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Abstract

The aim of the present work is to develop an efficient strategy for the parametric

analysis of bolted joints used in the aerospace area. They are used for elastic, struc-

tural assemblies under quasi-static loads, with local nonlinearities such as unilateral

contact with friction. Our approach is based on a decomposition of the assembly

into substructures and interfaces. The problem on each substructure is solved by the

finite element method and an iterative scheme based on the LATIN method is used

for the global resolution. The strategy proposed consists in calculating response sur-

faces such that each point of a surface is associated with a design configuration. Each

design configuration corresponds to a set of values of all the variable parameters

(friction coefficients, prestress) which are introduced into the mechanical analysis.

Here we propose, instead of carrying out a full computation for each point of the

surface, to use the capability of the LATIN method to re-utilize the solution to a

given problem (for one set of parameters) in order to solve similar problems (for the
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other sets of parameters).

Key words: Uncertainties; Assemblies; Contact; Friction; Substructuring Method;

Multiresolution; LATIN method

1 Introduction

The solutions to deterministic problems are often calculated by finite element

analysis (FEA). For structural engineers, the incorporation of parametric un-

certainties of a system into a mechanical model represents a challenge; how-

ever, without this information, the structural response could not be analyzed

accurately, particularly in terms of reliability. These parametric system un-

certainties may affect the mechanical and geometric properties, the boundary

conditions. In the case of structural assemblies, ones knowledge of the friction

coefficients or of the stiffness of bolted joints is especially poor. In order to

take such uncertainty into account, it is necessary to calculate the response

of the structure for all possible sets of values of the design parameters or to

use a probabilistic structural analysis approach [1]. The numerical examples

presented in the paper concern 3D bolted joints. For some of these examples,

over a thousand different calculations had to be carried out for the paramet-

ric study. The comparison of the computation costs with those of classical

industrial codes shows the algorithm is very efficient.

2 The LATIN method

Here, we will review only the main aspects of the LATIN method. The details

of the method itself can be found in [2] and those of its particular application
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to computational contact problems in [3].

2.1 Decomposition of an assembly

An assembly is composed of a set of substructures (each substructure is a

component of the assembly) which communicate with one another through

interfaces (each interface represents a connection). Each interface is a me-

chanical entity with its own variables and its specific behavior which depends

on the type of connection. Many different connection types can be modeled by

this approach, but in this paper we consider only classical contact connections.

2.2 The LATIN algorithm

A LATIN (LArge Time INcrement) approach [2] is used to solve the problem.

The solution of the problem is written as a set of time-dependent fields on each

substructure and related interfaces. The LATIN approach is based on the idea

of isolating the difficulties in order not to have to solve a global problem and

a nonlinear problem at the same time. The equations are split into two groups

with the following two sets of solutions:

• the set Ad of solutions to the linear equations related to the substructures

• the set Γ of solutions to the local equations (which may be nonlinear) related

to the interfaces

The search for the overall solution (i.e. the intersection of the two sets) is

conducted iteratively by constructing approximate solutions s which verify

the two groups of equations alternatively on the complete time history. Thus,
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each iteration in the process is composed of two stages:

Local stage: for sn ∈ Ad known, find ŝ such that:

ŝ∈Γ (interfaces) (1)

ŝ− sn ∈E+ (search direction) (2)

Global stage: for ŝ ∈ Γ known, find sn+1 such that:

sn+1 ∈Ad (substructures) (3)

sn+1 − ŝ∈E− (search direction) (4)

In our particular case of linear elastic substructures, the inner solution (in

displacement and in stress fields) can easily be calculated from the boundary

values. Therefore, from here on, a solution s will be represented only by the

force and velocity fields on both sides of an interface.

The search directions are chosen such that the convergence of the algorithm

is ensured [2]. An error indicator is used to control the convergence of the

algorithm. This indicator is an energy measure of the distance between the

two solutions sn and ŝ.

3 Approach proposed

The approach proposed consists in calculating response surfaces ([4], [5]) such

that each point of a surface is associated with a design configuration. At

each iteration, the LATIN method leads to an approximate solution to the

problem over the whole time interval. Therefore, the trick is to reuse this

approximation (associated to one set of values of all the design parameters)

to find the solution to another design configuration (another set of the design

parameters) similar to the one for which it was calculated in the first place.

4



Our multiple solution method uses the fact that the LATIN algorithm can

be initialized with any solution (usually an elastic solution) provided that it

verifies the admissibility conditions. Therefore, the key to our technique is

to initialize the process associated with a new design configuration using the

results of the calculation carried out on the first set of values of the design

parameter. In this manner, a first approximation of the solution to the new

design with a strong mechanical content is immediately available from the

start. In this particular case of elastic structures in contact, the interfaces

play a vital role: they enable one to initiate the calculation on the new design

configuration without having to save all data on the substructures as well

as to search for the solution of the new design configuration with an initial

solution well-suited to the target problem. In the best-case scenario, only a few

iterations are necessary: the solution to the problem is obtained at low cost.

