, which is far less than
the choice H0 = 40000 made by Heicklen and Hoffman.

We now deduce the result in the general case, namely when (A, d) is a separable
metric complete space endowed with a non-trivial probabality measure ν. Recall that
we chose a random variable Z = ((ξk)k≤0, (γ(s))s∈Z) with law µ⊗Z− ⊗ ν⊗Z and defined
‘the’ filtration of [T, T−1] as the natural filtration of the process (Zn)n≤0 defined by

Zn = [T, T−1](Z) =
(
(ξk+n)k≤0, (γ(s− ξ0 − . . .− ξn+1))s∈Z

)
.
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Fix a Borel subset B of A such that p := ν(B) ∈]0, 1[, set Z ′ = ((ξk)k≤0, (1B(γ(s)))s∈Z)
and call T ′ the shift on {0, 1}Z, endowed with the probability B(1, p)⊗Z. Then the law
of Z ′ is µ⊗Z− ⊗ B(1, p)⊗Z, so ‘the’ filtration of [T ′, T ′−1] is the natural filtration of the
process (Z ′n)n≤0 defined by

Z ′n = [T ′, T ′−1](Z ′) =
(
(ξk+n)k≤0, (1B(γ(s− ξ0 − . . .− ξn+1)))s∈Z

)
.

The filtration (FZ′n )n≤0 is contained in (FZn )n≤0, and admits (ξn)n≤0 as sequence of
innovations, like (FZn )n≤0. Hence (FZ′n )n≤0 is dyadic and immersed in (FZ′n )n≤0. We
have proved that (FZ′n )n≤0 is not product-type hence (FZn )n≤0 cannot be product-type
thanks to corollary 15.

Actually, the conclusion still holds if one replaces [T, T−1] by any [T k1 , T k2 ] where
k1 and k2 are two distinct integers. Indeed, the random variables (γ(s))s∈Z are i.i.d, so
this replacement preserves the law of the split-word process associated to the random
variable γ(0) up to a renumbering of the sites.

5.4 proof of corollary 5

Let T be an automorphism of a Lebesgue space (G,G, Q), with positive entropy. By
Sinai’s factor theorem [6], one can find a measurable partition α = {A1, A2} of (G,G, Q)
into two blocks of positive probability such that the partitions (T−kα)k∈Z are indepen-
dent. For each g ∈ G, call ϕ(g) the only index in {1, 2} such that set g ∈ Aϕ(g), and
set

Φ(g) = (ϕ(T k(g))k∈Z ∈ {1, 2}Z.
The sequence Φ(g) thus defined is called the α-name of g.

By construction, the random variables ϕ ◦ T k, defined on the probability space
(G,G, Q), are independent and have the same distribution. Call ν this distribution
and TB be the shift on {1, 2}Z. Then Φ(Q) = ν⊗Z and TB ◦Φ = Φ ◦ T , so the Bernoulli
shift ({1, 2}Z,P({1, 2})⊗Zν⊗Z, TB) is a factor of the dynamical system (G,G, Q, T ).

Choose a random variable Z = ((ξk)k≤0, γ) with law µ⊗Z− ⊗Q. Then ‘the’ filtration
associated to [T, T−1] is the natural filtration of the process (Zn)n≤0 defined by

Zn = [T, T−1](Z) =
(
(ξk+n)k≤0, T

ξ0+...+ξn+1(γ)
)
.

In the same way, the law of the random variable Z ′ := ((ξk)k≤0,Φ(γ)) is µ⊗Z− ⊗ ν⊗Z
so ‘the’ filtration associated to [TB, T

−1
B ] is the natural filtration of the process (Z ′n)n≤0

defined by Z ′n = [TB, T
−1
B ](Z ′). But the equality TB ◦ Φ = Φ ◦ T yields

Z ′n =
(
(ξk+n)k≤0, T

ξ0+...+ξn+1

B (Φ(γ))
)

=
(
(ξk+n)k≤0,Φ(T ξ0+...+ξn+1(γ))

)
Therefore, the filtration (FZ′n )n≤0 is contained in (FZn )n≤0, and admits (ξn)n≤0 as
sequence of innovations, like (FZn )n≤0. Hence (FZ′n )n≤0 is dyadic and immersed in
(FZ′n )n≤0. We have proved that (FZ′n )n≤0 is not product-type hence (FZn )n≤0 cannot be
product-type, thanks to corollary 15.
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6 Proof of theorem 6

We now present a slight variant of Hoffman’s example of an automorphism T of Lebesgue
probability space such that [T, Id] is not standard. We modify some numerical values,
to be more ‘parcimonious’ and we detail the proof, following Hoffman’s strategy.

6.1 Construction of null-entropy shifts

Let A be a finite alphabet with size ≥ 2. In the whole section, T denotes the bilateral
shift (xk)k∈Z 7→ (xk+1)k∈Z on AZ. The purpose of this subsection is to construct a
shift-invariant probability measure Q on AZ such that T is ergodic and has null entropy
under Q.

The ‘cut-and-stack’ procedure provides a lot of such probability measures. A general
treatment of this kind of construction can be found in [20]. Yet, we restrict ourselves to
a particular subclass which includes Hoffman’s example and enables a more elementary
definition.

We fix two sequences (Nn)n≥1 and (`n)n≥1 of positive integers (tending to infinity)
such that Nn ≥ 2 and Nn−1`n−1 divides `n for every n ≥ 2. For every n ≥ 1, we define
a family of distinct elements Bn,0, . . . , Bn,Nn−1 of A`n , called the n-blocks, as follows 4.

The 1-blocks are the elements of A, so `(1) = 1 and N(1) = |A|. When n ≥ 2,
each block Bn,i is obtained as a concatenation of (n− 1)-blocks in such a way that the
number of occurences of Bn−1,j in Bn,i does not depend on i and j: this is the major
simplification with regard to the general ‘cut-and-stack’ constructions, and that is why
we assume that Nn−1`n−1 divides `n.

The admissible concatenations, and the sequences (Nn)n≥1 and (`n)n≥1 will be spec-
ified later. For now, we explain how to derive a shift-invariant probability measure from
this block strucutre. Informally, the typic sample paths under the probability measure
Q are for each n ≥ 1 infinite concatenations of n-blocks. To construct the probability
measure Q, we construct a compatible family of finite-dimensional marginals.

