
HAL Id: hal-01987993
https://hal.science/hal-01987993v1

Preprint submitted on 21 Jan 2019 (v1), last revised 6 Jan 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Filtrations associated to some two-to-one
transformations
Christophe Leuridan

To cite this version:
Christophe Leuridan. Filtrations associated to some two-to-one transformations. 2019. �hal-
01987993v1�

https://hal.science/hal-01987993v1
https://hal.archives-ouvertes.fr


Filtrations associated to some two-to-one transformations

Christophe Leuridan
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Abstract

The aim of the present paper is the study of filtrations indexed by the non-
positive integers associated to (non-invertible) measure-preserving maps. We es-
tablish a necessary and sufficient conditions for the filtration associated to some
skew-products to be Kolmogorovian, i.e. to have a trivial tail σ-field at time −∞.
This condition inproves on Meilijson’s result.

More specifically, we focus on dyadic filtrations associated to two-to-one maps
provided by skew-products, like [Id, T ] or [T−1, T ]. Determining whether or not
these filtrations are product-type (i.e. can be generated by some sequence of in-
dependent random variables) is often difficult, although Vershik’s criteria provide
tools to investigate this question.

In this paper, we revisit many classical examples of filtrations associated to two-
to-one maps provided by skew-products. The first examples are rather simple and
are given as an illustration of Vershik’s intermediate criterion. The last two ones
are much more involved and yield non-product-type filtrations. Our purpose is to
give a more complete and readable presentation of the proofs already existing.

MSC Clasification : 37A05,60J05.
Keywords : measure-preserving maps, skew products, dyadic filtrations, product-type
filtration, standardness, Vershik’s criteria, split-word process, nibbled-word process.

1 Introduction

The classification up to isomorphism of the measure-preserving maps in probabilility
spaces is one of the main topics in ergodic theory and the notion of entropy is a key no-
tion in this theory. Classical ergodic properties (ergodicity, mixing property, exactness,
‘Bernoulliness’) are also invariant by isomorphisms, so they can be used to prove that two
dynamical systems are not isomorphic. When one works with non-invertible measure-
preserving maps, it also interesting to study the standardness or non-standardness of
‘the’ associated filtration. Let us explain how to construct this filtration.

1.1 Filtration associated to a measure-preserving map

Let (E, E , π) be a probability space and R be a measure-preserving map on (E, E , π).
The sequence of σ-fields (R−nE)n≥0 is non-increasing. Reverting time yields a filtration
(namely a non-decreasing family of σ-fields) indexed by the non-positive integers.

To give a probabilistic interpretation, fix a random variable Z taking values in E,
with law π, defined on some probability space (Ω,A,P). Assume the existence of a
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transition kernel K such that

∀y ∈ E, ∀B ∈ E , K(y,B) = π[Z ∈ B|R(Z) = y].

One gets a stationnary Markov process with transition kernel K by setting

∀n ≤ 0, Zn := R|n| ◦ Z.

Its natural filtration (indexed by the non-positive integers) is given by

∀n ≤ 0, FZn := σ((Zk)k≤n) = σ(Zn) = Z−1(RnE).

Of course, looking at this filtration is interesting only when the measure-preserving map
R is not invertible. In this case, many ergodic properties of R can be viewed as properties
of the filtration (FZn )n≤0 thus defined.

For example, one can check 1 that the tail σ-field at time −∞ is

FZ−∞ :=
⋂
n≤0

FZn = Z−1
( ⋂
n≤0

RnE
)
.

Therefore, the filtration (FZn )n≤0 is Kolmogorovian (namely FZ−∞ is trivial under P) if
and only if the transformation R is exact (namely

⋂
n≥0R

−nE is trivial under π).

Another interesting property is dyadicity. By definition, one says that a filtration
(Fn)n≤0 on (Ω,A,P) has independent increments if for every n ≤ 0, one can find a ran-
dom variable ξn, independent of Fn−1 such that Fn = Fn−1∨σ(ξn). Such an independent
complement is called an innovation at time n since it carries the ‘new information’ at
time n. Furthermore, if each innovation ξn is uniform on some finite set possibly depend-
ing on n (respectively some set of size 2), the filtration (Fn)n≤0 is poly-adic, (respectively
dyadic).

One checks that the filtration (FZn )n≤0 associated to the transformation R is dyadic
if and only if R is two-to-one, namely if for π-almost every y ∈ E, the probability
measure K(y, ·) has two atoms, each one having measure 1/2.

For example, the map R2 : x 7→ b2xc from I := [0, 1[ to itself preserves the uniform
measure on I, and is two-to-one since the associated transition kernel K is given by

∀y ∈ I, K(y, ·) =
1

2
(δy/2 + δ(1+y)/2).

Actually, R2 acts as a Bernoulli shift on the dyadic expansions. Indeed, if the dyadic
expansion of x ∈ I is

x =
∞∑
n=1

an(x)

2n
,

then the dyadic expansion of R2(x) is

b2xc =
∞∑
n=2

an(x)

2n−1
=
∞∑
n=1

an+1(x)

2n
.

1The σ-field Z−1
(⋂

n≤0R
nE
)

is contained in FZn = Z−1(RnE) for every n ≤ 0, hence in FZ−∞.

Conversely, if A ∈ FZ−∞, then for each n ≤ 0, one can find Bn ∈ RnE such that A = Z−1(Bn). The set
B := lim infn→−∞Bn belongs to

⋂
n≤0R

n and one has A = Z−1(B). The reverse inclusion follows.
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Furthermore, if Z is a uniform random variable with values on I, the natural filtration

of the process (Zn)n≤0 defined by Zn = R
|n|
2 (Z) is also the natural filtration of the i.i.d.

sequence (ξn)n≤0 defined by ξn = a1−n(Z). By Kolmogorov’s zero-one law, the filtration
(FZn )n≤0 is Kolmogorovian since it is product-type (namely generated by some sequence
independent random variables).

Yet, Vershik [20, 21] discovered that Kolmogorovian dyadic filtrations are not nec-
essarily product-type and he provided counterexamples with the help of criteria which
characterize the product-type filtrations among the dyadic filtrations. Vershik’s theory
has been transcribed into the language of stochastic processes by Émery & Schacher-
mayer ([3]), and then par Laurent ([9, 10, 11]).

In the present paper, we will apply these criteria to well-known examples of dyadic
filtrations associated to two-to-one measure-preserving maps. The existing proofs of
their productness or non-productness are scattered in the literature, are sometimes in-
completely given and difficult to read, at least for probabilists. All these exemples are
provided by skew products.

1.2 Skew products

Let F be a countable set with size ≥ 2 and µ a probability measure on F giving positive
mass to every point of F . Call S the Bernoulli shift on FZ− defined by

S(f)(n) := f(n− 1) for every f ∈ FZ− and n ∈ Z−.

Here, we define Bernoulli shifts on FZ− instead of FZ+ because we will work with
filtrations indexed by the non-positive integers.

Given a family (Tk)k∈F of invertible, measure-preserving maps on some probability
space (G,G, Q), we define the skew product R = S n (Tk)k∈F by

R(f, g) := (S(f), Tf(0)(g)).

The transformation R thus defined preserves the measure µ⊗Z−⊗Q and is not inversible.
More precisely, the inverse images by R of any element (f̃ , g̃) ∈ FZ−×G are the elements
(f̃x, T−1

x g̃), where f̃x ∈ FZ− is the sequence obtained by concatenation of f̃ and x,
namely defined by (f̃x)(0) = x and (f̃x)(n) = f̃(n+ 1) for every n ≤ −1.

Fix an FZ− × E-valued random variable Z = (ξ, γ) with law µ⊗Z− ⊗ G. Then the
law of Z given R(Z) is given by the following transition kernel

∀(f̃ , g̃) ∈ FZ− ×G, K((f̃ , g̃), ·) =
∑
x∈F

µ{x}δ(f̃x,T−1
x g̃).

Moreover, the random variable ξ0 has law µ and is independent of R(Z) = (S(ξ), Tξ0(γ)).
Therefore, if we set

∀n ≤ 0, γn := Tξn+1 ◦ · · · ◦ Tξ0(γ) and Zn := R|n|(Z) = (S|n|(ξ), γn),

then the recursion relation γn = T−1
ξn

(γn−1) shows that

• the filtration (FZn )n≤0 has independent increments and the process (ξn)n≤0 is a
sequence of innovations, namely

∀n ≤ 0,FZn = FZn−1 ∨ σ(ξn) with ξn independent of FZn−1;
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• the processes (γn)n≤0 and (Zn)n≤0 are stationary Markov chains whose evolutions
are governed by the sequence (ξn)n≤0, since for every n ≤ 0, γn = T−1

ξn
◦ γn−1;

• if for Q-almost every z ∈ G, the images (Tk(z))k∈F are pairwise distinct, then the
processes (γn)n≤0 and (Zn)n≤0 generate the same filtration since for every n ≤ 0,
the knowledge of (γk)k≤n is sufficient to recover (ξk)k≤n.

This last remark will be used to give simpler descriptions of the filtration (Fγn )n≥0.

A first question is to determine when the transformation R is exact, namely when
the tail σ-field FZ−∞ is trivial.

In section 2, we prove the following characterization for the particular case where
the transformations Tk are the powers of a same invertible transformation T , namely
when F ⊂ Z and Tk = T k for every k ∈ F . In this case, the skew product R will be
denoted by S n T .

Theorem 1 Call d the greatest common divisor of all differences k − ` where k and `
range over F . Then S n T is exact (namely F−∞ is trivial) if and only if T d is ergodic.

The difficult part in theorem 1 is the implication T d ergodic ⇒ S n T exact. This
implication improves on Meilijson’s sufficient conditions (see [14]):(

d = 1 and T ergodic
)
⇒ S n T exact,(

Tn ergodic for every n ≥ 1
)
⇒ S n T exact.

Actually, the skew products considered by Meilijson are the natural extensions of the
skew products considered by us, since Meilijson works with a bilateral shifts (whereas
our shift S is unilateral), so the exactness of ‘our’ skew product is replaced by a slightly
weaker property, namely the K-automorphism property of Meilijson’s skew product.
Our proof involves the spectral measure of T and differs from Meilijson’s proof.

Assume that F is finite and µ is uniform, so the filtration (FZn )n≤0 is poly-adic. A
much more involved question is to determine when (FZn )n≤0 is product-type, namely when
it can be generated by some sequence of independent random variables. By Kolmogorov
zero-one law, the triviality of the tail σ-field FZ−∞ is necessary. But this condition is
far from being sufficient in spite of the fact that (ξn)n≤0 is a sequence of innovations.
Actually, the sequence of innovations (ξn)n≤0 may generate a filtration which is strictly
included in (FZn )n≤0 even if FZ−∞ is trivial. However, in some cases, the filtration
(FZn )n≤0 can be generated by some other sequence of independent random variables,
but in other cases it cannot (see examples below).

1.3 Examples of two-to-one skew products

To get two-to-one skew products, we focus on the particular case where F is a pair
{k1, k2} and µ is the uniform measure on F . Then, when one only looks at the second
component in the product FZ−×E, the apparent effect of the transformation Sn(Tk)k∈F
is to apply at random Tk1 or Tk2 , that is why the skew product S n (Tk)k∈Z is simply
denoted by denoted by [Tk1 , Tk2 ]. In this case, the innovations (ξn)n≥0 are uniform on
the pair F , so the filtration (Fn)n≥0 is dyadic. We now present classic examples of
such transformations, from the simplest to the hardest, where the associated filtration
(FZn )n∈Z is known to be product-type or not product-type.
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The first two examples are given in Vershik’s original paper [20]. The first one is
only mentionned at page 744, without any proof. A proof is given in [13] in a slightly
more general context. In [4], Feldman and Rudolph prove a general result: the filtration
associated to [I, T ] is product-type when T is rank-1. This condition includes all pure-
point spectrum transformations and in particular irrational rotations of the circle.

Theorem 2 (Vershik) If T is an irrational rotation on the circle, then the filtrations
associated to [T, Id] and [T, T−1] are product-type. Hence, the natural filtration of an
irrational random walk on the circle indexed by the non-positive integers is product-type.

Theorem 3 (Vershik) Let Γ = 〈a, b〉 be the free group with two generators a, b. Set
G = {0, 1}Γ endowed with the uniform measure, and call Ta, Tb the translations on G
defined by Tag(x) = g(a−1x), Tbg(x) = g(b−1x). Then the filtration associated to [Ta, Tb]
is not product-type. Hence, the natural filtration of a random walk on G with steps given
by T−1

a , T−1
b and indexed by the non-positive integers is not product-type.

Let us also mention that Rudolph et Hoffman’s result in [8]: if T is an irrational
rotation on the circle, then [T, Id] is equivalent to a unilateral Bernoulli shift. In other
words, the filtration (FZn )n≤0 associated to [T, Id] can be generated by some i.i.d sequence
(ηn)n≤0 such that the process ((Zn, ηn))n≤0 is stationary.

The next result was conjectured by Vershik and proved by Heicklen and Hoffman
in [6].

Theorem 4 (Heicklen - Hoffman) If T is a non-trivial bilateral Bernoulli shift, then
the filtrations associated to [T, Id] and [T, T−1] are not product-type. Hence, the natural
filtration of a symmetric random walk in a random scenery on Z indexed by the non-
positive integers is not product-type.

Using Sinai’s theorem (namely, every automorphism of a Lebesgue space with pos-
itive entropy admits a non-trivial bilateral Bernoulli shift as a factor), one can deduce
the following generalisation.

Corollary 5 Let T be any automorphism of a Lebesgue space with positive entropy.
Then the filtrations associated to [T, Id] and [T, T−1] are not product-type.

What happens for automorphisms with null entropy? We saw that when T is an
irrational rotation, [T, Id] and [T, T−1] provide product-type filtrations. Yet, Hoffman
constructed an automorphism T with null entropy such that [T, Id] provides a not-
product-type filtration [7].

Theorem 6 (Hoffman) One can construct an automorphism of a Lebesgue space with
null entropy such that the filtration associated to [T, Id] is not product-type.

The proofs of these results rely on Vershik’s criteria. The orginal proofs are written
in the language of ergodic theory and in an allusive way (some notations are not defined
and some proofs are omitted), so they are difficult to read, at least for probabilists. The
purpose of the present paper is to explain Vershik’s criteria with a probabilist point of
view and to provide proofs that are more accessible to non-specialists.
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Plan of the paper

In section 2, we establish generals results on skew products and we prove theorem 1.

In section 3, we introduce Vershik’s criteria to characterize product-type filtrations
among dyadic filtrations indexed by the non-positive integers.

In section 4, we prove theorems 2 and 3 to warm-up.

Sections 5 and 6 are devoted to the proof of theorem 4, corollary 5 and theorem 6.

Last, section 7 provides the proof of some auxiliary results.