If the solutions to the design configurations are close enough, the latter can

still be derived at a significantly lower cost than by using a full calculation.

For the parametric study presented herein, we just change the parameters

between iterations. Thus, the new computation is initialized by the solution

to the previous one. If the parameters change slowly, the two solutions are

close and only a few iterations are needed to reach convergence in the new

calculation. This strategy have already been succesfully used for 2D assembly

in [6].

4 Example - A 3D assembly

A bolted joint is considered, the dimensions of the studied part of the connec-

tion are presented on Fig. 1. The study case was derived from tests conducted
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at EADS-CCR (Suresnes, France) on 4 bolts junctions (see Fig. 2). Experi-

ments confirmed the sensitivity of life expectancies of such junctions to fric-

tions, pre-tensions in the bolts, clearances... These parameters have a natural

scattering, and a full experimental campaign for assessing their effective influ-

ence would result in high numbers of specimens. This motivated EADS-CCR

to investigate a more cost-effective numerical approach with LMT Cachan.

The connection between three plates is assumed by two prestressed bolts.The

bolts and the plates are composed of the same material (Youngs modulus

E = 200000MPa and Poissons coefficient ν = 0.3). The prestress of the bolts

is assumed by a relative displacement between the body and the head of each

bolt. The two relative displacements are denoted g1 and g2 (Fig. 1) and the

friction coefficient is denoted µ. In the parametric study, we study the influence

of the prestress of the bolts and of friction on the transmission of forces. The

same Coulomb friction coefficient is used on each contact zones. There is thus

three parameters : one friction coefficient and one prestress in each bolt. The

friction coefficient can take 9 different values (0.1 to 0.5 , step 0.05). The pre-

stresses can take 12 different values (0.05mm to 0.3mm, step 0.025mm). For

the complete parametric study, 1296 computation have thus to be performed.

The same mesh have been used for all the computations. It is presented on

Fig. 3. It is composed of 10 705 linear elements (pyramids or bricks) and

8 090 nodes. The total number of degrees of freedom is then 24 270. This

number does not included the possible additional contact variables (Lagrange

multipliers). The computation is carried out on two steps:

• step 1: pre-stress of the bolts (duration 1s - 1 time increment asked).

• step 2: application of the load (duration 1s - 10 time increments asked).
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In order to estimate the capabilities of the LATIN method for the treatment

of frictional contact problems a comparison with the industrial finite element

code ABAQUS have been carried out on one parametric configuration (g1 =

0.05mm, g2 = 0.025mm and µ = 0.3). Fig. 3 presents the comparison of the

global response of the connection (displacement of one point of the loaded

surface). The ABAQUS and the LATIN solutions are very closed.

For convergence reasons ABAQUS solver ran more time increments than asked

(10 for step 1 and 62 for step 2). The results of the comparison are presented

in Tab. 1. One can notice that on this single computation the LATIN method

is 10 times more efficient than a classical Finite Element code. This efficiency,

in terms of size of the problem and in term of computational time, as already

been shown and discussed in [7]. Fig. 4 and Tab 2 summarizes all the realized

calculations. The evolution of the maximum transmission force is plotted for

each value of the friction coefficient µ as a function of the two prestress of

bolt g1 and g2. One can notice that the force varies slowly according to the

prestress, but strongly according to the friction coefficient.

Using the surface response, we can now easily determine the optimal set of

parameters (prestress, friction coefficients) by comparing the numerical and

the experimental results. This work is in progress.

5 CONCLUSIONS

The proposed approach based on the LATIN method can be very efficient

numerically because the uncoupled treatment of the local and global problems

leads to a considerable reduction of problem sizes. Another important point
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is that the linear systems corresponding to the substructures are independent

of one another and could be solved in parallel very efficiently. The strategy is

based on the capability of the LATIN method to reuse the solution to a given

problem in order to solve similar problems. Numerical examples showed the

very good behavior of the algorithm applied to the case of multiple resolutions

in the analysis of 3D assemblies. The solution to the initial problem is a very

good starting point for the calculations conducted on other problems provided

that these calculations do not exert excessive perturbations on the response.

Moreover, the interfaces play a vital role in allowing a considerable reduction

of the computation costs. This approach is quite general by nature and should

be applicable to a number of other nonlinear problems.
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4.2 3D assembly

A bolted connection is considered (figure 9). The connection between three plates is
assumed by two prestressed bolts.
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Figure 9: Scheme of the problem

Figure 10 presents the dimensions of the studied part of the connection.
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Figure 10: Dimensions of the structure – thickness : 40mm

The bolts and the plates are composed of the same material (Young’s modulus E =
20000MPa and Poisson coefficient ν = 0.3. The prestress of the bolts is assumed by
a relative displacement between the body and the head of each bolt. The two relative
displacement are denoted g1 and g2 (figure 9) and the friction coefficient is denoted µ.