Proposition 44 For every integer d ≥ 0, every word w ∈ Ad and every word B =
(b0, . . . , b`−1) with length ` ≥ d, set

N(w,B) =
`−d∑
k=0

∣∣{k ∈ [[0, `− d]] : w = (bk, . . . , bk+d−1)
}∣∣ and p(w|B) =

N(w,B)

`− d+ 1
,

so N(w,B) and p(w|B) are respectively the number of occurrences and the frequency of
occurrence of w among the the subwords of B with length d. Then

1. Let (in)n≥1 a sequence such that in ∈ [[0, Nn−1]] for every n ≥ 1. Then p(w|Bn,in)
has a limit pd(w) as n goes to infinity, and this limit pd(w) does not depend on
the choice of (in)n≥1.

2. The maps pd : Ad → [0, 1] thus defined are the marginals of some shift-invariant
probability measure Q on AZ.

4We index the n-blocks by [[0, Nn − 1]] instead of [[0, Nn]] to handle simpler formulas. For the same
reason, we view each word with length ` as a map from [[0, `− 1]] to A.
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Proof. For every n ≥ 2, `n ≥ Nn−1`n−1 ≥ 2`n−1. A recursion yields `n ≥ 2n−1, so `n
goes to infinity and the series

∑
n 1/`n converges.

1. Fix a word w with length d. Let n ≥ 2 such that `n−1 ≥ d and i ∈ [[0, Nn − 1]].
Let Mn the integer such that `n = MnNn−1`n−1. Then by construction, the block
Bn,i is a concatetation of (n− 1)-blocks in which each each Bn−1,j is involved Mn

times.

We obtain the subwords of Bn,i with length d by choosing k ∈ [[0, `n − d]] and by
looking at the letters at positions k+1, . . . , k+d. For most of these k, the interval
[[k + 1, k + d]] is entirely contained in some subinterval [[q`n−1, (q + 1)`n−1 − d]]
with q ∈ [[0,MnNn−1]]. The restriction of Bn,i to these subintervals are precisely
the (n− 1)-blocks, each block Bn−1,j occuring Mn times. Since there are exactly
MnNn−1(d− 1) remaining k, we get

0 ≤ N(w,Bn,i)−Mn

Nn−1∑
j=1

N(w,Bn−1,j) ≤MnNn−1(d− 1).

Dividing by `n = MnNn−1`n−1 yields

0 ≤ N(w,Bn,i)

`n
− 1

Nn−1

Nn−1∑
j=1

N(w,Bn−1,j)

`n−1
≤ d− 1

`n−1
. (1)

The same inequality holds if N(w,Bn,i)/`n is replaced by its mean value over all
i ∈ [[0, Nn−1]]. Hence, the convergence of these means follows from the convergence
of the series

∑
n 1/`n−1. Using equality 1 again together with the convergence

(`n − d+ 1)/`n → 1 yields item 1.

2. Let d ≥ 0 and w ∈ Ad. Then

pd(w) = lim
n→+∞

p(w|Bn,1) ≥ 0.

In particular, p0() = 1, where () ∈ A0 denotes the empty word. Moreover,

N(w,Bn,1) =
∑
a∈A

N(wa,Bn,1) + 1{Bn,1 ends with w}.

Dividing by `n and letting n go to infinity yields

pd(w) =
∑
a∈A

pd+1(wa).

In the same way, we get

pd(w) =
∑
a∈A

pd+1(aw).

Therefore (pd)d≥0 is a sequence of probability measures on the products (Ad)d≥0

such that each pd is image of pd+1 by the projection on the first d, or on the last
d components. Item 2 follows, by Kolmogorov extension theorem.

We now construct a stationary process γ = (γ(k))k∈Z with law Q. To do so, we
index the letters of the n-blocks by the set [[0, `n − 1]]. Recall that every n-block is a
concatenation of (n − 1)-blocks in which each one of the Nn−1 different (n − 1)-blocks
occurs exactly Mn times. Hence, the beginning of the (n− 1)-blocks in any n-block are
the positions q`n−1 with q ∈ [[0,MnNn − 1]].
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Proposition 45 Let (In)n≥1 be a sequence of independent uniform random variables
taking values in the sets ([[0, Nn − 1]])n≥1, defined on some large enough large enough
probability space (Ω,A,P). Then

1. One can construct a sequence (Un)n≥1 of uniform random variables taking values
in the sets ([[0, `n − 1]])n≥1 such that

(a) for all n ≥ 1, Un is independent of (Im)n≥m;

(b) the sequence of random intervals ([[−Un, `n − 1− Un]])n≥1 is increasing;

(c) for all n ≥ 2 and k ∈ [[−Un−1, `n−1 − 1− Un−1]],

Bn,In(Un + k) = Bn−1,In−1(Un−1 + k).

2. The intervals [[−Un−1, `n−1− 1−Un−1]] cover Z almost surely, so one can define a
process γ = (γ(k))k∈Z by γ(k) = Bn,In(Un + k) whenever k ∈ [[−Un, `n − 1− Un]].

3. The law of the process thus defined is Q.

Proof. In the statement above, saying that the probability space (Ω,A,P) is large
enough means that one can define a uniform random variable with values in [0, 1] which
is independent on the sequence (In)n≥1.

1. We construct the sequence (Un)n≥1 recursively.

First, we set U1 = 0. Since `1 = 1, the random variable U1 is uniform on the set
[[0, `1 − 1]].

Let n ≥ 2. Assume that U1, . . . , Un−1 are constructed, that Un−1 is uniform on
[[0, `n−1−1]] and Un−1 is independent of (In)n≥m. Conditionally on (U1, . . . , Un−1)
and on the whole sequence (Im)m≥1, choose Dn uniformly among the Mn begin-
nings of the blocks Bn−1,In−1 in the block Bn,In . Then for every k ∈ [[0, `n−1]],
Bn,In(Dn + k) = Bn−1,In−1(k). Moreover, the random variable Dn is uniform on
{q`n−1 : q ∈ [[0,MnNn − 1]]} and independent on (Un−1, (Im)m≥n), so Dn, Un−1

and (Im)m≥n are independent by the recursion hypothesis. Hence the random
variable Un := Un−1 +Dn is uniform on [[0, `n − 1]] and independent of (Im)m≥n).
Moreover, Un−1 ≤ Un ≤ Un−1 + (MnNn − 1)`n−1 = Un−1 + `n − `n−1. Item 1
follows.