2 Proof of theorem 1

To prove that S n T is exact if and only if T d is ergodic, we use a characterization
of the ergodicity of T d involving the spectral measures associated to T . Let us recall
the definition of these measures. More details can be found in [2], chapter 1, section 4.
Denote by U the unit circle of C. Since T is an automorphism of the probability space
(G,G, Q), the Koopman operator UT : f 7→ f ◦ T from L2(Q) to L2(Q) is unitary. For
every f ∈ L2(Q), there exists a unique finite measure σf on U such that

∀k ∈ Z,

∫
U
zk dσf (z) = 〈f, UkT f〉L2(Q) =

∫
G
f × (f ◦ T k) dQ.

The measure σf thus defined is called the spectral measure of UT associated to f .

Lemma 7 Let d ≥ 1 be an integer, Ud = {z ∈ U : zd = 1} and

L2(Q)0 = {g ∈ L2(Q) :

∫
U
gdQ = 0}.

Then T d is ergodic if and only if σg(Ud) = 0 for every g ∈ L2(Q)0.

Proof. Call Pd the orthogonal projection on Ker(UdT − Id). Let f ∈ L2(Q). Then

||Pdf ||2L2(Q) = 〈f, Pdf〉L2(Q) and Pdf = lim
n→+∞

1

n

n−1∑
k=0

f ◦ T kd in L2(Q),

by Von Neumann ergodic theorem (see for example [15], chapitre 2) applied to T d. Thus

||Pdf ||2L2(Q) = lim
n→+∞

1

n

n−1∑
k=0

〈f, f ◦ T kdf〉L2(Q) = lim
n→+∞

∫
U

( 1

n

n−1∑
k=0

zkd
)

dσf (z) = σf (Ud)

by Lebesgue dominated convergence theorem, since

∀z ∈ U,
1

n

n−1∑
k=0

zkd −−−−−→
n→+∞

1Ud
(z).

But T d is ergodic if and only if Ker(UdT − Id) contains only the Q-almost surely constant
fonctions, namely if Pdf = 0 for every f ∈ L2(Q)0. Lemma 7 follows.

We will also use the following result on characteristic functions.
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Lemma 8 Let µ be a probability measure on Z. Call F its support, d the greatest
common divisor of all differences k − ` where k and ` range over F . For every z ∈ U,
set

∀z ∈ U, ϕ(z) =
∑
k∈Z

µ{k}zk =
∑
k∈F

µ{k}zk.

The function ϕ thus defined is the characteristic function of µ. Then |ϕ(z)| = 1 if and
only if z belongs to Ud.

Proof. Fix k0 ∈ F and let z ∈ U.

For every z ∈ Ud and k ∈ F , zk−k0 = 1 since d divides k − k0, hence we get
ϕ(z) = zk0 , so |ϕ(z)| = 1.

Conversely, if |ϕ(z)| = 1, then equality holds in the triangle inequality

|ϕ(z)| ≤
∑
k∈F
|µ(k)zk| = 1,

so the complex numbers µ(k)zk lie on a same half-line with origin 0, namely R+z
k0 .

Since |z| = 1, we get that zk = zk0 for every k ∈ F , so zk−` = 1 for every (k, `) ∈ F 2.
But Bézout’s lemma tell us that d can be written as some (finite) linear combination
with integer coefficients of the differences k − ` where (k, `) ranges over F 2. Hence
zd = 1, which achieves the proof.

We now prove theorem 1.

Proof. As we have done in the introduction, we fix a random variable Z = (ξ, γ) with
law π = µ⊗Z− ⊗Q, and we set for every n ≤ 0,

Zn = (S n T )|n|(Z) = (S|n|(ξ), T ξn+1+···+ξ0(γ)).

Then S n T is exact if and only if FZ−∞ is trivial, namely if E[R|FZ−∞] = E[R] a.s. for
every R ∈ L2(FZ0 ). But the set of all R ∈ L2(FZ0 ) satisfying this equality is a closed
linear subspace of L2(FZ0 ), so one needs only to consider the case where

R = I{
(ξm+1,...,ξ0)=(xm+1,...,x0)

}f(γ),

with m ≤ 0, (xm+1, . . . , x0) ∈ F |m| and f ∈ L2(Q).

Set Sn = −ξn+1 − · · · − ξ0 for every n ≤ 0 2 and sm = −xm+1 − · · · − x0. Then the
random variable R above can be written

R = I{
(ξm+1,...,ξ0)=(xm+1,...,x0)

}f(T sm(T−Sm(γ)
))
.

Since T−Sm(γ) is FZm-measurable whereas (ξm+1, . . . , ξ0) is independent of FZm, one has

E[R|FZm] = cf
(
T sm

(
T−Sm(γ)

))
with c := µ{xm+1} · · ·µ{x0}.

In the same way, for every n ≥ 0, the random variable T−Sm−n(γ) is FZm−n-measurable
whereas the random variable Sm − Sm−n = ξm−n+1 + · · ·+ ξm is independent of FZm−n
and has distribution µ∗n, so

E[R|FZm−n] = c
∑
k∈Z

µ∗n(k)(f ◦ T sm−k)
(
T−Sm−n(γ)

)
.

2We choose this definition with the minus signs to have the same recursion relation as in the usual
random walks, namely Sn = Sn−1 + ξn.
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Call g the the orthogonal projection of f on L2(Q)0 and ϕ thus defined is the charac-
teristic function of µ, like in lemma 8. Since the law of T−Sm−n(γ) is Q, and since T
preserves Q, we get

Var
(
E[R|FZm−n]

)
= c2

∑
k,`∈Z

µ∗n(k)µ∗n(`) Cov(f ◦ T sm−k(γ), f ◦ T sm−`(γ))

= c2
∑
k,`∈Z

µ∗n(k)µ∗n(`)〈g ◦ T sm−k, g ◦ T sm−`〉L2(Q)

= c2

∫
U

( ∑
k,`∈Z

µ∗n(k)µ∗n(`)zk−`
)

dσg(z)

= c2

∫
U

∣∣∣∑
k∈Z

µ∗n(k)zk
∣∣∣2dσg(z)

= c2

∫
U
|ϕ(z)|2ndσg(z).

On the one hand, E[R|FZm−n] −−−−−→
n→+∞

E[R|FZ−∞] in L2(P ) by the backwards martingale

convergence theorem. On the other hand and |ϕ(z)| ≤ 1 for every z ∈ U with equality
if and only if z ∈ Ud. Hence, letting n go to infinity, we get

Var
(
E[R|F−∞]

)
= c2σg(Ud).

Hence theorem 1 follows, by lemma 7.

Remark : the implication ‘FZ−∞ trivial =⇒ T d ergodic’ can be proved directly as
follows. Assume that FZ−∞ is trivial. By definition of d, the support F of µ is contained
in some coset r+ dZ, so the random variables ξ−n+1 + · · ·+ ξ0 takes values in nr+ dZ.

Let B ∈ G be a subset such that T−d(B) = B. Since the subsets T k(B), k ∈ Z, are
also invariant by T d, we get that for every n ≥ 0,

{γ ∈ B} =
{
T ξ−n+1+···+ξ0(γ) ∈ T rn(B)

}
=
{

(S n T )n(ξ, γ) ∈ FZ− × T rn(B)
}
.

Hence {γ ∈ B} ∈ FZ−∞, so Q(B) = P[γ ∈ B] ∈ {0, 1}. The ergodicity of T d follows.

3 Vershik’s tools

In this section, we introduce Vershik’s standardness criteria. Most of the material of
this section is abridged from [12].

3.1 Immersion, productness and standardness

Unless otherwise specified, the filtrations (Fn)n≤0 considered here are defined on a given
probability space (Ω,A,P), are indexed by the non-positive integers, and have essentially
separable σ-field F0. This means that F0 can be generated by countably many events
(modulo the null sets), or equivalently that the Hilbert space L2(F0) is separable.

An important notion in the theory of filtrations is the notion of immersion.

Definition 9 Let (Fn)n≤0 and (Gn)n≤0 be two filtrations. One says that (Fn)n≤0 is
immersed in (Gn)n≤0 if for every n ≤ 0, Fn ⊂ Gn and F0 and Gn are conditionally
independent with regard to Fn. An equivalent definition is that every martingale in
(Fn)n≤0 is still a martingale in (Gn)n≤0.
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We refer the reader to [3] or [10] to find more details on this notion. In the present
paper, the immersions will follow from the next lemma.

Lemma 10 Let (Fn)n≤0 and (Gn)n≤0 be two filtrations such that Fn ⊂ Gn for every
n ≤ 0. If (Fn)n≤0 and (Gn)n≤0 admit a common sequence of innovations, then (Fn)n≤0

is immersed in (Gn)n≤0.

We now introduce the notion of standard filtration.

Definition 11 A filtration (Fn)n≤0 is standard if it is isomorphic to another filtration
(possibly defined on another probability space) which is immersed in some product-type
filtration (having also essentially a separable final σ-field).

Actually, when Vershik defined standardness, he considered only poly-adic filtra-
tions, and he defined standardness as productness: according to Vershik’s definition,
standard poly-adic filtrations are product-type poly-adic filtrations. Fortunately, these
two definitions of standardness coincide on poly-adic filtrations.

Theorem 12 Every poly-adic filtration immersed in some product-type filtration is also
product-type.

Actually, this non-trivial statement is a key result in Vershik’s theory and relies on
Vershik’s second level criterion, stated later in this section.

We now introduce the three Vershik’s properties (first level, intermediate and second
level, according to the terminology used by Émery, Schachermayer and Laurent) which
leads to the three corresponding Vershik’s criteria. Defining the three Vershik’s proper-
ties is interesting since each of them helps to understand the other ones, although we
essentially use Vershik’s intermediate criteria in the present paper.

3.2 Vershik’s first level property

Let (Fn)n≤0 be a poly-adic filtration: for each n ≤ 0 one can find a uniform random
variable ξn with values in some finite set Fn such that ξn is an innovation at time n of
the filtration (Fn)n≤0, namely

Fn = Fn−1 ∨ σ(ξn) mod P, with ξn independent of Fn−1.

One can check that the sequence of sizes (|Fn|)n≤0 is uniquely determined. This sequence
is called the adicity of the filtration (Fn)n≤0.

When (Fn)n≤0 is dyadic, the set Fn can be chosen to be independent of n. For
example, we will take F = {0, 1} (respectively F = {−1, 1}) when we work with the
filtration associated to [Id, T ] (respectively [T, T−1]).

A first important thing to understand is the way to get sequences of innovations
from the original one.

Lemma 13 From (ξn)n≤0, one can get another sequence of innovations as follows: for
each n ≤ 0, fix any Fn−1-measurable random permutation Σn on Fn and set ηn = Σn(ξn).
Actually, one can check that every sequence of innovations of (Fn)n≤0 with values in the
sets (Fn)n≤0 can be obtained in this way.

9



Note that the set
∏
n≤0 Fn can be viewed as the set of all branches of an infinite tree:

the vertices at level h are the elements of
∏
−h+1≤n≤0 Fn, and the children of a vertex

(x−h+1, . . . , x0) ∈ ∏−h+1≤n≤0 Fn are the vertices (x−h, x−h+1, . . . , x0) with x−h ∈ F−h.
The map which transforms (ξn)n≤0 into (ηn)n≤0 provided by lemma 13 acts as a random
automorphism on this tree.

A second important thing to understand is that two different systems of innovations
do not carry the same information. The simplest example to see that is the situation
where (ξn)n≤0 are (independent and) uniform on {−1, 1} and ηn = ξn−1ξn for every
n ≤ 0. By lemma 13, (ηn)n≤0 is still a sequence of innovations, but the sequence
(ηn)n≤0 carries less information that the sequence (ξn)n≤0, since ξ0 is independent of
(ηn)n≤0.

This remark opens the possibility for the filtration (Fn)n≤0 to be product-type even
if it is not generated by the original sequence of innovations (ξn)n≤0. The example of
the simple irrational random walk on the circle R/Z, indexed by Z−, whose filtration
is product-type although it is not generated by the sequence of steps, shows that this
situation can actually occur, as we shall see in section 4.

The possibility or the impossibility of choosing a good sequence of innovations to
approach some random variable leads Vershik’s first level property.

Fix a separable complete metric space (A, d), endowed with the Borel σ-field. Denote
by L1(F0;A) the set of all classes modulo almost sure equality of F0-mesurable random
variables X taking values in A, such that for some (equivalently, for all) a ∈ A, the
real-random variable d(a,X) is integrable. Endow L1(F0;A) with the distance defined
by d1(X,Y ) = E[d(X,Y )].

Definition 14 (First level Vershik property) Let X ∈ L1(F0;A). One says that X
satisfies Vershik’s first level property if for every ε > 0, one can approach X by some
measurable function of finitely many innovations of the filtration (Fn)n≤0 so that the
distance in L1(F0;A) is at most ε.

3.3 Vershik’s intermediate property

For the sake of simplicity, we focus on dyadic filtrations only, although the definitions and
theorems below can be extended to poly-adic filtrations. Actually, the simplifications
occur essentially in the notations, since we work whith the powers F h of a fixed set F
instead of products like

∏
−h+1≤n≤0 Fn.

In the whole subsection, we fix a dyadic filtration (Fn)n≤0 and a sequence (ξn)n≤0

of innovations taking values in a set F of size 2. As before, (A, d) denotes a separable
complete metric space, endowed with the Borel σ-field.

The definition of Vershik’s intermediate criterion relies on split-words processes,
on the quotients of `1-metrics on the sets AF

h
, h ≥ 0 by the action of binary tree

automorphisms, and on the notion of dispersion.

Definition 15 (Split-word processes with given final value and innovations)
Let X ∈ L1(F0;A). For every n ≤ −1, there exists an Fn-measurable random map Wn

from F |n| to A such that for each (xn+1, . . . , x0) ∈ A|n|, X = Wn(xn+1, . . . , x0) almost
surely on the event {(ξn+1, . . . , ξ0) = (xn+1, . . . , x0)}. Such a random map is almost
surely unique. The process (Wn, ξn)n≥0 thus defined is the split-word process associated
to X, to the filtration (Fn)n≤0 and to the sequence of innovations (ξn)n≤0.
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The existence and the essential uniqueness that legitimise the definition above will
be established in section 7.

Note that W0 is the map which sends the empty sequence () ∈ F 0 on X. Informally,
if we want at time n ≤ 0 to predict the future value of X, there are 2|n| possible (non
necessarily distinct) values, one for each possible value of (ξn+1, . . . , ξ0). By definition,
Wn(xn+1, . . . , x0) is the value of X that we will get if (ξn+1, . . . , ξ0) = (xn+1, . . . , x0).

