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Abstract. The numerical obtention of stochastic responses of assemblies or of response
surfaces needs to cary out a large number of costly computations. This paper propose
efficients techniques for obtention of such informations.

A decomposition of the assemblies into substructures and interfaces is defined and as-
sociated with a dedicated computational strategy which leads to a local/global algorithm
enabling the treatments of the substructure and of the interface problems to be uncoupled:
the LATIN method [8].

The first proposed approach is a point by point calculation of response surfaces: the
calculation of the solution for a new set of parameters is accelerated by using the solution
of a previous one as an initialization. This procedure can be easily set up in the LATIN
method [3]. The applications concern complex assemblies of 3D structures with uncertain
frictional contact zones.

The second proposed technique is a dedicated approach to the calculation of the random
response of assemblies with uncertain interface characteristics[1]. The random response
is constructed using a Polynomial Chaos Ezpansion (PCE)[7]. Since the only uncertain
parameters are those which appear in the interface equations, this approach results in a
drastic reduction of the computational costs.
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1 INTRODUCTION

The solutions to deterministic problems are often calculated by finite element analysis
(FEA). For structural engineers, the incorporation of parametric uncertainties of a system
into a mechanical model represents a challenge; however, without this information, the
structural response could not be analyzed accurately, particularly in terms of reliability.
These parametric system uncertainties may affect the mechanical and geometric proper-
ties, the boundary conditions. . . In the case of structural assemblies, ones knowledge of the
friction coefficients or of the stiffness of bonded joints is especially poor. In order to take
such uncertainty into account, it is necessary to calculate the response of the structure
for all possible sets of values of the design parameters or to use a probabilistic structural
analysis approach [2].

Our approach is based on a decomposition of the assembly into substructures and
interfaces. The interfaces play the vital role of enabling local nonlinearities, such as
contact and friction, to be modeled easily and accurately. The problem is solved in each
substructure by the finite element method, and an iterative scheme based on the LATIN
method is used for the global resolution.

The first approach proposed consists in calculating response surfaces such that each
point of a surface is associated with a design configuration. Each design configuration
corresponds to a set of values of all the variable parameters (friction coefficients, prestress)
which are introduced into the mechanical analysis. A full calculation is needed for each
point. Here, as an alternative to carrying out these full calculations, we propose to take
advantage of the capability of the LATIN method to reuse the solution of a given problem
(for one set of parameters) to solve similar problems (for the other sets of parameters) [3].
The numerical examples presented in the paper concern 3D assemblies. For some of these
examples, over a thousand different calculations had to be carried out for the parametric
study. The comparison of the computation costs with those of classical industrial codes
shows the algorithm is very efficient when applied to the case of multiple resolutions for
the analysis of static problems with contact and friction.

The second technique proposed addresses the random response of assemblies whose
interfaces have uncertain characteristics. Thus, the randomness of the response comes
from the random behavior of the connections. In this context, the random response
is developed using a Polynomial Chaos Expansion (PCE) [4] coupled with the LATIN
approach. A dedicated computational strategy to determine the random response of
assemblies with probabilistic interface characteristics is presented [5].

The numerical example concerns an assembly of structures connected by screws with
elastic joint. The stiffness characteristics of the screws and the joint are random. The
results of the two approaches are compared.

Since the uncertain parameters are present only in the joints, the use of the LATIN
method results in a drastic reduction of the computation costs.
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2 THE REFERENCE PROBLEM
2.1 Decomposition of an assembly

An assembly is composed of a set of substructures (each substructure is a component
of the assembly) which communicate with one another through interfaces (each interface
represents a connection), see Fig. 1. Each interface is a mechanical entity with its own
variables and its specific behavior which depends on the type of connection. Many different
connection types can be modeled by this approach, but in this paper we consider only
classical contact connections. T'wo connected substructures are denoted Vg and Vg and
the associated interface is designated by I'*¥'.

The interface variables are two force fields fE and j?E/ and two dual velocity fields

[EE
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E

Figure 1: Decomposition of an assembly

W et wF (Fig. 2). By convention, fZ and fZ are the actions of the interface on the
substructures and w? et w¥ are the velocities of the substructures seen from the interface.

I'EE'

Figure 2: Interface variables

2.2 The problem in the substructures

The displacement field at any point M of Vg and at any time ¢ of [0,7] is @ (M, t);
the associated space is U%7). € is the strain field and the current state of the structure is
characterized by the stress field o”.

