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GRADINGS OF LIE ALGEBRAS, MAGICAL SPIN GEOMETRIES

AND MATRIX FACTORIZATIONS

ROLAND ABUAF, LAURENT MANIVEL

Abstract. We describe a remarkable rank 14 matrix factorization of the oc-
tic Spin14-invariant polynomial on either of its half-spin representations. We
observe that this representation can be, in a suitable sense, identified with a
tensor product of two octonion algebras. Moreover the matrix factorisation
can be deduced from a particular Z-grading of e8. Intriguingly, the whole
story can in fact be extended to the whole Freudenthal-Tits magic square and
yields matrix factorizations on other spin representations, as well as for the
degree seven invariant on the space of three-forms in several variables. As an
application of our results on Spin14, we construct a special rank seven vector
bundle on a double-octic threefold, that we conjecture to be spherical.

1. Introduction

Recall that a matrix factorization of a polynomial W is a pair (P,Q) of square
matrices of the same size, say N , with polynomial entries, such that

PQ = QP =W.IdN .

Matrix factorizations have attracted a lot of attention since their introduction by
Eisenbud [10] in connection with Cohen-Macaulay modules over hypersurfaces. Im-
portant examples of matrix factorizations, when W is a quadratic form, are pro-
vided by Clifford modules [5, 4]. They can be obtained as follows. Suppose our
base field is the field of complex numbers, and consider the simple Lie algebras son,
n ≥ 5, with their spin representations. When n is even, there are two half-spin
representations ∆+ and ∆−, of the same dimension N = 2

n

2
−1. Their direct sum

can be defined as a module over the Clifford algebra of the natural representation
Vn of son, with its invariant quadratic form q. The Clifford multiplication yields
equivariant morphisms

Vn ⊗∆+ −→ ∆− and Vn ⊗∆− −→ ∆+.

So for each v ∈ Vn, we get morphisms P (v) : ∆+ → ∆− and Q(v) : ∆− → ∆+,
depending linearly on v, and the fact that the total spin representation is a Clifford
module yields the identities

P (v) ◦Q(v) = q(v)Id∆−
and Q(v) ◦ P (v) = q(v)Id∆+

.

In other words, we get a of rank N matrix factorization of the quadratic form q.
Surprisingly, this is a non trivial matrix factorization of minimal size of a non

degenerate quadratic form in n variables. This illustrates the difficulty to find
explicit ones in general. One of the goals of this paper is precisely to describe
several remarkable matrix factorizations, again related to spin representations. Our
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main result will be the description of a rank 14 matrix factorization of a particular
degree eight polynomial in 64 variables, a Spin14-invariant polynomial on a half-
spin representation ∆14. In the next section, we will give a direct construction of
this invariant and prove that it admits a matrix factorization (Theorem 2.3.2). Our
proof is remarkably simple, and relies on the fact that ∆14 contains an open orbit of
the action of C∗×Spin14. We will observe in passing the intriguing fact that fixing
a point in this open orbit determines a factorisation of ∆14 as the tensor product
of two octonion algebras (Proposition 2.2.1).

In the last section, we will relate those observations to gradings of Lie algebras
and the Freudenthal magic square. The point is that ∆14 appears in a particular
Z-grading of the largest exceptional algebra e8, and that the octic invariant and its
matrix factorization can be constructed directly from e8. Moreover, this particu-
lar Z-grading turns out to be related to the space of "points" in the Freudenthal
geometry associated to E8.

Astonishingly, the whole story extends to the full magic square. Recall that this
square associates to a pair (A,B) of normed algebras (either R,C, the algebra H of
quaternions or the Cayley algebra O of octonions) a semisimple Lie algebra g(A,B).
In particular g(O,O) = e8. The space of "points" in the corresponding Freudenthal
geometry induces a grading of g(A,B) whose main component is always a spin
representation, and this yields a matrix factorization (Theorem 3.2.1). Moreover,
once one chooses a general point in that representation, it gets naturally identified
with A⊗ B.

Finally, we discuss the sporadic case of the third exterior power of a vector
space of dimension seven, which is related with a certain Z-grading of e7.

One motivation for this study of matrix factorizations has been the construction
of a special rank seven vector bundle on a double octic threefold obtained as a
double cover of P3 branched over a linear section of the octic hypersurface defined
by the Spin14-invariant of ∆14. We conjecture that this bundle is spherical. Such a
double cover is in fact a Calabi-Yau threefold and there is an astonishing series of
relationships, far from being completely understood yet, between exceptional Lie
algebras and certain families of manifolds of Calabi-Yau type [1, 14]. We hope to
come back to this conjecture in a subsequent paper.

Acknowledgments. We warmly thank Vladimiro Benedetti for his help with LiE.

2. Spin geometry in dimension fourteen

Spin geometry in dimension twelve has several very remarkable features, two of
which we would like to recall briefly. Let ∆12 be one of the half-spin representations
of Spin12 (see [22, Section 5] for more details).

(1) The action of Spin12 on P∆12 has only four orbits, whose closures are
the whole space, a degree four hypersurface, its singular locus, and inside
the latter, the spinor variety S12, which parametrizes one of the families of
maximal isotropic subspaces of a quadratic twelve dimensional vector space
V12.