The recursion formula Wn(xn+1, . . . , x0) = Wn−1(ξn, xn+1, . . . , x0) shows that the
process (Wn, ξn)n≤0 is an inhomogeneous Markov chain and that (ξn)n≤0 is a sequence

of innovations of the the filtration (FW,ξn )n≤0. Hence the filtration (FW,ξn )n≤0 is immersed
in the filtration (Fn)n≤0.

Moreover, if one fixes a total order on the pair F , and endowes each F |n| with the
lexicographic order, then each Wn can be viewed as a word of length 2|n| on the alphabet
A, namely the word (Wn(xn+1, . . . , x0))(xn+1,...,x0)∈F |n| . Furthermore, Wn is the left half
or the right half of Wn−1 according to the value of ξn. This explains the terminology
‘split-word process’ used. Note that the alphabet can be uncountable and that the
successive letters are not assumed to be independent unlike in the standard split-word
process considered by Smorodinsky [18], Laurent [9], Ceillier [1].

We now give a formal model of the automorphism group Gh of the binary tree with
given height h ≥ 0. Call

Th =

h⋃
i=0

F i

the set of all sequences of elements of F with length ≤ h. The set Th can be viewed as
the set of all vertices of a binary tree with height h ≥ 0: the root is the empty sequence
(), and the children of a given vertex (x0, . . . , xi−1) ∈ F i with i ≤ h − 1 are the two
vertices (x0, . . . , xi−1, xi) where xi ranges over F .

Assume now that h ≥ 1. To each family of permutations σ ∈ S(F )Th−1 , we associate
a permutation gσ ∈ S(Th) preserving this tree structure by setting

gσ(x1, . . . , xi) =
(
σ() (x1) , σ(x1) (x2) , . . . , σ(x1, . . . , xi−1) (xi)

)
for every (x1, . . . , xi) ∈ Th. In this formula, the permutations associated to the shortest
sequences are performed first, and the permutation σ(x1, . . . , xi−1) acts on the subtrees
under the vertex (x1, . . . , xi−1).

Note that for every σ, τ ∈ S(F )Th−1 , gτ ◦ gσ = gτσ if one defines τσ by

τσ(x1, x2, . . . , xi) = τ
(
gσ(x1, . . . , xi)

)
◦ σ
(
x1, x2, . . . , xi

)
.

This justifies the following definition.

Definition 16 (Automorphism group of the binary tree Th) The set Gh :=
S(F )Th−1 endowed with the multiplication thus defined is a group and is isomorphic
to the group ({gσ : σ ∈ Gh}, ◦), so we view Gh as the automorphism group of the binary

tree Th. We get an action of the group Gh on the set AF
h

by setting

∀(σ,w) ∈ Gh ×AF
h
, σ · w := w ◦ g−1

σ .

When F = {−1, 1}, the set S(F ) is the pair {Id,−Id}. Figure 1 below gives an
example of the action of such an automorphism on T3. The left part of figure 3.3
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represents T3, the values of σ on each vertex of T2 (the + and - stand for Id and −Id)
and w: the images of the elements of {−1, 1}3 ordered in lexicographic order are denoted
by a,b,c,d,e,f,g,h. The right part indicates the images of each vertex of T3 and σ · w.
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Figure 1: The map σ : T2 → {−1, 1} is represented by the symbols 	 and ⊕ on all
vertices of the left tree but the leaves. The permutation gσ : T3 → T3 sends each vertex
of the left tree on the vertex on the right tree corresponding to the same label. The maps
w : {−1, 1}3 → A and gσ · w : {−1, 1}3 → A can be identified with the words abcdefgh
and feghdcab respectively.

We now define a metric and a metric modulo the binary tree automorphisms on AF
h
.

Definition 17 (Metric and pseudo-metric on AF
h
) For every u and v in AF

h
, set

δ−h(u, v) = δh(u, v) =
1

2h

∑
(x1,...,xh)∈Fh

d
(
u(x1, . . . , xh), v(x1, . . . , xh)

)
,

d−h(u, v) = dh(u, v) = min
g∈Gh

δh(u, g · v).

Definition 18 (Dispersion of an integrable random variable) Let (E, E) be any
measurable space, e be a measurable pseudo-distance on (E, E), and X be a random
variable with values in (E, E). By definition, the dispersion of a random variable X with
regard to e, denoted by disp(X, e), is the expectation of e(X ′, X ′′) where X ′ and X ′′ are
two independent copies of X defined on a same probability space.

Definition 19 (Vershik’s intermediate property) Let X ∈ L1(F0;A) and (Wn)n≥0

be the split-word process associated to X, to the filtration (Fn)n≤0 and to the sequence
of innovations (ξn)n≤0. One says that X satisfies Vershik’s intermediate criterion if
disp(Wn, dn)→ 0 as n→ −∞.

Actually, Vershik’s intermediate criterion does not depend on the choice of the se-
quence of innovations considered. Indeed, replacing (ξn)n≤0 by another sequence of
innovations interchanges the letters in the split-word process associated to X according
to an automorphism of the infinite binary tree. This operation preserves the dispersion
of Wn since the pseudo-metric dn identifies words which are in the same orbit modulo
the tree isomorphisms.
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3.4 Vershik’s second level property

Keep the notations of the last subsection. Defining Vershik’s second level property re-
quires to construct a tower of measures with the help of Kantorovich-Rubinstein metrics.

Definition 20 (Kantorovich-Rubinstein metric) Let (E, ρ) be a non-empty sepa-
rable metric space. Call E′ the set of all probability measures on (E,B(E)) having a
finite first moment, namely the set of all probability measures µ on (E,B(E)) such that
for some (equivalently, for all) a ∈ E,∫

E
ρ(a, x) dµ(x) < +∞.

The Kantorovich-Rubinstein metric on E′ is defined by

ρ′(µ, ν) = inf
π∈Π(µ,ν)

∫
E2

ρ(x, y) dπ(x, y),

where Π(µ, ν) denotes the set of all probability measures on (E2,B(E2)) with margins µ
and ν.

One can check that the metric ρ′ is measurable with regard to the topology of
narrow convergence. The topology defined by ρ′ is finer than the topology of narrow
convergence, and these two topolgy coincide when (E, ρ) is compact.

The space (E′, ρ′) is still a separable metric space, thus the construction above can
be iterated. Moreover, (E′, ρ′) is complete (or compact) whenever (E, ρ) is.

Definition 21 (Progressive predictions and Vershik’s second level property)
Let X ∈ L1(F0;A). The Vershik’s progressive predictions of X with regard to (Fn)n≤0

are the random variables πnX ∈ L1(Fn;A(n)) defined recursively by π0X = X taking
values in (A(0), d(0)) = (A, d), and for every n ≤ −1, πnX = L(πn−1X|Fn), taking
values in (A(n), d(n)) = ((A(n−1))′, (d(n−1))′). One says that X satisfies Vershik’s second
level property if disp(πnX, d

(n))→ 0 as n→ −∞.

Actually the quantities disp(πnX, d
(n)) considered in Vershik’s second level property

are the same as the quantities disp(Wn, dn) considered in Vershik’s intermediate prop-
erty, so these two properties are equivalent. One can check that they are also equivalent
to the first level property. The equality disp(πnX, d

(n)) = disp(Wn, dn) follows from the
next proposition, which can be be proved by recursion.

Proposition 22 Define recursively the map in : AF
|n| → A(n) for every n ≤ 0 by

i0 = IdA and for every n ≤ 0

in−1(w) =
1

2

∑
x∈F

δin(w(x,·)).

Then in is an isometry from the pseudo-metric space (AF
|n|
, dn) to the metric space

(A(n), d(n)). Moreover, given X ∈ L1(F0;A), the Vershik’s progressive predictions of
X can be derived from the split-word process (Wn)n≤0 associated to X by the formula
πnX = in(Wn).
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3.5 Vershik’s standardness criteria

We keep the notations of the last subsection. Since the three Vershik’s properties (first
level, intermediate, and second level) are equivalent, we do not distinguish them below.
We can now state Vershik’s standardness criteria.

Theorem 23 (Vershik standardness criteria), Let (Fn)n≤0 be a dyadic filtration
such that F0 is essentially separable. Then (Fn)n≤0 is product-type if and only if for ev-

ery separable complete metric space (A, d), every random variable in L1(F0;A) satisfies
Vershik’s property.

Actually, the properties below simplify a bit the verification of Vershik’s criteria.

Proposition 24 (Stability properties)

1. The set of all random variables in L1(F0;A) which satisfy Vershik’s property is
closed in L1(F0;A).

2. If W ∈ L1(F0;A) satisfies Vershik’s property then every measurable function of W
with values in some separable complete metric space satisfies Vershik’s property.

3. Let n ≤ 0 and W ∈ L1(Fn;A). Endow F with the discrete metric and A × F |n|
with the product metric. If W satisfies Vershik’s property, then the random variable
(W, ξn+1, . . . , ξ0) with values in the product A× F |n| satisfies Vershik’s property.

These stability properties allow us to restrict the class of separable complete metric
spaces considered. For example, one can consider only R endowed with the usual metric,
or the class of all finite subsets of N endowed with the discrete metric. And in many
cases, the checking work can be reduced much more.

Proposition 25 (Natural filtrations of Markov processes) Let (Xn)n≤0 be a (pos-
sibly inhomogeneous) Markov process in which each random variables Xn takes values in
some separable bounded complete metric space (possibly depending on n). Assume that
the filtration (FXn )n≤0 is dyadic.

1. Then (FXn )n≤0 is product-type if and only if each Xn satisfies Vershik’s property.

2. When the Markov process (Xn)n≤0 is stationary, (FXn )n≤0 is product-type if and
only X0 satisfies Vershik’s property.

4 First examples of application of Vershik’s criterion

In this section, we apply Vershik’s criterion to two rather simple situations, namely
[T, T−1] where T is an irrational rotation on the circle, and [Ta, Tb] where Ta and Tb are
shifts related to the free group with generators a and b.
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4.1 [T, T−1] when T is an irrational rotation on the circle

Let T = R/Z, d be the quotient pseudo-metric on T of the usual metric on R, and Q
be the uniform measure on T. Actually, d is a metric on T, is invariant by translation,
and bounded above by 1/2. Fix an irrational real number α and let T be the translation
x 7→ x+ α on T. Let F = {−1, 1}, µ be the uniform law on F , and set π = µ⊗Z− ×Q.

Since T is an automorphism of (T,B(T), Q), the transformation [T, T−1] preserves µ.
Moreover, T 2 is ergodic since 2α is irrational, so [T, T−1] is exact, namely the filtration
associated to [T, T−1] is Kolmogorovian. We will show that this filtration is standard.

To study this filtration, we fix a random variable γ with law Q and an independent
i.i.d. sequence (ξk)k∈Z of random variables with law µ. We define a symmetric simple
random walk on Z by

Sn = −ξn+1 − · · · − ξ0 if n ≤ 0,

Sn = ξ1 + · · ·+ ξn if n ≥ 0,

with the convention S0 = 0. Hence Sn − Sn−1 = ξn for every n ∈ Z.

For every n ∈ Z, set γn = T−Snγ = γ − Snα and Zn = ((ξk+n)n≤0, γn). Then for
every n ≤ 0, γn = γn−1− ξnα. As observed in the introduction, the process (γn)n∈Z is a
stationary random walk governed by the sequence (ξk)k≤0, and ‘the’ filtration associated
to [T, T−1] is the natural filtration of (γn)n≤0. By proposition 25, one only needs to check
that γ0 satisfies Vershik’s first level property.

Fix ε > 0. Since α is irrational, the set Z + 2αZ+ is dense in R, so the classes
modulo 1 of the elements of 2αZ+ form a dense subset of T. Hence, T can be covered
by finitely many balls, B(2α`, ε/2) for ` ∈ [[0, L]], say. Almost surely, the sequence
(Sn)n≥0 is unbounded, so P[max(S0, . . . , SN )−min(S0, . . . , SN ) ≥ L] ≥ 1− ε whenever
the integer N is sufficiently large.

Fix such an integer N and set

τ = inf{t ≥ −N : d(α(St − S−N ), γt) < ε/2}
= inf{t ≥ −N : d(2α(St − S−N ), γ−N ) < ε/2}.

Then with probability ≥ 1− ε, the balls B(2αSk, ε/2) for k ∈ [[0, N ]] cover T. The same
result holds with the balls B(2α(St − S−N ), ε/2) for t ∈ [[−N, 0]] since (ξ−N+1, . . . , ξ0)
has the same law as (ξ1, . . . , ξN ). Hence P [τ ≤ 0] ≥ 1− ε.

For every t ∈ [[−N + 1, 0]], the event {τ < t} = {τ ≤ t − 1} belongs to Fγt−1 so the
random variable ηt defined by

ηt = (1{t≤τ} − 1{t>τ})ξt

is an innovation at time t of the filtration (Fγn )n≤0 and the random variable

γ̃0 := α

0∑
t=−N+1

ηt

is a measurable function of η−N+1, . . . , η0. On the event {τ ≤ 0}, we have

γ̃0 = α

τ∑
t=−N+1

ξt − α
0∑

t=τ+1

ξt = α(Sτ − S−N )− α(S0 − Sτ ),
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so
d(γ̃0, γ0) = d(α(Sτ − S−N ), γτ ) < ε/2.

Hence

E[d(γ̃0, γ0)] ≤ ε

2
P [τ ≤ 0] +

1

2
P[τ > 0] ≤ ε

2
+
ε

2
= ε.

The proof is complete.

Alternative proof using Vershik’s intermediate criterion. The split-word pro-
cess associated to the random variable γ0 and to the innovations (ξk)k≤0 is (Wn)n≤0,
where Wn is the map from {−1, 1}|n| to T defined by

∀n ≤ 0,Wn(xn+1, . . . , x0) = γn − α(xn+1 + · · ·+ x0).

To show that disp(Wn, dn) → 0 as n → −∞, we consider two independent copies γ′n
and γ′′n of the random variable γn, defined on a same probability space (Ω,A,P) and
call W ′n and W ′′n the corresponding copies of Wn.

Let ε > 0. Set

τn(xn+1, . . . , x0) = inf
{
t ∈ [[n, 0]] :

∣∣γ′n − γ′′n − 2α(xn+1 + · · ·+ xt)
∣∣ ≤ ε/2},

with the convention inf ∅ = +∞. Since the validity of the inequality τn(xn+1, . . . , x0) ≤ t
depends only on (xn+1, . . . , xt), we can define an automorphism of the binary tree with
height |n| as follows: for every t ∈ [[[−n,−1] and (xn+1, . . . , xt) ∈ {−1, 1}t+n,

σn(xn+1, . . . , xt) = −Id if t < τn(xn+1, . . . , x0),

σn(xn+1, . . . , xt) = −Id if t ≥ τn(xn+1, . . . , x0).