The mechanical problem to be solved in each substructure is:

Find the histories of the displacement field @¥(M,t) and stress field o (M, t)
such that:
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e Kinematic admissibility:

e =e(@”); @ (M, )y, = w"(M,t); @ ey’ (1)
e Equilibrium: var € YloT)

/ Tr(o? e(@))dVg — | foardV — fPards =0 (2)
Ve Ve Vg

e Elastic behavior: VM € Vg and Vt € [0, 7],
oP(M,t) = De(u” (M, t)) (3)
where D is Hooke’s operator.

2.3 The problem on the interfaces

The mechanical problem to be solved on each interface is:

Find the histories of the force fields ( FE(M,t) and fE(M,t)) and of the ve-
locity fields (w?(M,t) and w® (M, t)) such that:

e Equilibrium: VM € I'PF and Vt € [0, 7],
FE(M ) + f¥ (M, 1) =0 (4)
e Behavior: VM € I'PF and Vt € [0, 7],
FE(M,t) = R (M, 1), 7 € [0,1]) (5)

where the behavior is expressed as a nonlinear evolution law R between the forces and
the rate wPF of jump in displacement across the interface which is defined by:

wrr =Wt —w (6)

For example, a perfect connection between two substructures would be modeled by the
following behavior:

wPF (M, 1) = 0 (7)

The form of the evolution law R in the case of frictional contact conditions is described
in [2].
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2.4 Discretization in the geometric space

Standard finite element discretization is used for the displacement field within the
substructures and at the interfaces:

a¥(M,t) = Nu®(t) and e(@”)=Bu”(t) (8)

where u” is the vector of nodal displacements and N is the vector of classical finite element
basis functions.

A LATIN (LArge Time INcrement) approach [8] is used to solve the problem. The
procedure is iterative and creates, at each iteration, an approximation of the displacement
and strain variables over the entire domain. The equations are split into two groups:

e linear equations related to the substructures
e local equations (which may be nonlinear) related to the interfaces

The search for the overall solution (i.e. the intersection of the two sets) is conducted
iteratively by constructing approximate solutions which verify the two groups of equa-
tions alternatively over the whole time history. An error indicator is used to control the
convergence of the algorithm.

3 FIRST APPROACH PROPOSED

The first approach proposed consists in calculating response surfaces such that each
point of a surface is associated with a set of values of all the variable parameters. At
each iteration, the LATIN method leads to an approximate solution to the problem over
the whole time interval. Therefore, the trick is to reuse this approximation (associated
to one set of values of all the design parameters) to find the solution to another design
configuration (another set of the design parameters) similar to the one for which it was
calculated in the first place. Our multiple solution method uses the fact that the LATIN
algorithm can be initialized with any solution (usually an elastic solution) provided that
it verifies the admissibility conditions. Therefore, the key to our technique is to initialize
the process associated with a new design configuration using the results of the calculation
carried out on the first set of values of the design parameter. In this manner, a first
approximation of the solution to the new design with a strong mechanical content is im-
mediately available from the start. In this particular case of elastic structures in contact,
the interfaces play a vital role: they enable one to initiate the calculation on the new
design configuration without having to save all data on the substructures as well as to
search for the solution of the new design configuration with an initial solution well-suited
to the target problem. In the best-case scenario, only a few iterations are necessary: the
solution to the problem is obtained at low cost. If the solutions to the design configura-
tions are close enough, the latter can still be derived at a significantly lower cost than by
using a full calculation. For the parametric study presented herein, we just change the
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parameters between iterations. Thus, the new computation is initialized by the solution
to the previous one. If the parameters change slowly, the two solutions are close and only
a few iterations are needed to reach convergence in the new calculation.

4 SECOND STRATEGY PROPOSED

Here, we are dealing with structural assemblies problems in which the behavior of the
components and the external loads are deterministic: the randomness of the response
comes from the random behavior of the connections. The systems parameters, calibrated
using experimental data, are modeled as random variables or processes which are assumed
to be properly represented by a set of random variables {£(6)}, where 6 belongs to the
space of random events 2. Considering static loading cases, the main differences from the

initial problem are the interfaces equations: . .
For each interface, we seek the force fields (f¥(M, ) and f¥'(M,#)) and the displace-
ment fields (w7 (M, ) and @G (M, #)) such that:

e Equilibrium: VM € TFPF' Vg € Q

fE(Mae)+f_El(M79):0 (9)

e Behavior: YM € I'PF' Vh € Q

FE(M, 0) = k(a(0))5"" (M, 0) = k(o(0)) (" — ") (10)

where k is the interface stiffness operator, which depends on a random material parameter
a(f).

Standard finite element discretization is used for the displacement field within the
substructures and at the interfaces:

@"(M,0) = Nu®(f) and (@) =Bu”(0) (11)

where u” is the vector of nodal displacements and N is the vector of classical finite element
basis functions.