(2) The spinor variety S12 ⊂ P∆12 is a variety with one apparent double point,
which means that through a general point of P∆12 passes a unique line
which is bisecant to S12. One can deduce that the open orbit O0 ≃
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Spin12/SL6 ⋊ Z2, where the Z2 factor exchanges the two points in S12

of the afore mentionned bisecant.

An interesting consequence is that a double cover of the open orbit is naturally
built in the spin geometry, which turns out to be intimately related with the family
of double quartic fivefolds. Those varieties have attracted some interest from the
early ages of mirror symmetry, being Fano manifolds of Calabi-Yau type that can
be considered as mirror to certain rigid Calabi-Yau threefolds [6, 29].

The goal of this section is to describe the similar properties that can be observed
for the spin geometry in dimension fourteen. We will start by briefly recalling the
orbit structure, which has classially been considered by several authors [19, 27, 15].
The quartic invariant hypersurface in P∆12 is in particular replaced by an octic
invariant hypersurface in P∆14 on which the next section will focus. Here we will
highlight a kind of multiplicative version of the one apparent double point property,
which we find very remarkable.

2.1. Orbits. Recall that the half-spin representations of Spin14 can be defined by
choosing a splitting V14 = E⊕F , where E and F are maximal isotropic subspaces.
Note that the quadratic form q on V14 induces a perfect duality between E and F .
Then E acts on the exterior algebra ∧∗E by the wedge product, and F by twice the
contraction by the quadratic form. The resulting action of V14 on ∧∗E upgrades to
an action of its Clifford algebra. By restriction, on gets an action of Spin14, as well
as of its Lie algebra spin14 ≃ ∧2V14. The half-spin representations are then given
by the even and odd parts, ∧+E and ∧−E, of the exterior algebra ∧∗E. We will
let ∆14 = ∧+E. (Of course the construction works to any Spin2n, starting from
a splitting of a 2n-dimensional vector space V2n endowed with a non degenerate
quadratic form. In the odd case, V2n+1 can only be split as E ⊕ F ⊕ L, with E
and F isotropic and L a line. The unique spin representation can then be identified
with ∧∗E. See e.g. [7] for more details.)

According to Sato and Kimura [19, page 132], the fact that a half-spin repre-
sentation ∆14 of Spin14 is prehomogeneous under the action of C∗ × Spin14 was
first observed by Shintani in 1970, and the orbit structure was obtained by Kimura
and Ozeki in 1973. The fact that there are only finitely many orbits is actually an
immediate consequence of Kac and Vinberg’s theory of θ-groups [12, 31]. Indeed,
the half-spin representation ∆14 is a component of the Z-grading of e8 defined by
its first simple root.

Up to our knowledge, the classification of the orbits of Spin14 was first published
in 1977 by Popov [27], with explicit representatives of each orbit and the types of
their stabilizers. It also appears in the paper by Kac and Vinberg in [15], along
with the the orbits of Spin13 on the same representation. More details about the
geometry of the orbit closures can be found in [21].

As we already mentionned there is an octic invariant J8 (unique up to scalar),
and each level set J−1

8 (c) is a single orbit of Spin14 for c 6= 0. Inside the octic
hypersurface (J8 = 0), there are eight non trivial orbits. Among those, the most
important one is the (pointed) cone over the spinor variety S14, which parametrizes
the maximal isotropic subspaces of V14 in the same family as F . The other family
S′
14 of such spaces, to which E belongs, is naturally embedded inside the projec-

tivization of the other half-spin representation, the dual ∆∨
14. By the way, although

we will not use this fact, it is interesting to note that the projective dual of S′
14 is

precisely the octic hypersurface (J8 = 0) inside P(∆14).
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For future use let us mention that the following points z0 and z1 are respectively
outside the octic hypersurface, and inside the open orbit of this hypersurface [15]:

(1) z0 = 1 + e1237 + e4567 + e123456,

(2) z1 = 1 + e1237 + e1587 + e2467 + e123456.

Here we have fixed a basis e1, . . . , e7 of E, and we have used the notation eijkl for
ei ∧ ej ∧ ek ∧ el, and so on. We will also denote by f1, . . . , f7 the dual basis of F ,
defined by the condition that q(ei, fj) = δij .

The stabilizer of z0 was computed explicitely in [19, Proposition 40], or more
precisely its Lie algebra h ≃ g2 × g2. Sato and Kimura observed that h stabilizes a
unique pair of seven-dimensional subspaces of V14, each copy of g2 acting irreducibly
on one of these spaces and trivially on the other. To be more specific, the two
invariant seven-dimensional subspaces are

V7 = 〈e1, e2, e3, f1, f2, f3, e7 − f7〉 and V ′
7 = 〈e4, e5, e6, f4, f5, f6, e7 + f7〉.

Observe that V7 and V ′
7 are mutually orthogonal, and in direct sum (equivalently,

the restriction of the quadratic form to these spaces is non degenerate). Moreover
E3 := E ∩ V7 = 〈e1, e2, e3〉 and E′

3 := E ∩ V ′
7 = 〈e4, e5, e6〉 are maximal isotropic

subspaces of V7 and V ′
7 . In particular we may identify the spin representations of

spin(V7) and spin(V ′
7) with ∧∗E3 and ∧∗E′

3, respectively. Observe that their tensor
product is

∧∗E3 ⊗ ∧∗E′
3 ≃ ∧∗(E3 ⊕ E′

3) ≃ ∧+E = ∆14.