In the parametric study, we study the influence of the prestress of the bolts and of
friction on the transmission of forces. The same Coulomb friction coefficient is used on
each contact zones. There is thus three parameters : one friction coefficient and one
prestress in each bolt. The friction coefficient can take 9 different values (0.1 to 0.5 , step
0.05). The pre-stresses can take 12 different values (0.05mm to 0.3mm, step 0.025mm).
For the complete parametric study 1296 computation have thus to be performed.
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Fig. 2. Real test carried out at EADS-CCR
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The same mesh have been used for all the computations. It is presented on figure 11.
It is composed of 10 705 linear elements (pyramids or bricks) and 8 090 nodes. The total
number of degrees of freedom is then 24 270. This number does not included the possible
additional contact variables (Lagrange multipliers, . . . ).
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Figure 11: Mesh of the assembly – 10705 elements – 8090 nodes

The computation is carried out on two steps :

• step 1 : pre-stress of the bolts (duration 1s - 1 time increment asked).
• step 2 : application of the load (duration 1s - 10 time increments asked).

In order to estimate the capabilities of the LATIN method for the treatment of frictional
contact problems a comparison with the industrial finite element code ABAQUS [18]
have been carried out on one parametric configuration (g1 = 0.05mm, g2 = 0.025mm
and µ = 0.3). Figure 12 presents the comparison of the global response of the connection
(displacement of one point of the loaded surface). The ABAQUS and the LATIN solutions
are very closed.
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Figure 12: Displacement of one point of the loaded surface

16

L. Champaney, P.A. Boucard

The same mesh have been used for all the computations. It is presented on figure 11.
It is composed of 10 705 linear elements (pyramids or bricks) and 8 090 nodes. The total
number of degrees of freedom is then 24 270. This number does not included the possible
additional contact variables (Lagrange multipliers, . . . ).

1
2

3

1
2

3

Figure 11: Mesh of the assembly – 10705 elements – 8090 nodes

The computation is carried out on two steps :

• step 1 : pre-stress of the bolts (duration 1s - 1 time increment asked).
• step 2 : application of the load (duration 1s - 10 time increments asked).

In order to estimate the capabilities of the LATIN method for the treatment of frictional
contact problems a comparison with the industrial finite element code ABAQUS [18]
have been carried out on one parametric configuration (g1 = 0.05mm, g2 = 0.025mm
and µ = 0.3). Figure 12 presents the comparison of the global response of the connection
(displacement of one point of the loaded surface). The ABAQUS and the LATIN solutions
are very closed.

   .00    .50   1.00   1.50   2.00

   .00

   .10

   .20

   .30

   .40

   .50

ABAQUS

LATIN

U (mm)x

t(s)

Figure 12: Displacement of one point of the loaded surface

16

Fig. 3. Mesh of the assembly and Displacement of one point of the loaded surface

12



L. Champaney, P.A. Boucard

75 150 225 300
75150225300

100
200
300
400

µ = 0.1

75 150 225 300
75150225300

100
200
300
400

µ = 0.15

75 150 225 300
75150225300

100
200
300
400

µ = 0.2

75 150 225 300
75150225300

100
200
300
400

µ = 0.25

75 150 225 300
75150225300

100
200
300
400

µ = 0.3

75 150 225 300
75150225300

100
200
300
400

µ = 0.35

75 150 225 300
75150225300

100
200
300
400

µ = 0.4

75 150 225 300
75150225300

100
200
300
400

µ = 0.45

75 150 225 300
75150225300

100
200
300
400

µ = 0.5

  g  (µm)2
g  (µm)

1

F      (kN)max

25 25 25

25 25 25

25 25 25

Figure 13: Summarized presentation of all the results

5 CONCLUSIONS

The strategy proposed here is based on the LATIN method and, more specifically, on
its capability to reuse the solution to a given problem in order to solve similar problems.
Initial numerical examples showed the very good behavior of the algorithm applied to the
case of multiple resolutions in the analysis of static problems with contact and friction in
2D and 3D assemblies. The solution to the initial problem is a very good starting point for
the calculations conducted on perturbed problems provided that these calculations do not
exert excessive perturbations on the response. Moreover, as has already been explained,
the interfaces play a vital role in allowing a considerable reduction of the computation
costs. This approach is quite general by nature and should be applicable to a number of
other nonlinear problems which require multiple solutions.

18

Fig. 4. Summarized presentation of all the results

13



ABAQUS LATIN

Time steps 72 11

Slip tolerance (mm) 1e-4 0

CPU Time (mn) 374 38.1

Wall Clock Time (mn) 407 40
Table 1
Comparison with Abaqus
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Wall Clock Time h days

ABAQUS direct 8 791 366

LATIN direct 864 36

LATIN mutiple solution 168 7
Table 2
Computational costs - 1296 computations
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