4.1 Discretization in Random space: Polynomial chaos expansion (PCE)

The nodal variables u(f) can be formally expressed as a nonlinear functional of the
set {£;(0)} used to represent the material stochastic property. It has been shown [4] that
this functional dependence can be expanded in terms of polynomial chaoses. Then, the
truncated PCE of the response takes the form:

u(f) = Z w, ¥, (6) (12)
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where {W;(0)} are polynomials in the Gaussian random variables {;}. These can be
shown to form a complete basis of the Hilbert space of second-order random variables.
The number of polynomials P depends on the order p of the PCE and on the number L
of stochastic parameters. Let assume that the material parameters are constant along an
interface. Should this not be the case, a Karhunen-Loeve expansion could easily be used
to represent the spatial randomness of the interface characteristics [6]. The stochastic
material property a(f) is represented by

a(f) =a(l + 6£(0)) (13)

where @ is the mathematical expectation of a(#), § the coefficient of variation (standard
deviation versus expectation) and £(€) a standard normal random variable: £(6) ~ N (0, 1).
For non-Gaussian material properties, the PCE is used to represent the material property:
the case of a Gaussian process is a particular case chosen for simplicity’s sake [5].

4.2 Direct Spectral Stochastic Finite Element Method (SSFEM)

Following the traditional FE assembly procedure, this leads to the corresponding ex-
pansion of the stiffness matrix:

K(0) =) _&G(OK; (14)

where Ky denotes the stiffness matrix for the mean material properties and the other
terms correspond to the random fluctuations about the mean. The number of stochas-
tic parameters is L (§o = 1). Expanding the nodal solution u(f) with respect to the
polynomial chaos basis (Eq. (12)) and using Eq. (14), the stochastic equation leads to:

> GV (0)Kuy = f (15)

=0

P L
7=0

An equality, in a weak sense, can be derived by projecting Eq. (15) onto the subspace
spanned by the polynomial chaos subset used in the approximation; this process results

in the following equations:

D (&Y ()T (0)) Koy = (T(0))f k=0,1,...P, (16)

1=0

P L
j=0

The last equation can be rewritten as:

L
Zciijiuj = 50kf k= 0, 17 cee P, (17)

P
j=0 =0

J
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where the coefficients ¢;;; denote (§;V;(0)¥,(6)) and can be calculated only once. This
system of linear equations must be solved for the unknown u; of the PCE. The details of
the above procedure were published in [7]. The implementation issues were addressed in
a number of other references [5, 6]. These equations can be assembled into a matrix of
size (P + 1).n x (P + 1).n (n being the number of degrees of freedom) of the form:

KO gon o KOP\ [y, fo
K(jk) . Uy = 0 (18>
KE gey o keR ) \up 0
where
L
KW =37 (60,(0)0,(0)) K, (19)
=0

In summary, this approach consist of expanding the random response process about a
basis of the Hilbert space of random variables and of calculating the coefficients of the
expansion. The result is a convergent expansion of the response in terms of multidimen-
sional orthogonal polynomials. Although the methodology used is becoming widespread,
serious obstacles have been encountered, from a computational point of view, in practical
implementations. In large and realistic problems, the methodology is either cumbersome
or computationally intensive. Some numerical strategies, such as iterative algorithms,
have been devised to overcome the numerical difficulties arising in this context [9].

4.3 An adapted approach

The proposed approach uses the localization of the random characteristics in order to
solve these types of problems more efficiently. Using the decomposition presented, the
resolution of the two stages of the LATIN method can be summarized as follows:

e Resolution for the local stage: we assumed the stiffness to be independent of the
space coordinate at the interface. Therefore, the solution is achieved through the
resolution of small independent systems (size (P + 1)) at each node and in each
direction.

e Resolution for the global stage: this consists of solving (P+1) independent linear
systems for each substructure. It is important to note that the matrices which
appear in the system remain constant during the iterations and, therefore, need to be
factorized only once before the first iteration. An even more important observation
is that the problems on the substructures are completely independent of one another
and could be solved in parallel very efficiently.
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5 EXAMPLE

This example deals with a cylinder submited to internal pressure. The cylinder is closed
by a cover maintained by height prestressed screws (fig. 3). The etancheity is assumed by
an elastic joint between the cylinder and the cover (fig. 4).