Under this identification,

z0 = 1⊗ 1 + e123 ⊗ 1 + 1⊗ e456 + e123 ⊗ e456 = (1 + e123)⊗ (1 + e456)

turns out to be decomposable. Moreover, the action of C∗ × Spin7 on the spin
representation is prehomogeneous; in fact there is a quadratic invariant Q, and the
non trivial orbits are the pointed quadric and its complement; the vector 1 + e123
belongs to the latter, and its stabilizer is isomorphic to G2 = Aut(O) (by [19,
Proposition 25], the generic stabilizer has Lie algebra g2; that it is really isomorphic
to G2 follows from the triality principle [2, Section 2.4]).

Any element g in the stabilier of z0 which fixes V7 must satisfy g(1 + e123) =
1 + e123, and similarly for V ′

7 . We can therefore conclude that G2 × G2 is the
subgroup of this stabilizer that fixes V7 and V ′

7 . The stabilizer itself will be bigger
only if it contains a transformation that swaps those two spaces, and this is indeed
what happens.

Proposition 2.1.1. The open orbit in P(∆14) is isomorphic with the homogeneous

space Spin14/(G2 ×G2)⋊ Z2.

Proof. It suffices to exhibit a transformation in Spin14 that stabilizes z0 and ex-
changes V7 and V ′

7 . Remember from [7] that Spin14 embeds in the Clifford algebra
of V14 as the group generated by even products g = v1 · · · v2k of norm one elements
of V14. Moreover the action on V14 is obtained by mapping each vi to the corre-
sponding orthogonal symmetry. Let ai = (ei + fi)/

√
2 and bi = (ei − fi)/

√
2 for

1 ≤ i ≤ 7, a set of vectors that constitute an orthonormal basis of V14. Then a
straightforward computation shows that

g = (a1 + a4)(b1 + b4)(a2 + a5)(b2 + b5)(a3 + a6)(b3 + b6)a7b7/8
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belongs to the stabilizer of z0 in Spin14, and that its action on V14 exchanges V7
and V ′

7 . �

2.2. A multiplicative double point property. Note that an orthogonal decom-
position V14 = V7 ⊕ V ′

7 always determines a decomposition of ∆14 as ∆7 ⊗∆′
7, as

follows. By the Borel-Weil theorem, we can realize ∆14 as H0(S14,L14), where
L14 denotes the positive generator of the Picard group of the spinor variety S14.
Similarly, we can realize ∆7 and ∆′

7 as H0(S7,L7) and H0(S7,L
′
7), with similar

notations. Points in S7 and S′
7 are three-dimensional isotropic subspaces E3 and

E′
3 of V7 and V ′

7 . Their direct sum is still isotropic, and being of dimension six, it
is contained in exactly two maximal isotropic spaces of V14, one of each family. In
particular this defines a regular map φ : S7×S′

7 → S14, such that φ∗L14 = L7⊠L ′
7.

By restriction this yields a map

∆14 ≃ H0(S14,L14) −→ H0(S7 × S′
7, φ

∗
L14) = ∆7 ⊗∆′

7.

This map is equivariant under Spin(V7) × Spin(V ′
7 ), and certainly non zero. Its

target being irreducible, it has to be surjective, and then an isomorphism since the
source and target have the same dimension.

We can summarize this discussion as follows.

Proposition 2.2.1. Let [ψ] be a generic element of P(∆14).

(1) There exists a unique orthogonal decomposition V14 = V7 ⊕V ′
7 preserved by

the stabilizer of [ψ] in Spin14.

(2) Under the induced isomorphism ∆14 ≃ ∆7 ⊗∆′
7, we have [ψ] = [χ⊗χ′] for

[χ] and [χ′] generic inside P(∆7) and P(∆′
7).

Remarks.

(1) Note that V7 must belong to the open subset of G(7, V14) defined by the
condition that the restriction of the quadratic form remains non degenerate.
This open subset has dimension 49, and for each choice of V7 there are 7
parameters for the generic [χ] and [χ′]. This yields the correct number
49 + 2 × 7 = 63 of parameters for the open orbit in P(∆14). Moreover, we
get a remarkable partition of the open orbit in P(∆14) by a 49-dimensional
family of open subsets of P7 × P7.

(2) The stabilizer of a generic point [χ] in P∆7 is a copy of G2, whose action on
∆7 can be identified with the action of the latter on the Cayley algebra O

(and χ becomes the unit in this algebra). As a consequence, a generic point
in ∆14 allows to interprete it as the tensor product O ⊗ O of two Cayley
algebras. It would be interesting to relate this observation to the work of
Rosenfeld on the algebra of "octooctonions" [28].

2.3. A matrix factorization for the octic invariant. We will construct later
on a matrix factorization for the octic invariant J8. A first explicit but cumbersome
construction was obtained by Gyoja [11]. Let us present a more direct approach.

Our main observation is that, according to [23], the symmetric square of ∆14

contains a copy of ∧3V14. This can be deduced from the Clifford action on the full
spin representation, which decomposes into equivariant maps

V14 ⊗∆14 −→ ∆∨
14 and V14 ⊗∆∨

14 −→ ∆14.