If τn(xn+1, . . . , x0) = t ∈ [[−n, 0]], then

W ′n(xn+1, . . . , x0)−W ′′n (gσ(xn+1, . . . , x0)) = γ′n − α(xn+1 + · · ·+ x0)− γ′′n
+α(−xn+1 − · · · − xt + xt+1 + · · ·+ x0)

= γ′n − γ′′n − 2α(xn+1 + · · ·+ xt).

Hence d
(
W ′n(xn+1, . . . , x0),W ′′n (gσ(xn+1, . . . , x0)

)
≤ ε/2 whenever τn(xn+1, . . . , x0) ≤ 0.

Since d is bounded above by 1/2, we get

disp(Wn, dn) ≤ dn(W ′n,W
′′
n ◦ gσ) ≤ ε

2
+

1

2

1

2|n|

∑
(xn+1,...,x0)∈{−1,1}|n|

1{τn(xn+1,...,x0)>0}.

In this formula, the mean over all (xn+1, . . . , x0) ∈ {−1, 1}|n| is the probability that a
random walk on T with uniform initial position and with uniformly steps in {−α, α}
does not reach the ball B(0, ε/2) in at most |n| steps. This probability goes to 0, so
disp(Wn, dn)→ 0 as n→ −∞. Hence γ(0) satisfies Vershik’s intermediate criterion.

Remark 26 Let α1 and α2 be two real numbers α1 and α2 such that α1−α2 is irrational.
Call T1 and T2 the translations x 7→ x+α on T. Then the filtration associated to [T1, T2]
is product-type.
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Proof. Let α = (α1 − α2)/2 and β = (α1 + α2)/2. Consider again the process (γn)n∈Z
defined above. The process (γ′n)n∈Z defined by γ′n = γn−nβ generates the same filtration
as (γn)n∈Z, which is product-type by theorem 2. But for every n ≤ 0,

γ′n = γn−1 − ξnα− nβ = γ′n−1 − ξnα− β =

∣∣∣∣ γ′n−1 − α1 if ξn = 1
γ′n−1 − α2 if ξn = −1

.

Since T1(x) 6= T2(x) for every x ∈ R/Z, one deduces that the natural filtration of the
process (γ′n)n≤0 is ‘the’ filtration associated to [T1, T2].

4.2 Filtration associated to [Ta, Tb], where Ta and Tb are shifts related
to the free group with generators a and b

We prove the following slight generalization of Vershik’s theorem:

Let Γ = 〈a, b〉 be the free group with two generators a, b. Let A be a countable
alphabet endowed with the discrete metric d and with a probability measure ν which
gives a positive probability to each letter. The translations Ta and Tb on the set G = AΓ

defined by Tag(x) = g(a−1x) and Tbg(x) = g(b−1x) preserve the measure Q := ν⊗Γ.
Moreover, the filtration associated to [Ta, Tb] is not product-type. Hence, the natural
filtration of a random walk on G with steps given by T−1

a , T−1
b and indexed by the

non-positive integers is not product-type.

Let γ be a random variable taking values in G, with law Q and ξ = (ξn)n≤0 be a
sequence of independent uniform random variables taking values in F := {a, b}, inde-
pendent of γ. Set Z = (ξ, γ). Then ‘the’ filtration associated to [Ta, Tb] is the natural
filtration of the process (Zn)n≤0 defined by

Zn = [Ta, Tb]
|n|(Z) =

(
(ξk+n)n≤0, γn

)
where γn = Tξn+1 ◦ · · · ◦ Tξ0(γ).

A recursion shows that for every n ≤ 0 and y ∈ Γ,

γn(y) = γ
(
ξ−1

0 · · · ξ−1
n+1y

)
.

We want to apply Vershik’s intermediate criterion to the random variable γ(1), where
1 is the identity element of the group Γ. Since γ(1) = γn(ξn+1 · · · ξ0) and since random
map γn is FZn -measurable, the split-words process associated to the random variable
γ(1) and to the sequence of innovations (ξn)n≤0 is given by

∀n ≤ 0, ∀(xn+1, . . . , x0) ∈ F |n|, Wn(xn+1, . . . , x0) = γn(xn+1 · · ·x0).

Since Γ is the free group generated by a and b, the map (xn+1, . . . , x0) 7→ xn+1 · · ·x0

from F |n| to Γ is injective, so the ‘letters’ of the ‘word’ Wn, namely the random vari-
ablesWn(xn+1, . . . , x0) where (xn+1, . . . , x0) ∈ F |n| are independent and equidistributed.
Therefore, up to the numbering of the positions, the process (Wn)n≥0 is the process stud-
ied by Smorodinsky in [18].

Let δn be the Hamming distance on AF
|n|

(defined as the proportion of sites at

which two maps in AF
|n|

disagree), Gn the automorphism group of the binary tree with
height |n| and dn be the quotient pseudo-distance of dn by Gn. Let γ′ and γ′′ be two
independent copies of γ, defined on a same probability space (Ω,A,P). Then γ′ and
γ′′ are also independent copies of γn. Call W ′n and W ′′n the corresponding copies of Wn,
and Sn the number of sites in F |n| at which W ′n and W ′′n disagree.
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Since Γ is the free group generated by a and b, the map (xn+1, . . . , x0) 7→ xn+1 · · ·x0

from F |n| to Γ is injective. Since γ′ and γ′′ are two independent i.i.d processes, we derive
that Sn has a binomial distribution with parameters 2|n| and p, where

p = 1−
∑
z∈A

ν{z}2 > 0.

By the large deviation inequality (see lemma 45), one gets for every ε ∈]0, p[,

P [δn(W ′n,W
′′
n ) ≤ ε] = P [Sn ≤ 2|n|ε] ≤ fp(ε)2|n| where fp(ε) =

(p
ε

)ε(1− p
1− ε

)1−ε
.

For every σ ∈ Gn, the random map W ′′n ◦ σ is independent of W ′n and has the same

law as Wn. Since the size of Gn is 22|n|−1, we get

P
[
dn(W ′n,W

′′
n ) ≤ ε

]
= P

[
∃σ ∈ Gn : δn(W ′n,W

′′
n ◦ gσ) ≤ ε

]
≤ 1

2

(
2fp(ε)

)2|n|
.

The limit of 2fp(ε) as ε tends to 0 is 2(1− p).
If p > 1/2, then choosing ε sufficiently small yields P [dn(W ′n,W

′′
n ) ≤ ε] → 0 as

n→ −∞, so disp(Wn, dn) remains bounded away from 0 since

disp(Wn, dn) = E
[
dn(W ′n,W

′′
n )
]
≥ εP

[
dn(W ′n,W

′′
n ) ≤ ε

]
.

Hence the random variable γ(1) does not satisfy Vershik’s criterion.

If p ≤ 1/2, one can fix a positive integer d and consider the split-word process
associated to the random variable (γ(1), . . . , γ(ad−1)) with values in Ad, namely the

process (W̃n)n≤0 where W̃n is the map from F |n| to A given by

W̃n(xn+1, . . . , x0) =
(
γn(xn+1 · · ·x0), . . . , γn(xn+1 · · ·x0a

d−1)
)
.

Replacing γn with γ′ and γ′′ yields two independent copies W̃ ′n and W̃ ′′n . Since the
products xn+1 · · ·x0a

k with (xn+1, . . . , x0) ∈ F |n| and k ∈ [[0, d− 1]] are all different, the

number of sites in F |n| at which W̃ ′n and W̃ ′n disagree has a binomial distribution with
parameters 2|n| and pd, where

pd = 1−
(∑
z∈A

ν{z}2
)d
.

If d is chosen sufficiently large, pd > 1/2 so the same argument as above applies and the
random variable (γ(1), . . . , γ(ad−1)) does not satisfy Vershik’s criterion.

In all cases, the natural filtration of the process (Zn)n≤0 is not product type. The
proof is complete.

Remark 27 The same argument as the argument given at the end of subsection 5.3
shows that this conclusion still holds if the alphabet (A, d) is replaced by any separable
complete metric space.
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5 Proof of theorem 4 and corollary 5

We now focus with the transformation [T, T−1], when T is a Bernoulli shift. We will see
at the end of the section why the situation is essentially the same if one looks at [T, Id].

Thus, in the whole section, F denotes the pair {−1, 1}, so S(F ) = {−Id, Id}, and µ
denotes the uniform law on the pair F . We fix a separable complete metric space (A, d),
called alphabet A, endowed with a non-trivial probability measure Q. Let T be the shift
on G = AZ defined by T (g)(s) = g(s− 1). Then the transformation [T, T−1] is the map
from FZ− ×AZ to itself defined by

[T, T−1](f, g) =
((
f(k − 1)

)
k≤0

,
(
g(s− f(0))

)
s∈Z

)
.

This maps preserves the probability measure π = µ⊗Z− ⊗ ν⊗Z.

Let (ξn)n∈Z and γ = (γ(s))s∈Z be two independent random variables with respective
laws µ⊗Z and ν⊗Z, defined on same probability space (Ω,A,P). Then Z :=

(
(ξn)n≤0, γ)

)
is a random variable with law π. For every n ≤ 0, let

Zn = [T, T−1](Z) =
(
(ξk+n)k≤0, (γ(s− ξ0 − · · · − ξn+1))s∈Z)

)
By definition, the filtration associated to [T, T−1] is the natural filtration (FZn )n≤0 of
the process (Zn)n≤0 thus defined.

5.1 Random walk in a random scenery and nibbled words process

Let (Sn)n∈Z be the symmetric simple random walk on Z by

Sn = −ξn+1 − · · · − ξ0 if n ≤ 0,

Sn = ξ1 + · · ·+ ξn if n ≥ 0,

with the convention S0 = 0. The random variables (ξn)n∈Z are the steps fo this sym-
metric simple random walk since Sn − Sn−1 = ξn for every n ∈ Z.

The i.i.d. process γ is independent of this random walk and we view it as a random
scenery: the random variable γ(s) is the color at the site s. At time n, the position
of the symmetric random walk is Sn, and the color seen at this position is γ(Sn). The
process ((ξn, γ(Sn)))n∈Z is called a random walk in a random scenery and the shifted
map γ(Sn + ·) is the scenery viewed from the position Sn. A surveys of the results
involving [T, T−1] and the random walk in a random scenery (in Zd) can be found in
Steif’s paper [19].

For every n ≤ 0, Zn =
(
(ξk+n)k≤0, γ(Sn + ·)

)
so (FZn )n≤0 is the natural filtration

of the process
(
ξn, γ(Sn + ·)

)
n≤0

. Actually, (FZn )n≤0 is also the natural filtration of the

process
(
γ(Sn + ·)

)
n≤0

since T−1(g) 6= T (g) for ν⊗Z−-almost every g ∈ AZ. Using the

recurrence of the symmetric simple random on Z, one could check that (FZn )n≤0 is also
the natural filtration of the process

(
(ξn, γ(Sn))

)
n∈Z. We shall not use these refinements.

From the process
(
(ξn, γ(Sn + ·))

)
n≤0

, we define a process (Wn)n≤0 by

Wn =
(
γ(Sn + i)

)
i∈In where In = I|n| = {−|n|, 2− |n|, . . . , |n| − 2, |n|}.

Note that In is exactly the set of all possible values of the sum xn+1 + · · · + x0 when
xn+1, · · · , x0 range over F = {−1, 1}.
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The process (Wn, ξn)n≤0 thus defined was studied by Laurent in [9] and called nibbled-
word process. The properties follow immediatly from its definition.

Proposition 28 (Properties of the process (Wn, ξn)n≤0) For every n ≤ 0,

• the random word Wn is the projection on AIn of the random variable γ(Sn + ·),
therefore if is FZn -measurable.

• the random word Wn is made with |n| + 1 letters chosen independently in the
alphabet A according to the law ν ;

• since Wn =
(
Wn−1(ξn + k)

)
k∈In, one gets Wn from Wn−1 by suppressing the first

letter if ξn = 1 and the last letter if ξn = −1 ;

• the random variable ξn is uniform on F = {−1, 1} and independent on FZn−1,

therefore FW,ξn−1 = σ
(
(Wk, ξk)k≤n−1

)
.

As a result, (ξn)n≤0 is a sequence of innovations of the filtration (FW,ξn )n≤0, so

(FW,ξn )n≤0 is dyadic. But (ξn)n≤0 is also a sequence of innovations of the larger filtration

(FZn )n≤0, hence (FW,ξn )n≤0 is immersed in (FZn )n≤0.

Therefore, to prove that (FZn )n≤0 is not product-type, it is sufficient to prove that

(FW,ξn )n≤0 is not product-type. By lemma 23, is is sufficient to check that the random
variable γ(0) = γ(S0) = W0(0) does not satisfy the Vershik property. We will work with
the Vershik intermediate property, so we introduce the split-word process associated to
γ(0) and to the innovations (ξn)n≤0. This processus is closely related to the nibbled-word
process introduced above. Some notations are necessary to spell out this relation.

Definition 29 Let n ≤ 0. Call sn the map from F |n| to In defined by sn(xn+1 · · · , x0) =

xn+1 + · · ·+ x0. To every word w ∈ AIn, we associate its extension w = w ◦ sn ∈ AF |n|.

Figure 2 illustrates the example example where n = −3 and w sends −3,−1, 1, 3
on a, b, c, d respectively (so w is identified with the word abcd). Each element of F 3 is
viewed as a leaf of the binary tree with height 3. The map w send the elements of F 3

in lexicographic order on a, b, b, c, b, c, c, d.

abcd

abc

1

ab

1

a

1

b

1

bc

1

b

1

c

1

bcd

1

bc

1

b

1

c

1

cd

1

c

1

d

1

Figure 2: w : F 3 → A when w = abcd ∈ AI3 .
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Proposition 30 The split-word process associated to the random variable γ(0) and to
the innovations (ξn)n≤0 is (Wn, ξn)n≤0. This process generates the same filtration as the
nibbled-word process (Wn, ξn)n≤0.

Proof. For every n ≤ 0, the random map Wn is FZn -measurable and

γ(0) = γ(Sn + ξn+1 + . . .+ ξ0) = Wn(ξn+1 + . . .+ ξ0) = Wn(ξn+1, . . . , ξ0),

so γ(0) coincides with Wn(xn+1 · · · , x0) on the event
{

(ξn+1, . . . , ξ0) = (xn+1 · · · , x0)
}

.
Last, Wn generates the same filtration as Wn since the map w 7→ w ◦ sn from AIn to
AF

|n|
is injective. The result follows.