2. Fix k ∈ Z. For every large enough n, `n ≥ |k|, so

P
[
k /∈ [[−Un, `n − 1− Un]]

]
=

{
P[Un < −k] if k ≤ 0
P[`n − 1− Un < k] if k ≥ 0

}
=
|k|
`n
.

Since `n → +∞, item 2 follows.

3. For every n ≤ 0, consider the process γ(n) = (γ(n)(k))k∈Z given by

γ(n)(k) = Bn,In((Un + k) mod `n),

where (Un+k)mod `n denotes the remainder of Un+k modulo `n. The process γ(n)

thus defined is `n-periodic and stationary, since the process ((Un+k) mod `n)k∈Z
is stationary and independent of In. But the process γ(n) coincides with γ on
the random interval [[−Un, `n − 1 − Un]]. Since the intervals [[−Un, `n − 1 − Un]]
increase to Z almost surely, γ is the almost sure limit of the processes γ(n), so
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it is stationary. Hence we only need to check that for every d ≥ 0, the law of
γ0:d−1 := (γ(0), . . . , γ(d− 1)) is pd. Let w ∈ Ad. Using twice that for every n ≥ 0,
Un is independent of In, we get

P[γ0:d−1 = w] = lim
n

P
[
(γ0, . . . , γd−1) = w ; d− 1 ≤ `n − 1− Un

]
= lim

n
P
[
(Bn,In(Un), . . . , Bn,In(Un + d− 1)) = w ; Un ≤ `n − d

]
= lim

n

1

`n

`n−d∑
u=0

P
[
(Bn,In(u), . . . , Bn,In(u+ d− 1)) = w

]
= lim

n

1

`n − d+ 1

`n−d∑
u=0

P
[
(Bn,In(u), . . . , Bn,In(u+ d− 1)) = w

]
= lim

n
E
[
p(w|Bn,In)

]
= pd(w).

Item 3 follows.

We now deduce some properties on the shift T under the probability measure Q.

Proposition 46 (Properties of the shift T under Q)

1. For every d ≥ 0, w ∈ Ad, and Q-almost every (xk)k∈Z ∈ AZ,

lim
L→+∞

p(w|(x0, . . . , xL−1)) = pd(w).

2. T is ergodic under Q.

3. If `−1
n log2Nn → 0 as n→ +∞, then T has null entropy under Q.

Proof. 1. Since Q is the law of the process γ constructed in proposition 45, it gives
full measure to the set of sample paths (xk)k∈Z such that for every n ≥ 0, there
exists un ∈ [[0, `n−1]] such that for every slice (x−un+q`n , . . . , x−un+q`n+`n−1) is an
n-block. Roughly speaking, for each n ≥ 1, every typical sample path can be
obtained for as a randomly shifted infinite concactenation of n-blocks.

Fix such a path and ε > 0. Provided n ≥ 0 is large enough, one has

∀i ∈ [[0, Nn − 1]], |p(w|Bn,i)− pd(w)| ≤ ε/3,

and more generally,

∀i1, . . . , in ∈ [[0, Nn − 1]], |p(w|Bn,i1 . . . Bn,im)− pd(w)| ≤ 2ε/3,

since the edge effect at the boundaries of the n-blocks is small if `n is large with
regard to d. Given L ≥ 2`n, the word (x0, . . . , xL−1) can be splited into m(L) :=
bL/`nc − 1 n-blocks, namely (x−un+q`n , . . . , x−un+q`n+`n−1) with q ∈ [[1,m(L)]],
plus two pieces of n-blocks. If L is large enough with regard to `n, the effect of
these two pieces is small, so |p(w|(x0, . . . , xL−1))− pd(w)| ≤ ε. Item 1 follows.
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2. Call (Xk)k∈Z the coordinate process on AZ and I the σ-field of all T -invariant
subsets of AZ. Let d ≥ 0 and w ∈ Ad. Birkhoff ergodic theorem and item 1 yield
the almost sure equalities

Q
[
(X0, . . . , Xd−1) = w|I

]
= lim

L→+∞

1

L

L−1∑
k=0

1{(X0,...,Xd−1)=w} ◦ T k

= lim
L→+∞

1

L

L−1∑
k=0

1{(Xk,...,Xk+d−1)=w}

= lim
L→+∞

p(w|(X0, . . . , XL+d−2))

= pd(w) = Q
[
(X0, . . . , Xd−1) = w

]
.

Since T preserves Q and A is finite, the almost sure equality Q(Γ|I) = Q(Γ) holds
for every subset Γ of AZ depending on finitely many coordinates, and therefore
for every measurable subset of AZ. The ergodicity of T under Q follows.

3. The entropy of T is

h(T ) = lim
L→+∞

H(X0, . . . , XL−1)/L = lim
n→+∞

H(X0, . . . , X`n)/(`n + 1).

Almost surely, the string (X0, . . . , X`n) is the concatenation of the last k letters
of some n-block and the first `n − k + 1 letters of some n block, with k ∈ [[1, `n]].
Hence, the number of possible values of (X0, . . . , X`n) is at most `n × N2

n, so
H(X0, . . . , X`n) ≤ log2 `n + 2 log2Nn. Item 4 follows.

We now give a precise description of the block structure in a slight variant of Hoff-
man’s example.

The 1-blocks are the elements of A. By assumption |A| ≥ 2. Once the (n−1)-blocks
Bn−1,0, . . . , Bn−1,Nn−1−1 are constructed 5, the n-blocks are defined by

∀i ∈ [[0, n4 − 1]], Bn,i =
(
(Bn−1,1)n

5i
. . . (Bn−1,Nn−1)n

5i)n5(n4−1−i)
,

so the length of Bn,i is `n = n5(n4−i−1) ×Nn−1 × n5i × `n−1 = n5(n4−1)Nn−1`n−1, each

block Bn−1,j occurs exactly n4(n2−1) times in Bn,i, and the number of different n-blocks
is Nn = n4.

The successive repetitions of a same (n − 1)-block inside an n-block form what we
call an n-region. The length of the of the n-regions in Bn,i, namely rn,i = n5i`n−1,
depends highly on i. For every integers k ≥ 0 and ` ≥ 1, denote by bk/`c and kmod `
the quotient and the remainder of k modulo `. Then by construction,

∀i ∈ [[0, n2 − 1]], ∀k ∈ [[0, `n − 1]], Bn,i(k) = Bn−1,(bk/rn,ic mod Nn−1)(k mod `n−1).