(Recall that ∆∨
14 ≃ ∧−E, on which E ⊂ V14 acts by wedge product and F ⊂ V14

by twice the contraction.) Composing those maps we get an equivariant morphism
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∧3V14 ⊗ ∆14 →֒ V14 ⊗ V14 ⊗ V14 ⊗ ∆14 → V14 ⊗ V14 ⊗ ∆∨
14 → V14 ⊗ ∆14 → ∆∨

14.
Taking the transpose we get

(3) Ω : S2∆14 −→ ∧3V14.

To be more explicit, we can fix a basis (v1, . . . , v14) of V14 (for example (e1, . . . e7, f1,
. . . , f7)) and denote the dual basis by (w1, . . . , w14) (which would be (f1, . . . f7, e1,
. . . , e7) for the same example). Then

(4) Ωz =
∑

i<j<k

〈z, vivjvkz〉wiwjwk ∈ ∧3V14.

Here the natural pairing between z ∈ ∆14 = ∧+E and z′ ∈ ∧−E is defined as the
component of z ∧ z′ on ∧7E.

Lemma 2.3.1. The equivariant map Ω is non zero.

Proof. We consider Ω as a quadratic form on ∆14, with values in ∧3V14, and evaluate
it at a general point, that is, at the point z0 of the open orbit. We get

1

2
Ωz0 = e123 − e456 − f123 − f456 −

6
∑

i=1

ǫiei7fi −
6

∑

i=1

eifi7,

where ǫi = 1 for i ≤ 3 and ǫi = −1 for i ≥ 4. This is of course non zero. �

Observe moreover that 1
2Ωz0 decomposes nicely as Ω−Ω′, where Ω ∈ ∧3V7 and

Ω′ ∈ ∧3V ′
7 are given by

Ω = e123 − f123 + (

3
∑

i=1

ei ∧ fi) ∧ (e7 − f7),

Ω′ = e456 + f456 + (

6
∑

i=4

ei ∧ fi) ∧ (e7 + f7).

Those forms Ω and Ω′ are generic elements of ∧3V7 and ∧3V ′
7 (up to normalizations,

they coincide with the generic three-form explicited in [24]). Recall that we recover
G2 as the stabilizer of such a generic form.

Our second ingredient will be the equivariant map

Θ : S2(∧3V14) −→ End(V14)

obtained as follows. First embed ∧3V14 inside V14 ⊗ ∧2V14, Then recall that the
quadratic form q on V4 induces a quadratic form

q2 : S2(∧2V14) −→ C,

whose polarization is given by the formula

q2(u1 ∧ u2, v1 ∧ v2) = det(q(ui, vj))1≤i,ij≤2.

Use this quadratic form to define the composition

Θ : S2(∧3V14) →֒ S2(V14 ⊗ ∧2V14) −→ S2V14 ⊗ S2(∧2V14) −→ S2V14 →֒ End(V14).

Finally, for z ∈ ∆, let Mz = Θ(Ωz) ∈ End(V14). Using equation (4), we can
compute explicitely

(5) Mz =
∑

k,ℓ

(

∑

i<j,
i,j 6=k,ℓ

〈z, vivjvkz〉〈z, wiwjwℓz〉
)

wkvℓ.
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Theorem 2.3.2. The pair (M,M) is a matrix factorization of the octic invariant

J8 of ∆14.

Proof. We just need to check that M2
z0

is a non zero multiple of the identity. So

let us compute Mz0 . We have seen that 1
2Ωz0 = Ω− Ω′, where Ω and Ω′ belong to

∧3V7 and ∧3V ′
7 , respectively.

Lemma 2.3.3. Θ(Ω− Ω′) = Θ(Ω) + Θ(Ω′).

Proof. Indeed, let v1, . . . , v7 and v′1, . . . , v
′
7 be basis of V7 and V ′

7 , respectively. The

polarisations of Ω and Ω′ in V14⊗∧2V14 will respectively be of the form
∑7
i=1 vi⊗ωi

and
∑7

i=1 v
′
i ⊗ ω′

i, for some tensors ωi ∈ ∧2V7 and ω′
i ∈ ∧2V ′

7 . When we apply Θ
and take the image in S2V14, the mixed terms are of the form q2(ωi, ω

′
j)viv

′
j . But

q2(ωi, ω
′
j) is always zero since V7 and V ′

7 are orthogonal. �

In order to compute Θ(Ω), we first send Ω to V14 ⊗∧2V14 by polarizing it. Let
e0 = e7 − f7. We get

Ω̄ = e1 ⊗ (e23 + f1e0) + e2 ⊗ (e31 + f2e0) + e3 ⊗ (e12 + f3e0)+

+f1 ⊗ (f23 − e1e0) + f2 ⊗ (f31 − e2e0) + f3 ⊗ (f12 − e3e0)+

+e0 ⊗ (e1f1 + e2f2 + e3f3).

Now recall that q(ei, fi) = 1 for all i, while q(e0) = −2; moreover q evaluates to
zero on any other pair of basis vectors. We deduce that q2(e1f1 + e2f2 + e3f3) = 3,

q2(e23+f1e0, f23−e1e0) = q2(e31+f2e0, f31−e2e0) = q2(e12+f3e0, f12−e3e0) = 3,

and that all the other scalar products are zero. This yields

Θ(Ω) = 3e20 − 6e1f1 − 6e2f2 − 6e3f3 ∈ S2V14.