To negate Vershik’s intermediate criterion, we use the metric δn and the pseudo-
metric dn on AF

|n|
introduced in definition 17. We have to show that disp(Wn, dn) does

not tend to 0 as n goes to −∞. This leads us to search positive lower bounds for the
expectation of dn(u, v), where u and v are chosen independently in AIn according to the
law ν⊗In

5.2 Key-lemmas

Keep in mind the notations introduced in section 3. We begin with the case where A
is countable and d is the discrete metric on A. Thus, δn is the Hamming metric on
AF

|n|
(normalized to vary between 0 and 1), and δn is the quotient pseudo-metric by

the action of the automorphism group of the binary tree with height |n|.
To get a positive lower bound of disp(Wn, dn) for arbitrary large (negative) integers

n, we will make a recursion. The next lemma will help us to start the recursion. This
lemma is stated and its proof is outlined in [6].

Before stating it, we must define the adjoint of a word. To handle with non-negative
integers, we denote by h, or by H the height of the trees considered.

Definition 31 Let w ∈ AIh. Call wr ∈ AIh the word obtained by reversing the word w,
namely wr(i) = w(−i) for every i ∈ Ih.

If w can be identified with a word compound with two alternating letters (for example
ababa . . .), we define its adjoint w∗ ∈ AIh as the word obtained from w by switching these
two letters (for example babab . . .).

Otherwise, we define its adjoint by w∗ = wr.

Note that the only possibility for w∗ 6= wr only when w is a word with odd length
and compound with two alternating letters; in this case, w is palindromic. Moreover,
the reversal map and the adjoint map are involutions and they commute.

Lemma 32 Let u, v ∈ AIh. Then u and v belong to the same orbit under the action of
Gh if and only if v = u or v = u∗.

Proof. The ‘if’ part will not be used in the sequel and can be proved directly. Indeed,
ur = σ · u where σ ∈ S(F )Th−1 is the map which sends every vertex of Th−1 on −Id.
Moreover, if u = abab... then for every (x1, . . . , xh) ∈ F h, u(x1, . . . , xh) is a or b according
the number of 1 among x1, . . . , xh is even or odd. The converse holds for u∗(x1, . . . , xh).
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Therefore, ur = σ · u where σ ∈ S(F )Th−1 is the map which sends the root () on −Id
and every other vertex on Id.

We now prove the ‘only if’ part, by recursion on h. The result is immediate when
h = 0 or h = 1.

Let h ≥ 2. Assume that the result holds at the rank h − 1. Let u, v ∈ AIh and
σ ∈ F Th−1 such that v = u ◦ gσ.

1. Case where σ() = Id. Call σ1 et σ−1 the elements of F Th−2 defined by σ1(x) =
σ(1, x) and σ−1 = σ(−1, x) for every x ∈ Th−2. Let u+ = (u(i + 1))i∈Ih−1

and u− =
(u(i−1))i∈Ih−1

be the words obtained from u by suppressing the first and the last letter.
Then for every (x1, . . . , xh) ∈ F h,

vx1(x2, . . . , xh) = vx1(x2 + · · ·+ xh)

= v(x1 + · · ·+ xh)

= v(x1, . . . , xh)

= u(x1, gσx1 (x2, . . . , xh))

= u
(
x1 + sh−1

(
gσx1 (x2, . . . , xh)

))
= ux1

(
sh−1

(
gσx1 (x2, . . . , xh)

))
= ux1

(
gσx1 (x2, . . . , xh)

)
.

Using the recursion hypothesis, we get{
v− = u− ◦ gσ−1

v+ = u+ ◦ gσ1
so

{
v− = u− or (u−)∗

v+ = u+ or (u+)∗
.

Four cases have to be considered.

1. If v− = u− and v+ = u+, then v = u.

2. If v− = u− and v+ = (u+)∗, then

• either u+ has the form ababa... and v+ has the form babab, hence the equality
v− = u− entails a = b, so v+ = u+ and v = u;

• or (u+)∗ = (u+)r, hence the equalities v− = u− and v+ = (u+)r yield that
for every i ∈ Ih−1 \ {h− 1}, u+(i) = u−(i+ 2) = v−(i+ 2) = v+(i) = u+(−i),
so (u+)r = ur and v = u.

3. If v− = (u−)∗ and v+ = u+, we get in the same way v = u.

4. If v− = (u−)∗ and v+ = (u+)∗, then at least one of the three following cases below
occurs:

• u+ has the form ababa . . . and v+ has the form babab . . ., so the equality
v− = (u−)∗ forces the alternation of the letters a and b to occur from the
very beginning of the words u and v, and v = u∗.

• u− has the form ababa . . . and v− has the form babab . . ., so we get in the
same way that v = u∗.

• v+ = (u+)r and v− = (u−)r, namely for every i ∈ Ih−1, v(i+ 1) = u(−i+ 1)
and v(i − 1) = u(−i − 1). Hence, for every j ∈ Ih−2, v(j + 2) = u(−j) =
v(j − 2), so v has the form ababa.... Therefore, u = ababa... = v if h is odd,
and u = babab... = v if h is even.
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2. Case where σ() = −Id. Since vr = u ◦ g−σ and −σ() = Id, the first case already
proved can be applied to u et vr, so vr = u or vr = u∗, which yields the desired result.

Hence, in all cases, one has v = u or v = u∗. The proof is complete.

The next lemma will provide the recursion step. It is buried in the proof of Heicklen
and Hoffman [6] but deserves to be given separately for the sake of clarity. The proof
we give is close to Hoffman’s proof but we change some constants and use sharpest
inequalities to get better bounds.

Lemma 33 Let C ≥ 2, η > 0, ε = (1 − 3C−2)η > 0 and two integers entiers h ≥ 1 et
H ≥ C6h. Set D = H − h.

If u, v ∈ AIH satisfy dH
(
u, v
)
< ε, then there exists i, j, k, l in ID such that |i| ≤

C(
√
H −

√
h), |j| ≤ C(

√
H −

√
h), j − i > 2C

√
h and

dh

(
u(i+ ·)|Ih , v(k + ·)|Ih

)
< η,

dh

(
u(j + ·)|Ih , v(l + ·)|Ih

)
< η.

Proof. Fix σ ∈ S(F )TH−1 such that δH
(
u , v ◦ gσ

)
< ε.

Split each H-uple x = (x1, . . . , xH) ∈ FH into y = (x1, . . . , xD) ∈ FD and z =
(xD+1, . . . , xH) ∈ F h. Set s(y) = x1 + . . .+ xD, s(z) = xD+1 + · · ·+ xH and call σy the
element of S(F )Th−1 defined by σy(z1, . . . , zi) = σ(y, z1, . . . , zi) for every 0 ≤ i ≤ h− 1
and (z1, . . . , zi) ∈ F i. Then

u(x) = u
(
s(y) + s(z)

)
= u

(
s(y) + ·

)
|Ih(z),

and

v
(
gσ(x)

)
= v
(
s
(
gσ(y)

)
+ s
(
gσy(z)

))
= v
(
s
(
gσ(y)

)
+ ·
)∣∣∣
Ih

(
gσy(z)

)
.

Thus

δH
(
u, v ◦ gσ

)
= 2−D

∑
y∈FD

δh

(
u(s(y) + ·)|Ih , v

(
s
(
gσ(y)

)
+ ·
)
|Ih ◦ gσy

)
≥ 2−D

∑
y∈FD

dh

(
u(s(y) + ·)|Ih , v

(
s
(
gσ(y)

)
+ ·
)
|Ih
)
.

Let
E1 =

{
y ∈ FD : dh

(
u(s(y) + ·)|Ih , v (s(gσ(y)) + ·) |Ih

)
≥ η

}
,

E2 =
{
y ∈ FD : |s(y)| > C(

√
H −

√
h)
}

and E = FD \ (E1 ∪ E2).

Since δH
(
u, v ◦ gσ

)
< ε, Markov inequality shows that µ⊗D(E1) ≤ ε/η = 1− 3C−2.

But when y is chosen according to the probability measure µ⊗D, s(y) has expectation
0 and variance D, so Bienaymé-Chebycheff inequality yields

µ⊗d(E2) ≤ H − h
C2(
√
H −

√
h)

2

=
1

C2
×
√
H +

√
h√

H −
√
h

=
1

C2
×
(

1 +
2√

H/h− 1

)
≤ 9

7C2
since

√
H/h ≥ C3 ≥ 8.
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Hence

µ⊗d(E) ≥ 3

C2
− 9

7C2
=

12

7C2
.

But s(FD) = ID = {2k −D : k ∈ [[0, d]]} and for every k ∈ [[0, d]],

µ⊗d
{
y ∈ FD : s(y) = 2k −D

}
=

1

2D

(
D

k

)
≤
√

2

πD
,

by lemma 46 in section 7. Since 2C
√
h ≥ 4, any interval J ⊂ R with length 2C

√
h

contains at most (3/2)C
√
h points of ID, so

µ⊗d
{
y ∈ FD : s(y) ∈ J

}
≤ 3

2
C
√
h×

√
2

πD

=
3
√

2

2
√
π
× C√

C6 − 1

≤ 4
√

2√
7π
× 1

C2
since C6 − 1 ≥ 63

64
C6

<
12

7C2
.

Since µ⊗d(E) ≥ 12/(7C2), we deduce that max s(E)−min s(E) > 2C
√
h. Choosing y1

and y2 in E achieving the minimum and the maximum of s over E and setting i = s(y1),
j = s(y2), k = s

(
gσ(y1)

)
, l = s

(
gσ(y2)

)
yields the result.

We now introduce some notations to continue the proof.

Notations 34 For every H ∈ Z+ and C > 0, we define the C-middle of IH by

IH,C = IH ∩ [−C
√
H,C

√
H].

For every u ∈ AIH , C > 0 and ε > 0, let

Θε,C(u) =
{
w ∈ AIH : ∃v ∈ AIH , w = v on IH,C and dH

(
u, v
)
< ε
}
.

Last, set
pH(ε, C) = max

u∈AIH
P
[
W−H ∈ Θε,C(u)

]
.

Remark 35 The larger is C, the smaller is the set Θε,C(u). If C ≥
√
H, IH,C = IH so

Θε,C(u) is the set of all w ∈ IH such that dH(u,w) < ε. Therefore, in all cases,

P
[
dH(u,W−H) < ε

]
≤ P

[
W−H ∈ Θε,C(u)

]
≤ pH(ε, C),

so
E
[
dH(u,W−H)

]
≥ εP

[
dH(u,W−H) ≥ ε

]
≥ ε(1− pH(ε, C)).

Since this inequality holds for every u ∈ AIH , we get

disp(W−H , dH) ≥ ε(1− pH(ε, C)).

The remark above explains the interest to bound ε(1 − pH(ε, C)) away from 0 to
negate Vershik’s intermediate criterion. The last lemma provides the inequality below.
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Corollary 36 Take, like in the previous lemma, C ≥ 2, η > 0, ε = (1 − 3C−2)η > 0
and two integers h ≥ 1 and H ≥ C6h. Then

pH(ε, C) ≤ C2H3ph(η, C)
2
/2.

Proof. Let X = (Xk)k∈IH be a random word whose letters are chosen independently
and according to the law ν.

On the event
{
X ∈ Θε,C(u)

}
, the exists some v ∈ AIH such that X coincide with v

on IH,C and dH
(
u, v
)
< ε. Let D = H − h. The last lemma provides the existence of

i, j, k, l in ID tels such that |i| ≤ C(
√
H −

√
h), |j| ≤ C(

√
H −

√
h), j − i > 2C

√
h and

dh
(
v(i+ ·)|Ih , u(k + ·)|Ih

)
< η,

dh
(
v(j + ·)|Ih , u(l + ·)|Ih

)
< η.

The inequalities satisfied by i and j entail

i+ Ih,C ⊂ IH,C , j + Ih,C ⊂ IH,C , and (i+ Ih,C) ∩ (j + Ih,C) = ∅.

Therefore, the random variables X(i+·)|Ih and X(j+·)|Ih coincide on Ih,C with v(i+·)|Ih
et v(j + ·)|Ih and they are independent.

This shows that this event
{
X ∈ Θε,C(u)

}
is contained in the union of the events{

X(i+ ·)|Ih ∈ Θη,C(u(k + ·)|Ih) ; X(j + ·)|Ih ∈ Θη,C(u(l + ·)|Ih)
}

over all (i, j, k, l) satisfying the conditions above. Each one of these events has probability
≤ ph(η, C)2, and since C(

√
H −

√
h) ≤ C

√
H − 1, the number of 4-uples (i, j, k, l)

considered is bounded above by (C
√
H)2/2× (D + 1)2 ≤ C2H3/2. The result follows.

5.3 End of the proof

We begin with the case where the alphabet (A, d) is countable and endowed with
the discrete metric.

To prove theorem 4, we show that γ(0) does not satisfy Vershik’s intermediate crite-
rion. By remark 35, it suffices to find sequences (Ck)k≥0, (Hk)k≥0, and (εk)k≥0 tending
respectively to +∞, +∞ and ε∞ > 0, such that the probabilities pHk(εk, Ck) tend to 0.
Lemma 32 and corollary 36 enable us to do that.

Lemma 37 Let q be the mass of the heaviest atom of ν (so 0 < q < 1). Define the
sequences (Ck)k≥0, (Hk)k≥0, (εk)k≥0 and (αk)k≥0 by C0 = 2, H0 equals the square of

some even positive integer, ε0 = 2−H0, α0 = 2qC0
√
H0+1 and for every k ≥ 1,

Ck = k + 1, Hk = C6
kHk−1, εk = εk−1(1− 3C−2

k ), αk = C2
kH

3
k α

2
k−1/2.

Then for every k ∈ N,
pHk(εk, Ck) ≤ αk.

Moreover, the sequence (εk)k≥0 has a positive limit and if H0 is large enough, the se-
quence (αk)k≥0 tends to 0.
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Proof. We make a recursion on the integer k.

Given u, v ∈ AIH0 , the inequality dH0

(
u, v
)
< ε0 = 2−H0 holds only when u and v

belong to a same orbite under the action of GH0 , namely when v = u or v = u∗, thanks
to lemma 32. But IH0,C0 =

{
2j − C0

√
H0 : j ∈ [[0, C0

√
H0]]

}
, hence for every u ∈ AIH0 ,

P[X ∈ Θε0,C0(u)] ≤ P[X = u sur IH0,C0 ] + P[X = u∗ sur IH0,C0 ]

≤ 2qC0
√
H0+1 = α0.

Hence pH0(ε0, C0) ≤ α0

Let k ≥ 1. Assume pHk−1
(εk−1, Ck−1) ≤ αk−1. Then corollary 36 applied to C =

Ck ≥ 2, h = Hk−1, H = C6h = Hk, η = εk−1 and ε = (1− 3C−2
k )η = εk yields

pHk(εk, Ck) ≤ C2
kH

3
k pHk−1

(εk−1, Ck)
2/2

≤ C2
kH

3
k pHk−1

(εk−1, Ck−1)2/2 since Ck ≥ Ck−1

≤ C2
kH

3
k α

2
k−1/2 = αk,

which achieves the recursion.