By proposition 46, T has null entropy under Q since `−1
n log2Nn → 0 as n → +∞.

Moreover, T is ergodic under Q, so [T, Id] is exact by theorem 1. The filtration associated
to [T, Id] is dyadic and Kolmogorovian and we want to prove that it is not product-type.

5We index the n-blocks by [[0, Nn − 1]] instead of [[1, Nn]] to handle simpler formulas. For the same
reason, we view each word with length ` as a map from [[0, `− 1]] to A.
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6.2 Non-standardness of [T, Id]

The description of the associated to [T, Id] is close to the description of the ordinary
[T, T−1] filtration that we made in the previous section: we take two independent random
variables (ξn)n∈Z and γ = (γ(s))s∈Z with values in FZ and AZ, defined on a same
probability space (Ω,A,P) with respective law µ⊗Z and Q. But this time F = {0, 1},
so µ is the uniform law on {0, 1}, and (γ(s))s∈Z is no more an i.i.d. sequence.

Set Sn = −ξn+1 − · · · − ξ0 for every n ≤ 0 and let Z :=
(
(ξn)n≤0, (γ(s))s∈Z

)
.

Then ‘the’ filtration associated to [T, Id] is the natural filtration (FZn )n≤0 of the process
(Zn)n≤0 defined by

Zn = [T, Id](Z) =
(
(ξk+n)k≤0, (γ(Sn + s))s∈Z)

)
.

By construction, (ξn)n≤0 is a sequence of innovations of the filtration (FZn )n≤0.

By theorem 28, is is sufficient to check that the random variable γ(0) does not
satisfy the Vershik intermediate property. To do this, it is convenient to introduce the
nibbled-word process (Wn, ξn)n≤0 by

∀n ≤ 0, Wn =
(
γ(Sn + i)

)
i∈[[0,|n|]].

The set [[0, |n|]] is exactly the set of all possible values of the sum xn+1 + · · · + x0

when xn+1, · · · , x0 range over F = {0, 1}, we can define a map sn from F |n| to [[0, |n|]] by
sn(xn+1 · · · , x0) = xn+1 + · · · + x0. To every word w ∈ AIn , we associate its extension

w = w ◦ sn ∈ AF |n| . As in section 5, we check the split-word process associated to γ(0)
and to the innovations (ξn)n≤0 is (Wn, ξn)n≤0.

For every n ≥ 2, let

hn := (`n/Nn)2 = (rn,N(n)−1)2 = (`n−1n
5(n4−1))2.

Note that hn is even. We define a decreasing sequence (εn)n≥2 of positive real numbers
by ε2 = 2−h(2) and for every n ≥ 3,

εn = εn−1

(
1− 3

(n− 1)3
− 4

(n− 1)4
− 1

n2

)
.

This sequence has a positive limit ε∞.

To negate the Vershik intermediate property, we have to show that disp
(
W−hn , dhn

)
is bounded away from 0. This will follow from the next lemma.

Lemma 47 Let n ≥ 2. Let w′ and w′′ be two words in A[[0,hn]] whose restrictions to the
middle interval Mn := [[(hn/2) − n

√
hn, (hn/2) + n

√
hn]] are entirely contained in two

different n-blocks, namely Bn,i′ and Bn,i′′, with i′ 6= i′′. Then dhn(w′, w′′) ≥ εn.

Before proving lemma 47, let us deduce that the random variable γ(0) does not
satisfy the Vershik intermediate property. Fix n ≥ 2. For every (x−hn+1, . . . , x0) ∈ F hn ,

W−hn(x−hn+1, · · · , x0) = Wn(x−hn+1 + · · ·+ x0) = γ(S−hn + x−hn+1 + · · ·+ x0).

Let γ′ and γ′′ be two independent copies of γ defined on some probability space (Ω,A,P).
The shifted process γ(S−hn+hn/2+·) has the same law as γ, so one gets two independent
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copies of W−hn by setting W ′−hn(i) = γ′(i − hn/2) and W ′′−hn(i) = γ′′(i − hn/2). The
interest of this translation is that when n is large, the binomial law with parameters
hn and 1/2 gives probability close to 1 to the interval [[hn/2− n

√
hn, hn/2 + n

√
hn]], so

most of the values

W ′−hn(x−hn+1, · · · , x0) = W ′−hn(x−hn+1 + · · ·+ x0) = γ′x−hn+1+···+x0−hn/2

are provided by the restriction of γ′ to the interval [[−n
√
hn, n

√
hn]].

Following the construction of proposition 45, one may assume that the processes γ′

and γ′′ derive from two independent copies (I ′n, U
′
n)n≥1 and (I ′′n, U

′′
n)n≥1 of the sequence

(In, Un)n≥1. Then the restriction of γ′ to the interval [[−U ′n, `n − 1 − U ′]] is a time-
translation of the n-block Bn,I′n , and a similar statement holds for γ′′.

Therefore, when the three following conditions hold

• I ′n 6= I ′′n,

• [[−n
√
hn, n

√
hn]] ⊂ [[−U ′n, `n − 1− U ′n]],

• [[−n
√
hn, n

√
hn]] ⊂ [[−U ′′n , `n − 1− U ′′n ]],

lemma 47 applies, so dhn
(
W ′−hn ,W

′
−hn
)
≥ εn. But by independence of the random

variables I ′n, U ′n, I ′′n, U ′′n the probability that these three conditions hold is(
1− 1

N(n)

)
×
(

1− 2n
√
hn

`n

)2
=
(

1− 1

n4

)(
1− 2

n3

)
.

Hence

disp
(
W−hn , dhn

)
= E

[
dhn
(
W ′−hn ,W

′
−hn
)]
≥ εn

(
1− 1

n4

)(
1− 2

n3

)
,

which remains bounded away from 0. Theorem 6 follows.

We now prove lemma 47.

Proof. We argue by recursion. To make the notations lighter, we will introduce a
symbolM to denote artihmetic means: given any non-empty finite set E,

M
x∈E

stands for
1

|E|
∑
x∈E

.