With respect to the quadratic form q, the dual basis of (e0, e1, e2, e3, f1, f2, f3) is
(− 1

2e0, f1, f2, f3, e1, e2, e3). Considered as an element of End(V14), the tensor Θ(Ω)
is thus exactly −6πV7

, where πV7
denotes the orthogonal projection to V7. A similar

computation shows that Θ(Ω′) is +6πV ′

7
. We finally get

Mz0 = 24(πV ′

7
− πV7

),

whose square is 576 times the identity. This concludes the proof. �

Remarks.

(1) Once we have observed that Θ(Ωz0) = Θ(Ω)+Θ(Ω′), we can in fact conclude
without any extra computation. Indeed, Θ(Ω) is an element of S2V7 that
must be preserved by the stabilizer of Ω, hence by a copy of G2. But up to
scalar there is a unique such element. Moreover we already know one: the
restriction to V7 of the quadratic form on V14. The same being true for Ω′,
we conclude that there exist scalars a and a′ such that

Mz0 = aπV7
+ a′πV ′

7
.

But the trace of Mz0 must be zero, otherwise we would get a non trivial
quartic invariant on ∆14, and we know there is none. So a + a′ = 0, and
the square of Mz0 is a homothety.

(2) Let us also compute Mz1. We start by computing Ωz1 :

1
2Ωz1 = e123 + e156 + e246 − f135 − f234 − f456+

+(e2f5 − e1f4 + e3f6)e7 − (
∑6

i=1 eifi)f7.
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Polarizing, we get the following tensor Θ1 in V14 ⊗ ∧2V14:

e1 ⊗ (e23 + e56 + f4e7 − f17) + e2 ⊗ (e46 − e13 − f5e7 − f27)

+e3 ⊗ (e12 − f6e7 − f37)− e4 ⊗ (e26 + f47)− e5 ⊗ (e16 + f57)

+e6 ⊗ (e15 + e24 − f67) + e7 ⊗ (e2f5 − e1f4 + e3f6)

+f1 ⊗ (e1f7 − f35) + f2 ⊗ (e2f7 − f34) + f3 ⊗ (e3f7 + f15 + f24)

+f4 ⊗ (e17 + e4f7 − f23 − f56) +−f5 ⊗ (e27 − e5f7 + f13 − f46)

−f6 ⊗ (e37 − e6f7 + f45)− f7 ⊗ (
∑6

i=1 eifi).

If we write Θ1 =
∑7
i=1(ei ⊗ ai + fi ⊗ bi), it is straightforward to check

that the only non zero scalar products between the two-forms ai, bj are the
following:

q2(a1, b4) = −2, q2(a2, b5) = 2, q2(a6, b3) = −2, q2(b7) = 6.

We thus finally get Mz1 as the following element of S2V14:

Mz1 = 8(3f2
7 − e1f4 + e2f5 + e6f3).

As an endomorphism of V14, Mz1 has for image and kernel the same vector
space V7 = 〈f7, e1, f4, e2, f5, e6, f3〉. In particular, the square of Mz1 is zero,
in agreement with the fact that J8(z1) = 0. Note that V7 is isotropic; more-
over, since it meets E in odd dimension, it belongs to the same family of
maximal isotropic subspaces, which is embedded in the other projectivized
half-spin representation P(∆∨

14). This is in agreement with the fact that
the octic invariant hypersurface in P(∆14) can be obtained as the projec-
tive dual variety of the closed orbit S′

14 ⊂ P(∆∨
14). In particular, the open

orbit inside the octic is naturally fibered over S′
14, and our z1 must be sent

to V7 by this fibration.

Let us summarize what we have proved so far, which is amazingly similar to
what happens for S12 and ∧3V6, see [26, sections 3.3 and 3.4].

Proposition 2.3.4. (1) Let [z] belong to the open orbit in P(∆14), and let

(V7, V
′
7) be the associated pair of orthogonal non degenerate subspaces of

V14. Then the associated three-form Ωz is the sum of generic three-forms

Ω ∈ ∧3V7 and Ω′ ∈ ∧3V ′
7 . Moreover

Mz = mz(πV ′

7
− πV7

), with J8(z) = m2
z.

(2) Let [z] belong to the open orbit in the invariant hypersurface (J8 = 0) of

P(∆14), and let V7 be the associated maximal isotropic subspace of V14.
Then Ωz belongs to ∧2V7 ∧ V14, and Mz is a square zero endomorphism

whose image and kernel are both equal to V7.

Beware that in (1), the pair (V7, V
′
7) is not ordered. Permuting V7 and V ′

7

changes the sign of mz, so only its square is well-defined. And J8 is not globally a
square.

2.4. Double octics. Consider the double cover π : D −→ P(∆14), branched over
the octic hypersurface (J8 = 0). This double cover can be interpreted as the

octic hypersurface J8(z) − y2 = 0 in the weighted projective space P̃ = P(164, 4).
Moreover it inherits an action of the spin group Spin14.

Proposition 2.4.1. (1) The double cover D is smooth in codimension 5.