Next,

εk = ε0

k∏
i=1

(
1− 3

(i+ 1)2

)
−−−→
k→∞

ε0
∏
n≥2

(
1− 3

n2

)
= 2−H0

sin(π
√

3)

−2π
√

3
> 0.

Last, equality log2 αk = 2 log2 αk−1 + 3 log2Hk + 2 logCk − 1, yields by recursion

2−k log2 αk = log2 α0 +
k∑
i=1

2−i(3 log2Hi + 2 log2Ci − 1),

= (2
√
H0 + 1) log2 q + 3 log2H0

+18
k∑
i=1

2−i log2((i+ 1)!) + 2
k∑
i=1

2−i log2(i+ 1).

But

+∞∑
i=1

2−i log2((i+ 1)!) =

+∞∑
i=1

2−i
i+1∑
j=2

log2 j =

+∞∑
j=2

log2 j

+∞∑
i=j−1

2−i = 4

+∞∑
j=2

2−j log2 j.

Hence

2−k log2 αk −−−−→
k→+∞

(2
√
H0 + 1) log2 q + 3 log2H0 + 76

∞∑
j=1

2−j log2 j.

Since q < 1 and

76

∞∑
j=1

2−j log2 j < 55, 7 < +∞,

we get a negative limit provided H0 is large enough, which yields the convergence of
(αk)k≥0 to 0. The proof is complete

Remark 38 When q = 1/2, one can choose H0 = 442 = 1936, which is far less than
the choice H0 = 40000 made by Heicklen and Hoffman.

26



We now deduce the result in the general case, namely when (A, d) is a separable
metric complete space endowed with a non-trivial probabality measure ν. Recall that
we chose a random variable Z = ((ξk)k≤0, (γ(s))s∈Z) with law µ⊗Z− ⊗ ν⊗Z and defined
‘the’ filtration of [T, T−1] as the natural filtration of the process (Zn)n≤0 defined by

Zn = [T, T−1](Z) =
(
(ξk+n)k≤0, (γ(s− ξ0 − . . .− ξn+1))s∈Z

)
.

Fix a Borel subset B of A such that p := ν(B) ∈]0, 1[, set Z ′ = ((ξk)k≤0, (1B(γ(s)))s∈Z)
and call T ′ the shift on {0, 1}Z, endowed with the probability B(1, p)⊗Z. Then the law
of Z ′ is µ⊗Z− ⊗ B(1, p)⊗Z, so ‘the’ filtration of [T ′, T ′−1] is the natural filtration of the
process (Z ′n)n≤0 defined by

Z ′n = [T ′, T ′−1](Z ′) =
(
(ξk+n)k≤0, (1B(γ(s− ξ0 − . . .− ξn+1)))s∈Z

)
.

The filtration (FZ′n )n≤0 is contained in (FZn )n≤0, and admits (ξn)n≤0 as sequence of
innovations, like (FZn )n≤0. Hence (FZ′n )n≤0 is dyadic and immersed in (FZ′n )n≤0. We
have proved that (FZ′n )n≤0 is not product-type hence (FZn )n≤0 cannot be product-type
thanks to corollary 12.

Actually, the conclusion still holds if one replaces [T, T−1] by any [T k1 , T k2 ] where
k1 and k2 are two distinct integers. Indeed, the random variables (γ(s))s∈Z are i.i.d, so
this replacement preserves the law of the split-word process associated to the random
variable γ(0) up to a renumbering of the sites.

5.4 proof of corollary 5

Let T be an automorphism of a Lebesgue space (G,G, Q), with positive entropy. By
Sinai’s factor theorem [5], one can find a measurable partition α = {A1, A2} of (G,G, Q)
into two blocks of positive probability such that the partitions (T−kα)k∈Z are indepen-
dent.3 For each g ∈ G, call ϕ(g) the only index in {1, 2} such that set g ∈ Aϕ(g), and
set

Φ(g) = (ϕ(T k(g))k∈Z ∈ {1, 2}Z.
The sequence Φ(g) thus defined is called the α-name of g.

By construction, the random variables ϕ ◦ T k, defined on the probability space
(G,G, Q), are independent and have the same distribution. Call ν this distribution
and TB be the shift on {1, 2}Z. Then Φ(Q) = ν⊗Z and TB ◦Φ = Φ ◦ T , so the Bernoulli
shift ({1, 2}Z,P({1, 2})⊗Zν⊗Z, TB) is a factor of the dynamical system (G,G, Q, T ).

Choose a random variable Z = ((ξk)k≤0, γ) with law µ⊗Z− ⊗Q. Then ‘the’ filtration
associated to [T, T−1] is the natural filtration of the process (Zn)n≤0 defined by

Zn = [T, T−1](Z) =
(
(ξk+n)k≤0, T

ξ0+...+ξn+1(γ)
)
.

In the same way, the law of the random variable Z ′ := ((ξk)k≤0,Φ(γ)) is µ⊗Z− ⊗ ν⊗Z
so ‘the’ filtration associated to [TB, T

−1
B ] is the natural filtration of the process (Z ′n)n≤0

defined by Z ′n = [TB, T
−1
B ](Z ′). But the equality TB ◦ Φ = Φ ◦ T yields

Z ′n =
(
(ξk+n)k≤0, T

ξ0+...+ξn+1

B (Φ(γ))
)

=
(
(ξk+n)k≤0,Φ(T ξ0+...+ξn+1(γ))

)
3By definition, T−kα = {T−k(A1), T−k(A2)}.
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Therefore, the filtration (FZ′n )n≤0 is contained in (FZn )n≤0, and admits (ξn)n≤0 as
sequence of innovations, like (FZn )n≤0. Hence (FZ′n )n≤0 is dyadic and immersed in
(FZ′n )n≤0. We have proved that (FZ′n )n≤0 is not product-type hence (FZn )n≤0 cannot be
product-type thanks to corollary 12.

6 Proof of theorem 6

We now present a slight variant of Hoffman’s example of an automorphism T of Lebesgue
probability space such that [T, Id] is not standard. We modify some numerical values,
to be more ‘parcimonious’ and we detail the proof, following Hoffman’s strategy.

6.1 Construction of null-entropy shifts

Let A be a finite alphabet with size ≥ 2. In the whole section, T denotes the bilateral
shift (xk)k∈Z 7→ (xk+1)k∈Z on AZ. The purpose of this subsection is to construct a
shift-invariant probability measure Q on AZ such that T is ergodic and has null entropy
under Q.

The ‘cut-and-stack’ procedure provides a lot of such probability measures. A general
treatment of this kind of construction can be found in [17]. Yet, we restrict ourselves to
a particular subclass which includes Hoffman’s example and enables a more elementary
definition.

We fix two sequences (Nn)n≥1 and (`n)n≥1 of positive integers (tending to infinity)
such that Nn ≥ 2 and Nn−1`n−1 divides `n for every n ≥ 2. For every n ≥ 1, we define
a family of distinct elements Bn,0, . . . , Bn,Nn−1 of A`n , called the n-blocks, as follows 4.

The 1-blocks are the elements of A, so `(1) = 1 and N(1) = |A|. When n ≥ 2,
each block Bn,i is obtained as a concatenation of (n− 1)-blocks in such a way that the
number of occurences of Bn−1,j in Bn,i does not depend on i and j: this is the major
simplification with regard to the general ‘cut-and-stack’ constructions, and that is why
we assume that Nn−1`n−1 divides `n.

The admissible concatenations, and the sequences (Nn)n≥1 and (`n)n≥1 will be spec-
ified later. For now, we explain how to derive a shift-invariant probability measure from
this block strucutre. Informally, the typic sample paths under the probability measure
Q are for each n ≥ 1 infinite concatenations of n-blocks. To construct the probability
measure Q, we construct a compatible family of finite-dimensional marginals.

Proposition 39 For every integer d ≥ 0, every word w ∈ Ad and every word B =
(b0, . . . , b`−1) with length ` ≥ d, set

N(w,B) =
`−d∑
k=0

∣∣{k ∈ [[0, `− d]] : w = (bk, . . . , bk+d−1)
}∣∣ and p(w|B) =

N(w,B)

`− d+ 1
,

so N(w,B) and p(w|B) are respectively the number of occurrences and the frequency of
occurrence of w among the the subwords of B with length d. Then

4We index the n-blocks by [[0, Nn − 1]] instead of [[0, Nn]] to handle simpler formulas. For the same
reason, we view each word with length ` as a map from [[0, `− 1]] to A.
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1. Let (in)n≥1 a sequence such that in ∈ [[0, Nn−1]] for every n ≥ 1. Then p(w|Bn,in)
has a limit pd(w) as n goes to infinity, and this limit pd(w) does not depend on
the choice of (in)n≥1.

2. The maps w : Ad → [0, 1] thus defined are the marginals of some shift-invariant
probability measure Q on AZ.

Proof. For every n ≥ 2, `n ≥ Nn−1`n−1 ≥ 2`n−1. A recursion yields `n ≥ 2n−1, so `n
goes to infinity and the series

∑
n 1/`n converges.

1. Fix a word w with length d. Let n ≥ 2 such that `n−1 ≥ d and i ∈ [[0, Nn − 1]].
Let Mn the integer such that `n = MnNn−1`n−1. Then by construction, the block
Bn,i is a concatetation of (n− 1)-blocks in which each each Bn−1,j is involved Mn

times.

We obtain the subwords of Bn,i with length d by choosing k ∈ [[0, `n − d]] and by
looking at the letters at positions k+1, . . . , k+d. For most of these k, the interval
[[k + 1, k + d]] is entirely contained in some subinterval [[q`n−1, (q + 1)`n−1 − d]]
with q ∈ [[0,MnNn−1]]. The restriction of Bn,i to these subintervals are precisely
the (n− 1)-blocks, each block Bn−1,j occuring Mn times. Since there are exactly
MnNn−1(d− 1) remaining k, we get

0 ≤ N(w,Bn,i)−Mn

Nn−1∑
j=1

N(w,Bn−1,j) ≤MnNn−1(d− 1).

Dividing by `n = MnNn−1`n−1 yields

0 ≤ N(w,Bn,i)

`n
− 1

Nn−1

Nn−1∑
j=1

N(w,Bn−1,j)

`n−1
≤ d− 1

`n−1
. (1)

The same inequality holds if N(w,Bn,i)/`n is replaced by its mean value over all
i ∈ [[0, Nn−1]]. Hence, the convergence of these means follows from the convergence
of the series

∑
n 1/`n−1. Using equality 1 again together with the convergence

(`n − d+ 1)/`n → 1 yields item 1.

2. Let d ≥ 0 and w ∈ Ad. Then

pd(w) = lim
n→+∞

p(w|Bn,1) ≥ 0.

In particular, p0() = 1, where () ∈ A0 denotes the empty word. Moreover,

N(w,Bn,1) =
∑
a∈A

N(wa,Bn,1) + 1{Bn,1 ends with w}.

Dividing by `n and letting n go to infinity yields

pd(w) =
∑
a∈A

pd+1(wa).

In the same way, we get

pd(w) =
∑
a∈A

pd+1(aw).

Therefore (pd)d≥0 is a sequence of probability measures on the products (Ad)d≥0

such that each pd is image of pd+1 by the projection on the first d, or on the last
d components. Item 2 follows, by Kolmogorov extension theorem.
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We now construct a stationary process γ = (γ(k))k∈Z with law Q. To do so, we
index the letters of the n-blocks by the set [[0, `n − 1]]. Recall that every n-block is a
concatenation of (n − 1)-blocks in which each one of the Nn−1 different (n − 1)-blocks
occurs exactly Mn times. Hence, the beginning of the (n− 1)-blocks in any n-block are
the positions q`n−1 with q ∈ [[0,MnNn − 1]].

Proposition 40 Let (In)n≥1 be a sequence of independent uniform random variables
taking values in the sets ([[0, Nn − 1]])n≥1, defined on some large enough large enough
probability space (Ω,A,P). Then

1. One can construct a sequence (Un)n≥1 of uniform random variables taking values
in the sets ([[0, `n − 1]])n≥1 such that

(a) for all n ≥ 1, Un is independent of (Im)n≥m;

(b) the sequence of random intervals ([[−Un, `n − 1− Un]])n≥1 is increasing;

(c) for all n ≥ 2 and k ∈ [[−Un−1, `n−1 − 1− Un−1]],

Bn,In(Un + k) = Bn−1,In−1(Un−1 + k).

2. The intervals [[−Un−1, `n−1− 1−Un−1]] cover Z almost surely, so one can define a
process γ = (γ(k))k∈Z by γ(k) = Bn,In(Un + k) whenever k ∈ [[−Un, `n − 1− Un]].

3. The law of the process thus defined is Q.

Proof. In the statement above, saying that the probability space (Ω,A,P) is large
enough means that one can define a uniform random variable with values in [0, 1] which
is independent on the sequence (In)n≥1.

1. We construct the sequence (Un)n≥1 recursively.

First, we set U1 = 0. Since `1 = 1, the random variable U1 is uniform on the set
[[0, `1 − 1]].

Let n ≥ 2. Assume that U1, . . . , Un−1 are constructed, that Un−1 is uniform on
[[0, `n−1−1]] and Un−1 is independent of (In)n≥m. Conditionally on (U1, . . . , Un−1)
and on the whole sequence (Im)m≥1, choose Dn uniformly among the Mn begin-
nings of the blocks Bn−1,In−1 in the block Bn,In . Then for every k ∈ [[0, `n−1]],
Bn,In(Dn + k) = Bn−1,In−1(k). Moreover, the random variable Dn is uniform on
{q`n−1 : q ∈ [[0,MnNn − 1]]} and independent on (Un−1, (Im)m≥n), so Dn, Un−1

and (Im)m≥n are independent by the recursion hypothesis. Hence the random
variable Un := Un−1 +Dn is uniform on [[0, `n − 1]] and independent of (Im)m≥n).
Moreover, Un−1 ≤ Un ≤ Un−1 + (MnNn − 1)`n−1 = Un−1 + `n − `n−1. Item 1
follows.

2. Fix k ∈ Z. For every large enough n, `n ≥ |k|, so

P
[
k /∈ [[−Un, `n − 1− Un]]

]
=

{
P[Un < −k] if k ≤ 0
P[`n − 1− Un < k] if k ≥ 0

}
=
|k|
`n
.