First, assume that n = 2. The assumption i′ 6= i′′ and the construction of the 2-
blocks prevent w′′ to be equal to w′ or to its adjoint w′∗ (which is the reversed word
w′r since w′ is not 2-periodic). By lemma 37, their extensions w′ and w′′ belong to two
different orbit modulo the action of the automorphism group of the binary tree with
height h2, so dh2(w′, w′′) ≥ 2−h2 = ε2.

Now, let n ≥ 3. Assume that the implication is established at level n−1. Let i′ < i′′

in [[0, Nn − 1]], and take two subwords w′ of Bn,i′ and w′′ of Bn,i′′ having length hn + 1:
there exist two integers u′ and u′′ in [[0, `n − hn − 1]], such that for every s ∈ [[0, hn]],
w′(s) = Bn,i′(u

′ + s) and w′′(s) = Bn,i′′(u
′′ + s).

Remind the notations of subsection 3.3. For every non-negative integer h, we view
the set Th =

⋃
i∈[[0,h]] F

i as the binary tree with height h. To each σ ∈ S(F )Thn−1 , we
associate the automorphism of Thn given by

gσ(x−hn+1, . . . , x0) = (xσ−hn+1, . . . , x
σ
0 ),
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where
∀t ∈ [[−hn + 1, 0]], xσt := σ(x−hn+1 . . . , xt−1)(xt).

Given σ ∈ S(F )Thn−1 , we have to prove that

δhn(w′, w′′ ◦ gσ) ≥ εn.

Split each hn-uple (x−hn+1, . . . , x0) ∈ F hn into y = (x−hn+1, . . . , x−hn−1) ∈ F hn−hn−1

and z = (x−hn−1+1, . . . , x0) ∈ F hn . Call σy the element of S(F )Thn−1 defined by
σy(z1, . . . , zi) = σ(y, z1, . . . , zi) for every 0 ≤ i ≤ hn − 1 and (z1, . . . , zi) ∈ F i. Set
s(y) = x−hn+1 + . . .+ x−hn−1 , s(z) = x−hn−1+1 + · · ·+ x0. Then

δhn(w′, w′′ ◦ gσ) = M
y∈Fhn−hn−1

M
z∈Fhn−1

1{
w′(yz)6=w′′◦gσ(yz)

}
= M

y∈Fhn−hn−1

δhn−1

(
w′(y, . . .), w′′ ◦ gσ(y, . . .)

)
.

But for every y ∈ F hn−hn−1 and z ∈ F hn ,

w′
(
y, z
)

= w′
(
s(yz)

)
= w′

(
s(y) + s(z)

)
,

w′′
(
gσ(y, z)

)
= w′′

(
gσ(y)gσy(z)

)
= w′′

(
s(gσ(y)) + s(gσy(z))

)
,

so
w′
(
y, . . .

)
=
(
w′(s(y) + ·)

)∣∣
[[0,hn−1]]

,

(w′′ ◦ gσ)
(
y, . . .

)
=
(
w′′(s(gσ(y)) + ·

)
|[[0,hn−1]] ◦ gσy .

Hence

δhn(w′, w′′ ◦ gσ) = M
y∈Fhn−hn−1

δhn−1

(
(w′(s(y) + ·))|[[0,hn−1]], (w′′(s(yσ) + ·)|[[0,hn−1]] ◦ gσy

)
≥ M

y∈Fhn−hn−1

dhn−1

(
(w′(s(y) + ·))|[[0,hn−1]], (w′′(s(yσ) + ·)|[[0,hn−1]]

)
.

To apply the recursion hypothesis, we look at the restrictions of w′(s(y) + ·) and
w′′(s(yσ) + ·) to the interval Mn−1. For every k ∈Mn−1, one has

w′
(
s(y) + k

)
= Bn,i′

(
u′ + s(y) + k

)
= Bn−1,(b(u′+s(y)+k)/rn,i′c mod Nn−1)

(
(u′ + s(y) + k) mod `n−1

)
,

and w′′
(
s(yσ) + k

)
is given by a similar formula. Set

J ′(y) := b(u′ + s(y) + hn−1/2)/rn,i′c mod Nn−1,

J ′′(yσ) := b(u′′ + s(yσ) + hn−1/2)/rn,i′′c mod Nn−1,

K ′(y) :=
(
u′ + s(y) + hn−1/2

)
mod `n−1,

K ′′(yσ) :=
(
u′′ + s(yσ) + hn−1/2

)
mod `n−1,

Λn−1 := [[(n− 1)
√
hn−1, `n−1 − 1− (n− 1)

√
hn−1]].

If K ′(y) and K ′′(yσ) belong to the interval Λn−1, the restrictions of w′(s(y) + ·) and
w′′(s(yσ) + ·) to the interval Mn−1 are entirely contained respectively in Bn−1,J ′(y) and
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Bn−1,J ′′(yσ). Therefore, since the random variables Y := (ξ−hn+1, . . . , ξ−hn−1) and Y σ :=

(ξσ−hn+1, . . . , ξ
σ
−hn−1

) are uniform on F hn−hn−1 , the recursion hypothesis yields

δhn(w′, w′′ ◦ gσ) ≥ M
y∈Fhn−hn−1

εn−11{K(y)∈Λn−1 ; K′′(yσ)∈Λn−1 ; J ′(y)6=J ′′(yσ)}

= εn−1P
[
K(Y ) ∈ Λn−1 ; K ′′(Y σ) ∈ Λn−1 ; J ′(Y ) 6= J ′′(Y σ)

]
.

Thus

δhn(w′, w′′ ◦ gσ) ≥ εn−1

(
P
[
J ′(Y ) 6= J ′′(Y σ)

]
− 2P

[
K(Y ) /∈ Λn−1

])
. (2)

To bound above P
[
K(Y ) /∈ Λn−1

]
, we note that s(Y ) has a binomial distribution

with parameters hn − hn−1 and 1/2. By lemma 51, for all k ∈ [[0, `n−1]],

P
[
K(Y ) = k

]
=

∑
q∈Z

P
[
s(Y ) = `n−1q + k − u′ − hn−1

2

]
≤ 1

`n−1
+

1√
hn − hn−1

=
1

`n−1
+

1

`n−1

√
n5(n4−1) −N−2

n−1

≤ 3

2`n−1
.