8



(2) Its smooth locus D0 is endowed with two rank seven equivariant vector bun-

dles E+ and E−, exchanged by the deck transformation ι of the double cover,

which are two orthogonal subbundles of the trivial bundle V with fiber V14.
Moreover there are exact sequences of vector bundles

0 −→ E± −→ V −→ E
∨
∓ −→ 0.

The matrix factorization (Mz,Mz) of J8(z) upgrades to a matrix factorization
(Mz + yId,Mz − yId) of J8(z) − y2. The bundles E+ and E− can be defined at
the point [z, y] as the kernels of Mz + yId and Mz − yId, respectively. Moreover,

denote by P̃0 the complement in P̃ of the singular locus of the hypersurface (J8 = 0).

Denote by j0 the embedding of D0 inside P̃0. Then we have the following exact
sequences of sheaves on P̃0:

0 −→ V14 ⊗ O
P̃0
(−4)

Mz±yId−→ V14 ⊗ O
P̃0

−→ j0∗E
∨
∓ −→ 0.

If L ⊂ P(∆14) is a general linear subspace of dimension at most four, then it
is contained in D0. Over L we then get a double cover XL with two rank seven
vector bundles EL and E ′

L.

Conjecture. For a general three dimensional subspace L ⊂ P(∆14), the vector

bundles EL and E ′
L over the double cover XL, are spherical.

Note that in this case, XL is a Calabi-Yau threefold. By spherical, one means
that the bundles of endomorphisms of EL and E ′

L has the same cohomology as a
three-dimensional sphere:

Hq(X,End(EL)) = Hq(X,End(E ′
L)) = δq,0C⊕ δq,3C.

As already discussed in [14], one can expect that a general double octic threefold X
can always be represented as a section XL of the octic in P(∆14). Moreover there
should exist only a finite number N of such representations (up to isomorphism).
This is the exact analogue of the statement, due to Beauville and Schreyer, that
a general quintic threefold can be represented as a Pfaffian, in only finitely many
ways [3, Proposition 8.9].

Moreover, our construction of the supposedly spherical vector bundles EL and
E

′
L would parallel those of spherical bundles of rank seven on the generic cubic

sevenfold [14], and of rank six on the generic double quartic fivefold [1].
Recall that a spherical object in the derived category of coherent sheaves of

an algebraic variety defines a non trivial auto-equivalence of this category, called
a spherical twist [30]. If the previous conjecture is true, we would thus get, on a
general octic threefold, N pairs of spherical vector bundles, generating a certain
group of symmetries of the derived category. It would be interesting to determine
N , and this symmetry group.

The reconstruction problem also looks very intringuing: starting from a general
octic threefold X , its branch divisor D, and the vector bundle EL, how can we
reconstruct the embedding of D as a linear section of the invariant octic in P(∆14)?

3. Relations with Z-gradings of Lie algebras

3.1. Morphisms from gradings. Clerc was the first to realize that Z-gradings
can be useful to determine certain invariants [8]. He starts with a simple Lie algebra
g whose adjoint representation is fundamental. In other words (once we have fixed
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a Cartan and a Borel subalgebra), the highest root ψ is a fundamental weight. The
corresponding simple root α defines a Z-grading on g, of length five:

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2.

In this grading, g2 = gψ and g−2 = g−ψ are one dimensional. Once we have chosen
generators Xψ and X−ψ, we can define a g0-equivariant polynomial function J4 on
g1, homogeneous of degree four, by the relation

ad(z)4X−ψ = J4(z)Xψ, z ∈ g1.

For g exceptional, J4 generates the space of semi-invariants for the action of g0 on
g1. (Recall that g0 is not semisimple but only reductive, with a non trivial center.
That J4 is semi-invariant means that g0 acts on it only through multiplication by
some character.)

There exist other gradings of length five of simple Lie algebras, notably of the
exceptional ones, such that g2 has dimension bigger than one. In this case, the very
same idea yields morphisms

Sym4g1 −→ Hom(g−2, g2) and Sym4g−1 −→ Hom(g2, g−2).

The representations g1 and g−1, as well as g2 and g−2, are in perfect duality through
the Cartan-Killing form on g. But it is often the case that g2 is in fact self-
dual. The quite unexpected fact, discovered in [1], is that we can construct matrix
factorizations from the resulting maps.

3.2. A magic square of matrix factorizations. A remarkable framework in
which we will obtain matrix factorizations is that of the Tits-Freudenthal magic
square (see [2, Section 4.3] and references therein). Either in its algebraic, or in
its geometric versions, this magic square (and its enriched triangular version due
to Deligne and Gross [9]) encodes all sorts of surprising phenomena related to the
exceptional Lie algebras. We will describe another one in this section.