Figure 3: View of the complete assembly

The stiffness of the joint is supposed to be non deterministic. It is modelled by an
elastic interface between the cover and the cylinder. The contact conditions between the
screws and the cylinder are not modelled in the present study. They would change the
way the screws are deformed. Thus, in this computation, the stiffness of the screw is also
supposed to be non deterministic. It is taken into account by an interface between the
body and the head of the screws. Only the upper part of the cylinder is modelled. For
symetry reasons, only 1/16th of the assembly is studied. Figure 4 presents the different
interfaces of the model.

The cylinder, the cover and the screws are made with steel:

Young’s Modulus £ = 200,000 M Pa and Poisson ration v = 0.3.

The stiffness of the bold is :

K=K(1+06¢&) with K =5 10"N.m " and 6, = 0.1
The stiffness of the joint is
k=Fk(1+0¢&) withk=1 10°N.m 'm ?and 6, =0.2

The cylinder is submitted to an internal pressure of 16bars. The screws are prestrained
by prescribing a relative axial displacement A = 0.2mm.

The structure is decomposed in 6 substrutures and 20 interfaces. Figure 4 presents the
different interfaces (blue: perfect connection, white: symmetry, rose: pressure, turquoise:
elastic). The mesh is composed of 1,836 quadratic elements with a total of 7,920 nodes
(23,760 dof).
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Figure 4: Dimension of the assembly

As the contact conditions between the joint and the cylinder and between the joint
and the cover are not considered, the criteria for etancheity is the fact that the joint stays
under compression when the internal pressure is applied. Thus in the following study, we
investigate whenever the maximal normal force on the joint can become positive.

The computations have been carried out on a PC with a 1.5Gb RAM and an AMD
Athlon XP 1800+ processor (1.5GHz).

5.1 Multiresolution

For the multiresolution study, 13 values are taken for the parameter & (from —3 to
+3 by steps of 0.5) and 7 values for the parameter & (from —3 to +3 by steps of 1).This
corresponds to 91 computations that have to be carry out.

Figure 5 presents the evolution of the error indicator during the iterations. Whenever
a parameter is changed, the error raise because the interfaces equation are not satisfied
anymore. The high pics correspond to the change in parameter & (joint’s stiffness) and
the small ones correspond to the change in parameter & (screw’s stiffness). One can see
that only the first set of parameters leads to a computational effort. The re-utilisation of
the previous solution leads to a great reduction of the numerical cost.

Figure 6 presents the repartition of normal force on the joint for the mean value of the
coefficients (£, = 0 and & = 0). One can see that, in that particular case, the joint is in
compression. There is no risk of loss of etancheity.

It takes 150s (CPU) to achieve the first computation (350 iterations). Then, it take
only 253s (CPU) to achieve the 90 following computations (for a total of 585 iterations).

5.2 Polynomial chaos expansion

For this problem which has two random variables, a polynomial chaos of order 3 is
used. This means that P = 9, thus 10 functions are used in the expansion. There is

10
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Error indicator
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Figure 5: Multiresolution: error indicator during the iterations

Figure 6: Normal forces on the joint for the mean values of the coefficients

11
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Figure 7: Response surface for the maximum pressure on the joint

237,600 unknowns for this problem.
It takes 1,300s (CPU) to achieve the 310 iteration that are needed to reach convergence.

Uo (x100) U1 (x1000) U2 (x10000)

Figure 8: The first three coefficients in the PCE

Figure 8 presents the first three coefficients in the Polynomial Chaos Expansion of
order 3. The first coefficient represents the mean displacement of the response ug and the
other two (u; and uy) the mainly fluctuations around the mean.

Figure 9 presents a comparaison between the multiresolution and the Latin Method
with Polynomial Chaos : we present the density probability function for the normal force
on the joint.

One can see that there is a risk of obtaining traction on the joint in this configuration.
Traction would here mean possibility of a loss of etancheity of the cylinder.

12
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1.5} = Pdf Chaos
mmm Pdf MultiResolution

Figure 9: Probability density function of the maximal normal force on the joint

6 CONCLUSIONS

The two proposed approachs based on the LATIN method can be very efficient nu-
merically. The first strategy is based on its capability to reuse the solution to a given
problem in order to solve similar problems. Numerical examples showed the very good
behavior of the algorithm applied to the case of multiple resolutions in the analysis of
3D assemblies. The solution to the initial problem is a very good starting point for the
calculations conducted on other problems provided that these calculations do not exert
excessive perturbations on the response. Moreover, the interfaces play a vital role in
allowing a considerable reduction of the computation costs.

In the second approach, the uncoupled treatment of the local and global problems leads
to a considerable reduction of problemsizes. Another important point is that the linear
systems corresponding to the substructures are independent of one another and could be
solved in parallel very efficiently. This approach is quite general by nature and should be
applicable to a number of other nonlinear problems.

13
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