Thus

P
[
K(Y ) /∈ Λn−1

]
≤ 3

2`n−1
× 2(n− 1)

√
hn−1 =

3(n− 1)

Nn−1
=

3

(n− 1)3
. (3)

We now want to bound above P
[
J ′(Y ) = J ′′(Y σ)

]
. To do this, we set D = n8r2

n,i′ ,

so n4rn,i′ =
√
D ≤ n−1rn,i′′ and D ≤ n−2(rn,Nn−1)2 ≤ hn/9 ≤ hn − hn−1, and we split

Y and Y σ into two independent parts, namely

Y1 := (ξ−hn+1, . . . , ξ−hn−1−D) and Y2 := (ξ−hn−1−D+1, . . . , ξ−hn−1),

(Y σ)1 := (ξσ−hn+1, . . . , ξ
σ
−hn−1−D) and (Y σ)2 := (ξσ−hn−1−D+1, . . . , ξ

σ
−hn−1

),

Then we show that the law of J ′(Y ) given Y1 is spread out on the whole interval
[[0, Nn−1−1]] whereas the law of J ′′(Y σ) given Y1 is mainly concentrated on at most two
points.

On the one hand, one checks that

J ′(Y ) =
⌊(u′ + s(Y ) + hn−1/2) mod rn,i′Nn−1

rn,i′

⌋
Using the equality s(Y ) = s(Y1) + s(Y2), that s(Y2) has a binomial distribution with
parameters D and 1/2, and lemma 51 again, one gets that for all k ∈ [[0, rn,i′Nn−1 − 1]],

P
[
(u′ + s(Y ) + hn−1/2) mod rn,i′Nn−1 = k

∣∣σ(Y1)
]
≤ 1

rn,i′Nn−1
+

1√
D

≤ 1

rn,i′Nn−1
+

1

n4rn,i′

≤ 2

rn,i′Nn−1
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Hence, for every j ∈ [[0, Nn−1 − 1]],

P
[
J ′(Y ) = j

∣∣σ(Y1)
]
≤ 2

Nn−1
.

On the other hand, s(Y σ) = s(Y σ
1 ) + s(Y σ

2 ) and Y σ
1 is a function of Y1, whereas Y σ

2 is
independent of Y1 and has the same law as Y2. Hence

Var
(
u′ + s(Y σ) +

hn−1

2

∣∣∣ σ(Y1)
)

= Var
(
s(Y σ

2 )
)

=
D

4
.

Set

M = r−1
n,i′′E

[
u′ + s(Y σ) +

hn−1

2

∣∣∣ σ(Y1)
]
, M− =

⌊
M − 1

2

⌋
, M+ =

⌊
M +

1

2

⌋
.

Then Bienaymé-Chebycheff inequality yields

P
[∣∣u′ + s(Y σ) + hn−1/2− rn,i′′M

∣∣ ≥ rn,i′′

2

∣∣∣ σ(Y1)
]
≤ D

r2
n,i′′
≤ 1

n2
,

so

1− 1

n2
≤ P

[ ∣∣∣ u′ + s(Y σ) + hn−1/2

rn,i′′
−M

∣∣∣ < 1

2

∣∣∣ σ(Y1)

]
≤ P

[⌊u′ + s(Y σ) + hn−1/2

rn,i′′

⌋
∈ {M−;M+}

∣∣∣ σ(Y1)

]
≤ P

[
J ′′(Y σ) ∈

{
M− mod Nn−1;M+ mod Nn−1

} ∣∣∣ σ(Y1)
]
.

Comparing the conditional laws of J ′(Y ) and J ′′(Y σ) given Y1 yields

P
[
J ′(Y ) = J ′′(Y σ)

]
≤ 4

Nn−1
+

1

n2
=

4

(n− 1)4
+

1

n2
. (4)

Plugging inequalities 3 and 4 into inequality 2 yields

δhn(w′, w′′ ◦ gσ) ≥ εn−1

(
1− 3

(n− 1)3
− 4

(n− 1)4
− 1

n2

)
= εn.

The proof is complete.

7 Annex

7.1 Useful results on Polish spaces

Fix a non-empty separable complete metric space (A, d), endowed with the Borel σ-field.
We begin with a lemma abridged from de la Rue’s paper on Lebsegue spaces [19].

Lemma 48 Fix a countable basis (Bn)n≥1 of bounded open sets (for example, the balls
whose center lies in some countable dense subset and whose radius is the inverse of a
positive integer). Let C = {0, 1}∞ and Φ : A → C be the map defined by Φ(x) =(
1Bn(x)

)
n≥1

. Then Φ is injective, Φ(A) is a Borel subset of the compact set C and

Φ−1 : Φ(A)→ A is a Borel map.
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Proof. First, note that the sets (Bn)n≥1 separate the points of A, so the map Φ is
injective. Moreover, for every y = (yn)n≥1 ∈ C and n ≥ 1, set Byn

n = Bn if yn = 1,
Byn
n = Bc

n if yn = 0. Then

Φ−1({y}) =
⋂
n≥1

Byn
n .

When B is a bounded subset in (A, d), denote by diam(B) its diameter. For every n ≥ 1,
set In = {m ≥ 1 : Bm ⊂ Bn and diam(Bm) ≤ diam(Bn)/2}. Then the set Φ(A) is the
set of all y = (yn)n≥1 ∈ C satisfying the three conditions below:

1. For every N ≥ 1, By1
1 ∩ · · · ∩ByN

N 6= ∅.

2. There exists n ≥ 1 such that yn = 1.

3. For every n ≥ 1 such that yn = 1, there exists m ∈ In such that ym = 1.

Indeed, these conditions are necessary for y to be in Φ(A) since (Bn)n≥1 is a countable
basis (Bn)n≥1 of bounded open sets in the metric space (A, d). Conversely, these con-

ditions ensure that the diameter of the non-empty closed subset FN := By1
1 ∩ · · · ∩ByN

N

tends to 0 asN goes to infinity. Since (A, d) is complete, and (FN )N≥1 is a non-increasing
sequence, its intersection is a single set {x}. To see that Φ(x) = y, we have to check that
for every n ≥ 1, x belongs to Byn

n . If yn = 0, this is true since Byn
n = Bc

n is closed. If
yn = 1, then ym = 1 for some m ∈ In, so x ∈ Bm ⊂ Bn. This proves the characterization
above, so Φ(A) is a Borel subset of C.