Remember that the magic square has its lines and columns indexed by the
normed algebras R,C,H,O and is symmetric at the algebraic level, in the sense
that there is a way to associate to a pair (A,B) a semisimple Lie algebra g(A,B),
with g(A,B) = g(A,B). Here is the magic square over the complex numbers:

so3 sl3 sp6 f4
sl3 sl3 × sl3 sl6 e6
sp6 sl6 so12 e7
f4 e6 e7 e8

Freudenthal enhanced this construction by associating to each pair (A,B) some
special geometry, in a way which is not symmetric, but uniform along the lines
(see [22, Section 2.1] and references therein). This means that for each A, one
has four special geometries associated to the pairs (A,R), (A,C), (A,H), (A,O),
with completely similar formal properties. Each of these geometries is made of
elements that we call F-points (for the first line of the magic square), plus F-lines
(for the second line), plus F-planes (for the third line), plus F-symplecta (for the
fourth line). Moreover, each type of elements involved in the special geometry of
the pair (A,B) is parametrized by a rational homogeneous space G/P , where G is
an algebraic group whose Lie algebra is precisely g(A,B). The parabolic subgroup
P , usually maximal, depends on the type of the element. All these data can be
encoded in the following diagrams:
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◦ ◦ ◦ ◦>
4 3 2 1 ◦ ◦ ◦ ◦ ◦

◦

1 2 3 2 1

4

◦ ◦ ◦ ◦ ◦ ◦
◦

4 3 2 1 ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

1 32 4

This must be interpreted as follows. Each of these diagrams corresponds to one
column in the magic square. Recall that a Dynkin diagram encodes a semisimple
Lie algebra (or Lie group, up to finite covers), and that a subset of vertices encodes a
conjugacy class of parabolic subgroups. The geometry associated to the box (i, j),
on the i-th line and the j-th column, is defined by considering the j-th Dynkin
diagram above and suppressing the vertices numbered by integers bigger than i.
This gives a Dynkin diagram Di,j marked by integers from 1 to i. The elements
of the corresponding geometry are then parametrized by the homogeneous spaces
G/P (k), 1 ≤ k ≤ i, where G is a semisimple Lie group with Dynkin diagram
Di,j , and P (k) is a parabolic subgroup defined, up to conjugacy, by the vertices
of Di,j marked by k. The spaces G/P (1) parametrize F-points, while the G/P (2)
parametrize F-lines (for i ≥ 2), the G/P (3) parametrize F-planes (for i ≥ 3), and
the G/P (4) parametrize F-symplecta (for i = 4). For example, the Dynkin diagram
D(3, 2) has type A5, with the marks 1 at its extremities; so that the space of F-
points for A = H and B = C is A5/P1,5, the flag variety of incident points and
hyperplanes in P5.

Let us focus on the square of homogeneous spaces X(A,B) parametrizing the
F-points of the Freudenthal geometries, namely:

A1/P1 A2/P1,2 C3/P2 F4/P1

A2/P1 A1 ×A1/P1,1 A5/P2 E6/P1

C3/P1 A5/P1,5 D6/P2 E7/P1

F4/P1 E6/P1,6 E7/P6 E8/P1

Now, we define a five-step grading of g(A,B) as follows. As we have just explained,
each X(A,B) is G/PI , where the standard parabolic subgroup PI of G is defined
by the subset I of the set ∆ of simple roots (which correspond bijectively with
the vertices of the Dynkin diagram). Let ω∨

I =
∑

i∈I ω
∨
i denote the sum of the

corresponding fundamental coweights. If we express a root α as a linear combination
of simple roots, α =

∑

j∈∆ njαj , then ω∨
I (α) =

∑

i∈I ni. The associated Z-grading

of g = g(A,B) is

gk = δk,0t⊕ (
⊕

ω∨

I
(α)=k

gα).

It turns out that g0 is always made of orthogonal Lie algebras, that g1 is always
a spin representation, while g2 is a natural representation, in particular self dual.
Moreover gk = 0 for k > 2. It was argued in [22, Proposition 3.2] that g1 should be
thought of as A ⊗ B and g2 as A0 ⊕ B0, where A0 is the hyperplane of imaginary
elements in A. Here is the table giving the semisimple part of g0:

0 0 sl22 spin7
sl2 sl22 sl2 × sl4 spin10
sp4 sl4 sl22 × sl3 spin12
spin7 spin8 sl2 × spin10 spin14

Theorem 3.2.1. For each pair (A,B) the representations g1, g2 of the reductive

Lie algebra g0 have the following properties:
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(1) g1 is prehomogeneous under the action of g0, and the generic stabilizer is

aut(A)× aut(B),
(2) there exist equivariant morphisms

P,Q : Sym4g1 −→ Sym2g2 →֒ End(g2)

such that (P,Q) is a matrix factorization of a semi-invariant J8 on g1.

This statement generalizes Theorem 2.3.2, which corresponds to the pair (O,O).
All the other cases are somewhat degenerate, in the following ways.

(1) For the pairs (O,C) and (O,H) of the last line, the fundamental semi-
invariant has degree four, and we get a matrix factorization of its square.

(2) For the pair (H,O) of the third line, g2 is one dimensional, the fundamental
invariant has degree four and admits a matrix factorization induced by the
5-grading, as in [1].

(3) For the pair (C,O) of the second line, there is no non trivial semi-invariant
and g2 is actually zero.

The matrices Pz and Qz will always be obtained as ad(z)4, up to some homothety,
but the proof of the Theorem is unfortunately a case by case check. In the next
section we will discuss the first degenerate case, that of V2 ⊗∆10 where V2 is two-
dimensional. The other cases are similar and simpler.

3.3. The case of C2⊗∆10. Here the action of GL(V2)×Spin10 is prehomogeneous,
and there is a quartic semi-invariant J4 [20]. Note that this is the representation
used by Hitchin in order to defined (a substitute for) GL2(O), with J4 playing the
rôle of the determinant [16].

An important observation is that the natural map, again induced by Clifford
multiplication, yields an isomorphism

∧2∆10 ≃ ∧3V10.