Since `n → +∞, item 2 follows.
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3. For every n ≤ 0, consider the process γ(n) = (γ(n)(k))k∈Z given by

γ(n)(k) = Bn,In((Un + k) mod `n),

where (Un+k)mod `n denotes the remainder of Un+k modulo `n. The process γ(n)

thus defined is `n-periodic and stationary, since the process ((Un+k) mod `n)k∈Z
is stationary and independent of In. But the process γ(n) coincides with γ on
the random interval [[−Un, `n − 1 − Un]]. Since the intervals [[−Un, `n − 1 − Un]]
increase to Z almost surely, γ is the almost sure limit of the processes γ(n), so
it is stationary. Hence we only need to check that for every d ≥ 0, the law of
γ0:d−1 := (γ(0), . . . , γ(d− 1)) is pd. Let w ∈ Ad. Using twice that for every n ≥ 0,
Un is independent of In, we get

P[γ0:d−1 = w] = lim
n

P
[
(γ0, . . . , γd−1) = w ; d− 1 ≤ `n − 1− Un

]
= lim

n
P
[
(Bn,In(Un), . . . , Bn,In(Un + d− 1)) = w ; Un ≤ `n − d

]
= lim

n

1

`n

`n−d∑
u=0

P
[
(Bn,In(u), . . . , Bn,In(u+ d− 1)) = w

]
= lim

n

1

`n − d+ 1

`n−d∑
u=0

P
[
(Bn,In(u), . . . , Bn,In(u+ d− 1)) = w

]
= lim

n
E
[
p(w|Bn,In)

]
= pd(w).

Item 3 follows.

We now deduce some properties on the shift T under the probability Q.

Proposition 41 1. For every d ≥ 0, w ∈ Ad, and Q-almost every (xk)k∈Z ∈ AZ,

lim
L→+∞

p(w|(x0, . . . , xL−1)) = pd(w).

2. T is ergodic under Q.

3. If `−1
n log2Nn → 0 as n→ +∞, then T has null entropy under Q.

Proof. 1. Since Q is the law of the process γ constructed in proposition 40, it gives
full measure to the set of sample paths (xk)k∈Z such that for every n ≥ 0, there
exists un ∈ [[0, `n−1]] such that for every slice (x−un+q`n , . . . , x−un+q`n+`n−1) is an
n-block. Roughly speaking, every typical sample path can be obtained for each n
as a shifted infinite concactenation of n-blocks.

Fix such a path and ε > 0. Provided n ≥ 0 is large enough, one has

∀i ∈ [[0, Nn − 1]], |p(w|Bn,i)− pd(w)| ≤ ε/3,
and more generally,

∀i1, . . . , in ∈ [[0, Nn − 1]], |p(w|Bn,i1 . . . Bn,im)− pd(w)| ≤ 2ε/3,

since the edge effect at the boundaries of the n-blocks is small if `n is large with
regard to d. Given L ≥ 2`n, the word (x0, . . . , xL−1) can be splited into m(L) :=
bL/`nc − 1 n-blocks, namely (x−un+q`n , . . . , x−un+q`n+`n−1) with q ∈ [[1,m(L)]],
plus two pieces of n-blocks. If L is large enough with regard to `n, the effect of
these two pieces is small, so |p(w|(x0, . . . , xL−1))− pd(w)| ≤ ε. Item 1 follows.
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2. Call (Xk)k∈Z the coordinate process on AZ and I the σ-field of all T -invariant
subsets of AZ. Let d ≥ 0 and w ∈ Ad. Birkhoff ergodic theorem and item 1 yield
the almost sure equalities

Q
[
(X0, . . . , Xd−1) = w|I

]
= lim

L→+∞

1

L

L−1∑
k=0

1{(X0,...,Xd−1)=w} ◦ T k

= lim
L→+∞

1

L

L−1∑
k=0

1{(Xk,...,Xk+d−1)=w}

= lim
L→+∞

p(w|(X0, . . . , XL+d−2))

= pd(w) = Q
[
(X0, . . . , Xd−1) = w

]
.

Since T preserves Q and A is finite, the almost sure equality Q(Γ|I) = Q(Γ) holds
for every subset Γ of AZ depending on finitely many coordinates, and therefore
for every measurable subset of AZ. The ergodicity of T under Q follows.

3. The entropy of T is

h(T ) = lim
L→+∞

H(X0, . . . , XL−1)/L = lim
n→+∞

H(X0, . . . , X`n)/(`n + 1).

Almost surely, the string (X0, . . . , X`n) is the concatenation of the last k letters
of some n-block and the first `n − k + 1 letters of some n block, with k ∈ [[1, `n]].
Hence, the number of possible values of (X0, . . . , X`n) is at most `n × N2

n, so
H(X0, . . . , X`n) ≤ log2 `n + 2 log2Nn. Item 4 follows.

We now give a precise description of the block structure in a slight variant of Hoff-
man’s example.

The 1-blocks are the elements of A. By assumption |A| ≥ 2. Once the (n−1)-blocks
Bn−1,0, . . . , Bn−1,Nn−1−1 are constructed 5, the n-blocks are defined by

∀i ∈ [[0, n4 − 1]], Bn,i =
(
(Bn−1,1)n

5i
. . . (Bn−1,Nn−1)n

5i)n5(n4−1−i)
,

so the length of Bn,i is `n = n5(n4−i−1) ×Nn−1 × n5i × `n−1 = n5(n4−1)Nn−1`n−1, each

block Bn−1,j occurs exactly n4(n2−1) times in Bn,i, and the number of different n-blocks
is Nn = n4.

The successive repetitions of a same (n − 1)-block inside an n-block form what we
call an n-region. The length of the of the n-regions in Bn,i, namely rn,i = n5i`n−1,
depends highly on i. For every integers k ≥ 0 and ` ≥ 1, denote by bk/`c and kmod `
the quotient and the remainder of k modulo `. Then by construction,

∀i ∈ [[0, n2 − 1]], ∀k ∈ [[0, `n − 1]], Bn,i(k) = Bn−1,(bk/rn,ic mod Nn−1)(k mod `n−1).

By proposition 41, T has null entropy under Q since `−1
n log2Nn → 0 as n → +∞.

Moreover, T is ergodic under Q, so [T, Id] is exact by theorem 1. The filtration associated
to [T, Id] is dyadic and Kolmogorovian and we want to prove that it is not product-type.

5We index the n-blocks by [[0, Nn − 1]] instead of [[1, Nn]] to handle simpler formulas. For the same
reason, we view each word with length ` as a map from [[0, `− 1]] to A.

32



6.2 Non-standardness of [T, Id]

The description of the associated to [T, Id] is close to the description of the ordinary
[T, T−1] filtration that we made in the previous section: we take two independent random
variables (ξn)n∈Z and γ = (γ(s))s∈Z with values in FZ and AZ, defined on a same
probability space (Ω,A,P) with respective law µ⊗Z and Q. But this time F = {0, 1},
so µ is the uniform law on {0, 1}, and (γ(s))s∈Z is no more an i.i.d. sequence.

Set Sn = −ξn+1 − · · · − ξ0 for every n ≤ 0 and let Z :=
(
(ξn)n≤0, (γ(s))s∈Z

)
.

Then ‘the’ filtration associated to [T, Id] is the natural filtration (FZn )n≤0 of the process
(Zn)n≤0 defined by

Zn = [T, Id](Z) =
(
(ξk+n)k≤0, (γ(Sn + s))s∈Z)

)
.

By construction, (ξn)n≤0 is a sequence of innovations of the filtration (FZn )n≤0.

By lemma 23, is is sufficient to check that the random variable γ(0) does not satisfy
the Vershik intermediate property. To do this, it is convenient to introduce the nibbled-
word process (Wn, ξn)n≤0 by

∀n ≤ 0, Wn =
(
γ(Sn + i)

)
i∈[[0,|n|]].

The set [[0, |n|]] is exactly the set of all possible values of the sum xn+1 + · · · + x0

when xn+1, · · · , x0 range over F = {0, 1}, we can define a map sn from F |n| to [[0, |n|]] by
sn(xn+1 · · · , x0) = xn+1 + · · · + x0. To every word w ∈ AIn , we associate its extension

w = w ◦ sn ∈ AF |n| .
As in section 5, we check the split-word process associated to γ(0) and to the inno-

vations (ξn)n≤0 is (Wn, ξn)n≤0. For every n ≥ 2, let

hn := (`n/Nn)2 = (rn,N(n)−1)2 = (`n−1n
5(n4−1))2.

Note that hn is even. We define a decreasing sequence (εn)n≥2 of positive real numbers
by ε2 = 2−h(2) and for every n ≥ 3,

εn = εn−1

(
1− 3

(n− 1)3
− 4

(n− 1)4
− 1

n2

)
.

This sequence has a positive limit ε∞.

To negate the Vershik intermediate property, we have to show that disp
(
W−hn , d−hn

)
is bounded away from 0. This will follow from the next lemma.

Lemma 42 Let n ≥ 2. Let w′ and w′′ be two words in A[[0,hn]] whose restrictions to the
middle interval Mn := [[(hn/2) − n

√
hn, (hn/2) + n

√
hn]] are entirely contained in two

different n-blocks, namely Bn,i′ and Bn,i′′, with i′ 6= i′′. Then dhn(w′, w′′) ≥ εn.

Before proving lemma 42, let us deduce that the random variable γ(0) does not
satisfy the Vershik intermediate property. Fix n ≥ 2. For every (x−hn+1, . . . , x0) ∈ F hn ,

W−hn(x−hn+1, · · · , x0) = Wn(x−hn+1 + · · ·+ x0) = γ(S−hn + x−hn+1 + · · ·+ x0).

Let γ′ and γ′′ be two independent copies of γ defined on some probability space (Ω,A,P).
The shifted process γ(S−hn+hn/2+·) has the same law as γ, so one gets two independent
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copies of W−hn by setting W ′−hn(i) = γ′(i − hn/2) and W ′′−hn(i) = γ′′(i − hn/2). The
interest of this translation is that when n is large, the binomial law with parameters
hn and 1/2 gives probability close to 1 to the interval [[hn/2− n

√
hn, hn/2 + n

√
hn]], so

most of the values

W ′−hn(x−hn+1, · · · , x0) = W ′−hn(x−hn+1 + · · ·+ x0) = γ′x−hn+1+···+x0−hn/2

are provided by the restriction of γ′ to the interval [[−n
√
hn, n

√
hn]].

Following the construction of proposition 40, one may assume that the processes γ′

and γ′′ derive from two independent copies (I ′n, U
′
n)n≥1 and (I ′′n, U

′′
n)n≥1 of the sequence

(In, Un)n≥1. Then the restriction of γ′ to the interval [[−U ′n, `n − 1 − U ′]] is a time-
translation of the n-block Bn,I′n , and a same statement holds for γ′′.

Therefore, when the three following conditions hold

• I ′n 6= I ′′n,

• [[−n
√
hn, n

√
hn]] ⊂ [[−U ′n, `n − 1− U ′n]],

• [[−n
√
hn, n

√
hn]] ⊂ [[−U ′′n , `n − 1− U ′′n ]],

lemma 42 applies, so dhn
(
W ′−hn ,W

′
−hn
)
≥ εn. But by independence of the random

variables I ′n, U ′n, I ′′n, U ′′n the probability that these three conditions hold is(
1− 1

N(n)

)
×
(

1− 2n
√
hn

`n

)2
=
(

1− 1

n4

)(
1− 2

n3

)
.

Hence

disp
(
W−hn , d−hn

)
= E

[
dhn
(
W ′−hn ,W

′
−hn
)]
≥ εn

(
1− 1

n4

)(
1− 2

n3

)
,

which remains bounded away from 0. Theorem 6 follows.

We now prove lemma 42.

Proof. We argue by recursion. To make the notations lighter, we will introduce a
symbolM to denote artihmetic means: given any non-empty finite set E,

M
x∈E

stands for
1

|E|
∑
x∈E

.

First, assume that n = 2. The assumption i′ 6= i′′ and the construction of the 2-
blocks prevent w′′ to be equal to w′ or to its adjoint w′∗ (which is the reversed word
w′r since w′ is not 2-periodic). By lemma 32, their extensions w′ and w′′ belong to two
different orbit modulo the action of the automorphism group of the binary tree with
height h2, so dh2(w′, w′′) ≥ 2−h2 = ε2.

Now, let n ≥ 3. Assume that the implication is established at level n−1. Let i′ < i′′

in [[0, Nn − 1]], and take two subwords w′ of Bn,i′ and w′′ of Bn,i′′ having length hn + 1:
there exist two integers u′ and u′′ in [[0, `n − hn − 1]], such that for every s ∈ [[0, hn]],
w′(s) = Bn,i′(u

′ + s) and w′′(s) = Bn,i′′(u
′′ + s).

Remind the notations of subsection 22. For every non-negative integer h, we view
the set Th =

⋃
i∈[[0,h]] F

i as the binary tree with height h. To each σ ∈ S(F )Thn−1 , we
associate the automorphism of Thn given by

gσ(x−hn+1, . . . , x0) = (xσ−hn+1, . . . , x
σ
0 ),
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where
∀t ∈ [[−hn + 1, 0]], xσt := σ(x−hn+1 . . . , xt−1)(xt).

Given σ ∈ S(F )Thn−1 , we have to prove that

δhn(w′, w′′ ◦ gσ) ≥ εn.

Split each hn-uple (x−hn+1, . . . , x0) ∈ F hn into y = (x−hn+1, . . . , x−hn−1) ∈ F hn−hn−1

and z = (x−hn−1+1, . . . , x0) ∈ F hn . Call σy the element of S(F )Thn−1 defined by
σy(z1, . . . , zi) = σ(y, z1, . . . , zi) for every 0 ≤ i ≤ hn − 1 and (z1, . . . , zi) ∈ F i. Set
s(y) = x−hn+1 + . . .+ x−hn−1 , s(z) = x−hn−1+1 + · · ·+ x0. Then

δhn(w′, w′′ ◦ gσ) = M
y∈Fhn−hn−1

M
z∈Fhn−1

1{
w′(yz)6=w′′◦gσ(yz)

}
= M

y∈Fhn−hn−1

δhn−1

(
w′(y, . . .), w′′ ◦ gσ(y, . . .)

)
.

But for every y ∈ F hn−hn−1 and z ∈ F hn ,

w′
(
y, z
)

= w′
(
s(yz)

)
= w′

(
s(y) + s(z)

)
,

w′′
(
gσ(y, z)

)
= w′′

(
gσ(y)gσy(z)

)
= w′′

(
s(gσ(y)) + s(gσy(z))

)
,

so
w′
(
y, . . .

)
=
(
w′(s(y) + ·)

)∣∣
[[0,hn−1]]

,

(w′′ ◦ gσ)
(
y, . . .

)
=
(
w′′(s(gσ(y)) + ·

)
|[[0,hn−1]] ◦ gσy .

Hence

δhn(w′, w′′ ◦ gσ) = M
y∈Fhn−hn−1

δhn−1

(
(w′(s(y) + ·))|[[0,hn−1]], (w′′(s(yσ) + ·)|[[0,hn−1]] ◦ gσy

)
≥ M

y∈Fhn−hn−1

dhn−1

(
(w′(s(y) + ·))|[[0,hn−1]], (w′′(s(yσ) + ·)|[[0,hn−1]]

)
.