For every closed subset F in (A, d), (Φ−1)−1(F ) = Φ(F ) is still a Borel subset of C,
since the induced metric space (F, dF ) is complete and separable, and (F ∩ Bn)n≥1 is
a countable basis of bounded open sets in (F, dF ). Hence, Φ−1 : Φ(A) → A is a Borel
map. The proof is complete.

We now state and prove the lemma which legitimates the definition 18.

Lemma 49 On a probability space (Ω,A,P), let F be a sub-σ-field, ξ a random variable
taking values in a countable set F , independent of F , and X an F ∨ σ(ξ)-measurable
random variable taking values in A. Given x ∈ F , one can find an F-measurable random
variable Wx taking values in A such that X and Wx coincide on the event {ξ = x}. If
P[ξ = x] > 0, such a random variable is almost surely unique.

Proof. Let Φ : A→ C be the map defined in lemma 48. We will only use the injectivity
of Φ and the measurability of Φ−1. Denote by Φn = 1Bn the n-th component of Φ.

We begin with the almost sure uniqueness when P[ξ = x] > 0. If Wx exists, then
for every n ≥ 1,

Φn(X)1{ξ=x} = Φn(Wx)1{ξ=x}.

Conditionning by F yields

E[Φn(X)1{ξ=x}|F ] = Φn(Wx)P[ξ = x].

This formula shows that the random variables Φ(Wx) is completely determined (almost
surely). By injectivity of Φ, the almost sure uniqueness of Wx follow.

Now, let us prove the existence. First, one checks that F ∨ σ(ξ) is the exactly the
set of all events of the form

E =
⊎
x∈F

(Ex ∩ {ξ = x}),
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where (Ex)x∈F is any family of events in F . Observe that if E is given by this formula
then E ∩ {ξ = x} = Ex ∩ {ξ = x} for every x ∈ F .

Fix x ∈ F . For every n ≥ 1, {X ∈ Bn} ∈ F ∨ σ(ξ), so one can find an event Exn ∈ F
such that {X ∈ Bn} ∩ {ξ = x} = Exn ∩ {ξ = x}. The random variable Y x = (Y x

n )n≥1

with values in C and defined by Y x
n = 1Exn is F-measurable.

Fix a ∈ A. We can define an F-measurable-random variable Wx with values in A by

Wx(ω) := Φ−1(Y x(ω)) if Y x(ω) ∈ Φ(A),

Wx(ω) := a otherwise.

On the event {ξ = x}, one has Y x =
(
1Exn

)
n≥1

=
(
1{X∈Bn}

)
n≥1

= Φ(X) ∈ Φ(A), so

Wx = Φ−1(Φ(X)) = X. The proof is complete.

7.2 Equivalence of Vershik’s first level and intermediate properties

In the whole subsection, we fix an r-adic filtration (Fn)n≤0 and a sequence (ξn)n≤0 of
innovations taking values in a same finite set F (with size r). We fix a Polish metric
space (A, d) and X ∈ L1(F0, A). We call (Wn)n≤0 the split-word process associated to
the random variable X, the filtration (Fn)n≤0 and the sequence of innovations (ξn)n≤0.

Proof of proposition 24

Let (W ′n, ξ
′
n)n≥0 and (W ′′n , ξ

′′
n)n≥0 be two independent copies of (Wn, ξ

′
n)n≥0 defined

on a same probability space (Ω,A,P). Call (F ′n)n≤0 and (F ′′n)n≤0 the natural filtrations
of these two processes.

Fix n ≤ 0. Then W ′n = W ′n−1(ξ′n, ·) and W ′′n = W ′′n−1(ξ′′n, ·) almost surely. Condi-
tionally on F ′n−1 ∨F ′′n−1 the random variable (ξ′n, ξ

′′
n) is uniform on F 2 since the σ-fields

F ′n−1, F ′′n−1 and the innovations ξ′n, ξ′′n are independent. Hence

E
[
dn(W ′n,W

′′
n )
∣∣F ′n−1 ∨ F ′′n−1

]
=

1

|F |2
∑

(x′n,x
′′
n)∈F 2

dn
(
W ′n−1(x′n, ·),W ′n−1(x′′n, ·)

)
.

But the uniform law on F 2 can be written as an average of uniform laws on graphs of
permutations on F . Hence

E
[
dn(W ′n,W

′′
n )
∣∣F ′n−1 ∨ F ′′n−1

]
≥ min

ς∈S(F )

1

|F |
∑
x∈F

dn
(
W ′n−1(x, ·),W ′n−1(ς(x), ·)

)
= dn−1(W ′n−1,W

′
n−1).

Actually, we showed that the process (dn(W ′n,W
′′
n ))n≤0 is a submartingale in the filtra-

tion (F ′n ∨ F ′′n)n≤0. Taking expectation yields disp(Wn, dn) ≥ disp(Wn−1, dn−1).

Now, let (ηn)n≤0 be another sequence of innovations of the filtration (Fn)n≤0. Call
(W ∗n , ηn)n≤0 the split-word process associated to the random variable X, the filtration
(Fn)n≤0 and the sequence of innovations (ηn)n≤0. By lemma 16, for each n ≤ 0, one
can find an Fn−1-measurable random permutation Σn on F such that ηn = Σn(ξn).

Fix n ≤ −1. Let us check that the words Wn and W ∗n are in the same orbit under
the action of the group G|n|. For every k ∈ [[−n + 1, 0]], the random variable Σn is

Fn ∨ σ(ξn+1, . . . , ξk−1)-measurable. By lemma 49, for each (xn+1, . . . , xk−1) ∈ F k−n−1,
one can find an Fn-measurable random variable Σ(xn+1,...,xk−1) taking values in S(F ) such
that Σn and Σ(xn+1,...,xk−1) coincide on the event {(ξn+1, . . . , ξk−1) = (xn+1, . . . , xk−1)}.
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Define an Fn-measurable random map Σ from the tree T|n| = F 0 ∪ · · · ∪ F |n|−1 to
S(F ) by Σ(xn+1, . . . , xk−1) = Σ(xn+1,...,xk−1). Then

(ηn+1, . . . , η0) =
(
Σ()(ξn+1) , Σ(ξn+1)(ξn+2) , . . . , Σ(ξn+1, . . . , ξ−1)(ξ0)

)
,

Since X = Wn(ξn+1, . . . , ξ−1) = W ∗n(ηn+1, . . . , η0), we get Wn = W ∗n ◦ gΣ with the
notations of subsection 3.3, so Wn and W ∗n are on the same orbit modulo the action
of the group G|n|. Hence, taking two independent copies (W ′n,W

′∗
n ) and (W ′′n ,W

′′∗
n ) of

(Wn,W
∗
n) and defined on a same probability space, we get

disp(Wn) = E[dn(W ′n,W
′′
n ) = E[dn(W ′∗n ,W

′′∗
n )] = disp(W ∗n).

The proof is complete. �

Proof of the equivalence of Vershik’s first level and intermediate proper-
ties

If X satisfies Vershik’s first level property, then given ε > 0, there exist an integer
n ≤ 0, some innovations ηn+1, . . . , η0 at times n+1, . . . , 0 with values in F and some map
f : F |n| → A such that the distance between X and X̃ := f(ηn+1, . . . , η0) in L1(F0, A)
is at most ε.

Set ηk = ξk for every k ≤ n. Call (W ∗k , ηk)k≤0 the split-word process associated
to the random variables X, the filtration (Fk)k≤0 and the innovations (ηk)k≤0. Since
(ηn+1, . . . , η0) is uniform on F |n| and independent of Fn,

E[dn(W ∗n , f)] ≤ E[δn(W ∗n , f)]

= E
[ 1

|F |n
∑

(xn+1,...,x0)∈F |n|
d
(
W ∗n(xn+1, . . . , x0), f(xn+1, . . . , x0)

)]
= E

[
d
(
W ∗n(ηn+1, . . . , η0), f(ηn+1, . . . , η0)

)]
= E

[
d(X, X̃)]

≤ ε.

Thus proposition 24 and the triangle inequality yield disp(Wn, dn) = disp(W ∗n , dn) ≤ 2ε,
so disp(Wm, dm) ≤ 2ε for every m ≤ n. Hence X satisfies Vershik’s intermediate
property.

Conversely, assume that X satisfies Vershik’s intermediate property. Given ε > 0,
there exists some n ≤ 0 such that disp(Wn, dn) ≤ ε. Call πn the law of Wn. Since

disp(Wn, dn) =

∫
AF
|n|

E[dn(Wn, w)]dπn(w),

there exists some w ∈ AF |n| such that dn(Wn, w) ≤ ε. But dn(Wn, w) is the minimum
of δn(Wn, w ◦ gσ) over all σ in G|n|, so there exists some Fn-measurable random variable
Σ taking values in G|n| such that dn(Wn, w) = δn(Wn, w ◦ gΣ): to get such a random
variable, fix an arbitrary order on the finite set G|n| and take the first σ which achieves

the minimum above. Let (ηn+1, . . . , η0) = gΣ(ξn+1, . . . , ξ0) and X̃ := w(ηn+1, . . . , η0).
By lemma 16, ηn+1, . . . , η0 are innovations at times n+ 1, . . . , 0 and

E[d(X, X̃)] = E
[
d
(
Wn(ξn+1, . . . , ξ0), w ◦ gΣ(ξn+1, . . . , ξ0)

)]
= E[dn(Wn, w)] ≤ ε.

Hence X satisfies Vershik’s first level property. The proof is complete. �
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7.3 Inequalities involving binomial coefficients

Lemma 50 Let Sn be a binomial random variable with parameters n ≥ 1 and p ∈]0, 1[.
For every ε ∈]0, p],

P [Sn ≤ nε] ≤ fp(ε)n where fp(ε) =
(p
ε

)ε(1− p
1− ε

)1−ε
.

Proof. Let x ∈]0, 1]. Then Markov’s inequality yields

P [Sn ≤ nε] ≤ P [xSn ≥ xnε] ≤ x−nεE[xSn ] =
(
x−ε(1− p+ px)

)n
.

Choosing

x =
ε

p
× 1− p

1− ε
to minimize the right-hand side yields the desired inequality.

Lemma 51 Let D ≥ 1 be an integer.

1. The map k 7→
(
D
k

)
increases on [0, D/2] ∩ Z and decreases on [D/2/2] ∩ Z. The

maximum is achieved when k = bD/2c and when k = dD/2e.

2. For every k ∈ [[0, D]],

1

2D

(
D

k

)
≤
√

2

πD
.

3. Fix L ≥ 1. For every r ∈ Z,∣∣∣∣∣∣
∑
q∈Z

1

2D

(
D

Lq + r

)
− 1

L

∣∣∣∣∣∣ ≤
√

2

πD
≤ 1√

D
,

with the convention
(
D
k

)
= 0 whenever k ∈ Z \ [[0, D]].

Proof. For every k ∈ [[0, D − 1]],

(
D

k + 1

)/(D
k

)
=
D − k
k + 1

∣∣∣∣∣∣
> 1 if 2k + 1 < D
= 1 if 2k + 1 = D
< 1 if 2k + 1 > D

.

Distinguishing two cases, according to the parity of D, yields item 1.

For every integer n ≥ 1, set

rn =
√
n

1

22n

(
2n

n

)
=
√
n

1

22n−1

(
2n− 1

n− 1

)
Since

rn+1

rn
=

√
n+ 1√
n
× 1

4
× (2n+ 1)(2n+ 2)

(n+ 1)2
=

n+ 1/2√
n(n+ 1)

> 1,

the sequence (rn)n≥1 is increasing. But Stirling’s formula shows that it converges to
1/
√
π. Hence rn ≤ 1/

√
π for every n ≥ 1. Item 2 follows.
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For every r ∈ Z, set

Sr =
∑
q∈Z

pLq+r where pk =
1

2D

(
D

k

)
.

First, let us prove that for every r and s,

|Sr − Ss| ≤
√

2

πD
.

By symmetry, one needs only to bound above Sr − Ss. Using the L-periodicity of the
map k 7→ pk and the symmetry pD−k = pk for every k ∈ Z, one may assume that
r ≤ s ≤ D/2 < r + L ≤ s+ L. In this case, one has

Ss − Sr =
∑
q≤0

(pLq+s − pLq+r) +
∑
q≥1

(pLq+s − pLq+L+r)− pL+r

≥ 0 + 0−
√

2

πD
,

by item 1 and 2. The desired upper bound of |Sr − Ss| and item 3 follow, by taking the
mean over all s ∈ [[0, L− 1]], since S0 + · · ·+ SL−1 = 1.
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