To apply the recursion hypothesis, we look at the restrictions of w′(s(y) + ·) and
w′′(s(yσ) + ·) to the interval Mn−1. For every k ∈Mn−1, one has

w′
(
s(y) + k

)
= Bn,i′

(
u′ + s(y) + k

)
= Bn−1,(b(u′+s(y)+k)/rn,i′c mod Nn−1)

(
(u′ + s(y) + k) mod `n−1

)
,

and w′′
(
s(yσ) + k

)
is given by a similar formula. Set

J ′(y) := b(u′ + s(y) + hn−1/2)/rn,i′c mod Nn−1,

J ′′(yσ) := b(u′′ + s(yσ) + hn−1/2)/rn,i′′c mod Nn−1,

K ′(y) :=
(
u′ + s(y) + hn−1/2

)
mod `n−1,

K ′′(yσ) :=
(
u′′ + s(yσ) + hn−1/2

)
mod `n−1,

Λn−1 := [[(n− 1)
√
hn−1, `n−1 − 1− (n− 1)

√
hn−1]].

If K ′(y) and K ′′(yσ) belong to the interval Λn−1, the restrictions of w′(s(y) + ·) and
w′′(s(yσ) + ·) to the interval Mn−1 are entirely contained respectively in Bn−1,J ′(y) and
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Bn−1,J ′′(yσ). Therefore, since the random variables Y := (ξ−hn+1, . . . , ξ−hn−1) and Y σ :=

(ξσ−hn+1, . . . , ξ
σ
−hn−1

) are uniform on F hn−hn−1 , the recursion hypothesis yields

δhn(w′, w′′ ◦ gσ) ≥ M
y∈Fhn−hn−1

εn−11{K(y)∈Λn−1 ; K′′(yσ)∈Λn−1 ; J ′(y)6=J ′′(yσ)}

= εn−1P
[
K(Y ) ∈ Λn−1 ; K ′′(Y σ) ∈ Λn−1 ; J ′(Y ) 6= J ′′(Y σ)

]
.

Thus

δhn(w′, w′′ ◦ gσ) ≥ εn−1

(
P
[
J ′(Y ) 6= J ′′(Y σ)

]
− 2P

[
K(Y ) /∈ Λn−1

])
. (2)

To bound above P
[
K(Y ) /∈ Λn−1

]
, we note that s(Y ) has a binomial distribution

with parameters hn − hn−1 and 1/2. By lemma 46, for all k ∈ [[0, `n−1]],

P
[
K(Y ) = k

]
=

∑
q∈Z

P
[
s(Y ) = `n−1q + k − u′ − hn−1

2

]
≤ 1

`n−1
+

1√
hn − hn−1

=
1

`n−1
+

1

`n−1

√
n5(n4−1) −N−2

n−1

≤ 3

2`n−1
.

Thus

P
[
K(Y ) /∈ Λn−1

]
≤ 3

2`n−1
× 2(n− 1)

√
hn−1 =

3(n− 1)

Nn−1
=

3

(n− 1)3
. (3)

We now want to bound above P
[
J ′(Y ) = J ′′(Y σ)

]
. To do this, we set D = n8r2

n,i′ ,

so n4rn,i′ =
√
D ≤ n−1rn,i′′ and D ≤ n−2(rn,Nn−1)2 ≤ hn/9 ≤ hn − hn−1, and we split

Y and Y σ into two independent parts, namely

Y1 := (ξ−hn+1, . . . , ξ−hn−1−D) and Y2 := (ξ−hn−1−D+1, . . . , ξ−hn−1),

(Y σ)1 := (ξσ−hn+1, . . . , ξ
σ
−hn−1−D) and (Y σ)2 := (ξσ−hn−1−D+1, . . . , ξ

σ
−hn−1

),

Then we show that the law of J ′(Y ) given Y1 is spread out on the whole interval
[[0, Nn−1−1]] whereas the law of J ′′(Y σ) given Y1 is mainly concentrated on at most two
points.

On the one hand, one checks that

J ′(Y ) =
⌊(u′ + s(Y ) + hn−1/2) mod rn,i′Nn−1

rn,i′

⌋
Using the equality s(Y ) = s(Y1) + s(Y2), that s(Y2) has a binomial distribution with
parameters D and 1/2, and lemma 46 again, one gets that for all k ∈ [[0, rn,i′Nn−1 − 1]],

P
[
(u′ + s(Y ) + hn−1/2) mod rn,i′Nn−1 = k

∣∣σ(Y1)
]
≤ 1

rn,i′Nn−1
+

1√
D

≤ 1

rn,i′Nn−1
+

1

n4rn,i′

≤ 2

rn,i′Nn−1
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Hence, for every j ∈ [[0, Nn−1 − 1]],

P
[
J ′(Y ) = j

∣∣σ(Y1)
]
≤ 2

Nn−1
.

On the other hand, s(Y σ) = s(Y σ
1 ) + s(Y σ

2 ) and Y σ
1 is a function of Y1, whereas Y σ

2 is
independent of Y1 and has the same law as Y2. Hence

Var
(
u′ + s(Y σ) +

hn−1

2

∣∣∣ σ(Y1)
)

= Var
(
s(Y σ

2 )
)

=
D

4
.

Set

M = r−1
n,i′′E

[
u′ + s(Y σ) +

hn−1

2

∣∣∣ σ(Y1)
]
, M− =

⌊
M − 1

2

⌋
, M+ =

⌊
M +

1

2

⌋
.

Then Bienaymé-Chebycheff inequality yields

P
[∣∣u′ + s(Y σ) + hn−1/2− rn,i′′M

∣∣ ≥ rn,i′′

2

∣∣∣ σ(Y1)
]
≤ D

r2
n,i′′
≤ 1

n2
,

so

1− 1

n2
≤ P

[ ∣∣∣ u′ + s(Y σ) + hn−1/2

rn,i′′
−M

∣∣∣ < 1

2

∣∣∣ σ(Y1)

]
≤ P

[⌊u′ + s(Y σ) + hn−1/2

rn,i′′

⌋
∈ {M−;M+}

∣∣∣ σ(Y1)

]
≤ P

[
J ′′(Y σ) ∈

{
M− mod Nn−1;M+ mod Nn−1

} ∣∣∣ σ(Y1)
]
.

Comparing the conditional laws of J ′(Y ) and J ′′(Y σ) given Y1 yields

P
[
J ′(Y ) = J ′′(Y σ)

]
≤ 4

Nn−1
+

1

n2
=

4

(n− 1)4
+

1

n2
. (4)

Plugging inequalities 3 and 4 into inequality 2 yields

δhn(w′, w′′ ◦ gσ) ≥ εn−1

(
1− 3

(n− 1)3
− 4

(n− 1)4
− 1

n2

)
= εn.

The proof is complete.

7 Annex

7.1 Useful results on Polish spaces

Fix a non-empty separable complete metric space (A, d), endowed with the Borel σ-field.
We begin with a lemma abridged from de la Rue’s paper on Lebsegue spaces [16].

Lemma 43 Fix a countable basis (Bn)n≥1 of bounded open sets (for example, the balls
whose center lies in some countable dense subset and whose radius is the inverse of a
positive integer). Let C = {0, 1}∞ and Φ : A → C be the map defined by Φ(x) =(
1Bn(x)

)
n≥1

. Then Φ is injective, Φ(A) is a Borel subset of the compact set C and

Φ−1 : Φ(A)→ A is a Borel map.
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Proof. First, note that the sets (Bn)n≥1 separate the points of A, so the map Φ is
injective. Moreover, for every y = (yn)n≥1 ∈ C and n ≥ 1, set Byn

n = Bn if yn = 1,
Byn
n = Bc

n if yn = 0. Then

Φ−1({y}) =
⋂
n≥1

Byn
n .

When B is a bounded subset in (A, d), denote by diam(B) its diameter. For every n ≥ 1,
set In = {m ≥ 1 : Bm ⊂ Bn and diam(Bm) ≤ diam(Bn)/2}. Then the set Φ(A) is the
set of all y = (yn)n≥1 ∈ C satisfying the three conditions below:

1. For every N ≥ 1, By1
1 ∩ · · · ∩ByN

N 6= ∅.

2. There exists n ≥ 1 such that yn = 1.

3. For every n ≥ 1 such that yn = 1, there exists m ∈ In such that ym = 1.

Indeed, these conditions are necessary for y to be in Φ(A) since (Bn)n≥1 is a countable
basis (Bn)n≥1 of bounded open sets in the metric space (A, d). Conversely, these con-

ditions ensure that the diameter of the non-empty closed subset FN := By1
1 ∩ · · · ∩ByN

N

tends to 0 asN goes to infinity. Since (A, d) is complete, and (FN )N≥1 is a non-increasing
sequence, its intersection is a single set {x}. To see that Φ(x) = y, we have to check that
for every n ≥ 1, x belongs to Byn

n . If yn = 0, this is true since Byn
n = Bc

n is closed. If
yn = 1, then ym = 1 for some m ∈ In, so x ∈ Bm ⊂ Bn. This proves the characterization
above, so Φ(A) is a Borel subset of C.

For every closed subset F in (A, d), (Φ−1)−1(F ) = Φ(F ) is still a Borel subset of C,
since the induced metric space (F, dF ) is complete and separable, and (F ∩ Bn)n≥1 is
a countable basis of bounded open sets in (F, dF ). Hence, Φ−1 : Φ(A) → A is a Borel
map. The proof is complete.

We now state and prove the lemma which legitimate the definition 15.

Lemma 44 On a probability space (Ω,A,P), let F be a sub-σ-field, ξ a random variable
taking values in a countable set F , independent of F , and X an F ∨ σ(ξ)-measurable
random variable taking values in A. Given x ∈ F , one can find an F-measurable random
variable Wx taking values in A such that X and Wx coincide on the event {ξ = x}. If
P[ξ = x] > 0, such a random variable is almost surely unique.

Proof. Let Φ : A→ C be the map defined in lemma 43. We will only use the injectivity
of Φ and the measurability of Φ−1. Denote by Φn = 1Bn the n-th component of Φ.

We begin with the almost sure uniqueness when P[ξ = x] > 0. If Wx exists, then
for every n ≥ 1,

Φn(X)1{ξ=x} = Φn(Wx)1{ξ=x}.

Conditionning by F yields

E[Φn(X)1{ξ=x}|F ] = Φn(Wx)P[ξ = x].

This formula shows that the random variables Φ(Wx) is completely determined (almost
surely). By injectivity of Φ, the almost sure uniqueness of Wx follow.

Now, let us prove the existence. First, one checks that F ∨ σ(ξ) is the exactly the
set of all events of the form

E =
⊎
x∈F

(Ex ∩ {ξ = x}),
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where (Ex)x∈F is a family of events in F . Observe that if E is given by this formula
then E ∩ {ξ = x} = Ex ∩ {ξ = x} for every x ∈ F .

Fix x ∈ F . For every n ≥ 1, {X ∈ Bn} ∈ F ∨ σ(ξ), so one can find an event Exn ∈ F
such that {X ∈ Bn} ∩ {ξ = x} = Exn ∩ {ξ = x}. The random variable Y x = (Y x

n )n≥1

with values in C and defined by Y x
n = 1Exn is F-measurable.

Fix a ∈ A. We can define an F-measurable-random variable Wx with values in A by

Wx(ω) := Φ−1(Y x(ω)) if Y x(ω) ∈ Φ(A),

Wx(ω) := a otherwise.

On the event {ξ = x}, one has Y x =
(
1Exn

)
n≥1

=
(
1{X∈Bn}

)
n≥1

= Φ(X) ∈ Φ(A), so

Wx = Φ−1(Φ(X)) = X. The proof is complete.

7.2 Inequalities involving binomial coefficients

Lemma 45 Let Sn be a binomial random variable with parameters n ≥ 1 and p ∈]0, 1[.
For every ε ∈]0, p],

P [Sn ≤ nε] ≤ fp(ε)n where fp(ε) =
(p
ε

)ε(1− p
1− ε

)1−ε
.

Proof. Let x ∈]0, 1]. Then Markov’s inequality yields

P [Sn ≤ nε] ≤ P [xSn ≥ xnε] ≤ x−nεE[xSn ] =
(
x−ε(1− p+ px)

)n
.

Choosing

x =
ε

p
× 1− p

1− ε
to minimize the right-hand side yields the desired inequality.

Lemma 46 Let D ≥ 1 be an integer.

1. The map k 7→
(
D
k

)
increases on [0, D/2] ∩ Z and decreases on [D/2/2] ∩ Z. The

maximum is achieved when k = bD/2c and when k = dD/2e.

2. For every k ∈ [[0, D]],

1

2D

(
D

k

)
≤
√

2

πD
.

3. Fix L ≥ 1. For every r ∈ Z,∣∣∣∣∣∣
∑
q∈Z

1

2D

(
D

Lq + r

)
− 1

L

∣∣∣∣∣∣ ≤
√

2

πD
≤ 1√

D
,

with the convention
(
D
k

)
= 0 whenever k ∈ Z \ [[0, D]].

Proof. For every k ∈ [[0, D − 1]],

(
D

k + 1

)/(D
k

)
=
D − k
k + 1

∣∣∣∣∣∣
> 1 if 2k + 1 < D
= 1 if 2k + 1 = D
< 1 if 2k + 1 > D

.
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Distinguishing two cases, according to the parity of D, yields item 1.

For every integer n ≥ 1, set

rn =
√
n

1

22n

(
2n

n

)
=
√
n

1

22n−1

(
2n− 1

n− 1

)
Since

rn+1

rn
=

√
n+ 1√
n
× 1

4
× (2n+ 1)(2n+ 2)

(n+ 1)2
=

n+ 1/2√
n(n+ 1)

> 1,

the sequence (rn)n≥1 is increasing. But Stirling’s formula shows that it converges to
1/
√
π. Hence rn ≤ 1/

√
π for every n ≥ 1. Item 2 follows.

For every r ∈ Z, set

Sr =
∑
q∈Z

pLq+r where pk =
1

2D

(
D

k

)
.

First, let us prove that for every r and s,

|Sr − Ss| ≤
√

2

πD
.

By symmetry, one needs only to bound above Sr − Ss. Using the L-periodicity of the
map k 7→ pk and the symmetry pD−k = pk for every k ∈ Z, one may assume that
r ≤ s ≤ D/2 < r + L ≤ s+ L. In this case, one has

Ss − Sr =
∑
q≤0

(pLq+s − pLq+r) +
∑
q≥1

(pLq+s − pLq+L+r)− pL+r

≥ 0 + 0−
√

2

πD
,

by item 1 and 2. The desired upper bound of |Sr − Ss| and item 3 follow, by taking the
mean over all s ∈ [[0, L− 1]], since S0 + · · ·+ SL−1 = 1.
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