We therefore get a morphism of SL(V2)× Spin10-modules

(6) Ω : S2(V2 ⊗∆10) −→ ∧2V2 ⊗ ∧2∆10 ≃ ∧3V10.

This in turn induces a morphism

(7) M : S4(V2 ⊗∆10) −→ S2(∧3V10) −→ S2V10 →֒ End(V10),

where the first arrow is given by the square of Ω, and the second arrow is induced
by the quadratic form on V10. Let us compute this morphism explicitely. According
to [20], a generic element of V2 ⊗∆10 is given by

z = v1 ⊗ (1 + e1234) + v2 ⊗ (e1235 + e45).

Letting e0 = e4 + f4 and f0 = f4 − e4, the associated three-form is

Ωz = e123 + f123 + e0(e1f1 + e2f2 + e3f3) + f0e5f5.

Observe that this decomposes as the sum of Ω ∈ ∧3V7 and Ω′ = f0e5f5 ∈ ∧3V3,
where V7 = 〈e0, e1, e2, e3, f1, f2, f3〉 and V3 = 〈f0, e5, f5〉 are orthogonal spaces, on
which the quadratic form q is non degenerate. The associated element in S2V10 is
6e1f1 + 6e2f2 + 6e3f3 + 3e20 + f2

0 − 2e5f5, and since q(e0) = 2 and q(f0) = −2, the
corresponding endomorphism is

Mz = 6πV7
− 2πV3

∈ End(V10),
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where πV7
and πV3

are the two projections relative to the direct sum decomposition
V10 = V7 ⊕ V3. This endomorphism has non zero-trace, which allows to define a
degree four invariant J4(z) := trace(Mz). We then get

(Mz −
1

18
J4(z)IdV10

)2 =
1

162
J4(z)

2IdV10
,

a matrix factorization of the octic J8 = 1
162J

2
4 .

3.4. Three-forms in seven variables. A sporadic case to which the same circle
of ideas can be applied is that of the degree seven invariant of ∧3V7. This heptic
invariant has been known for a long time, as given by the equation of the projective
dual of the Grassmannian G(3, V7), or of the complement of the open GL7-orbit
of ∧3V7 consisting of forms with stabilizer bigger than G2. This case is associated
with the grading of length five of e7 defined by the simple root α2:

e7 = V7 ⊕ ∧3V ∨
7 ⊕ gl(V7)⊕ ∧3V7 ⊕ V ∨

7 .

(For simplicity we wrote this grading as a decomposition into sl(V7)-modules.) For
any ω ∈ ∧3V7 and y ∈ V∨

7 , we denote by iy(ω) ∈ ∧2V7 the contraction of ω with y.
Then P (ω, y) = 1

6ω∧iy(ω)∧iy(ω) belongs to ∧7V7 ≃ C. This defines an equivariant
morphism

(8) P : S3(∧3V7) −→ S2V7 ⊗ detV7.

On the other hand, recall that ∧3V7 ≃ (∧4V7)
∨ and that (∧4V7)

∨ is a sub-
module of V∨

7 ⊗ (∧3V7)
∨. Moreover the natural map End(V7) −→ End(∧3V7) has

for transpose an equivariant map End(∧3V7) = (∧3V7)
∨ ⊗ (∧3V7) −→ End(V7).

This yields a morphism

(9) θ : S2(∧3V7) −→ V∨
7 ⊗ End(V7)⊗ detV7.

Taking its symmetric square and composing with the trace map, we get

(10) R : S4(∧3V7) −→ S2V∨
7 ⊗ S2End(V7)⊗ (detV7)

2 −→ S2V∨
7 ⊗ (detV7)

2.

Remark. The morphism R is induced from the quartic SL6-invariant of ∧3U6, in
the following way. This quartic corresponds to a GL6-equivariant linear map:

ψU6
: S4(∧3U6) −→ det(U6)

⊗2.

Now the Borel-Weil Theorem implies that ∧3V7 = H0(P(V7),∧3Q), where Q is the
tautological quotient on P(V7), the projective space of lines in V7. We can then
consider the composition

S4H0(P(V7),∧3Q) −→ H0(P(V7), S
4(∧3Q)) −→ H0(P(V7), det(Q)⊗2),

where the first arrow is surjective because Q is globally generated, and the second
arrow is defined by ψQ. Finally, the Borel-Weil Theorem implies that

H0(P(V7), det(Q)⊗2) = S2V∨
7 ⊗ det(V7)

⊗2,

and the resulting morphism is nothing else but R.

As was first done by Gyoja and Kimura [17], we can now define the heptic
semi-invariant J7 on ∧3V7 by contracting R with P :

J7(z) = 〈Pz , Rz〉 ∈ (detV7)
⊗3.

But in fact a much stronger statement is true. Observe that S2V7 is a submodule
of Hom(V∨

7 ,V7), as well as S2V∨
7 is a submodule of Hom(V7,V

∨
7 ). In other words,
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we can consider Rz and Pz as symmetric morphisms from V7 to V∨
7 and from V∨

7

to V7, respectively. The following result appears in [18, Example 2.6]. We give a
short proof, without computation.

Theorem 3.4.1. The pair of symmetric morphisms (P,R) is a matrix factorization

of the heptic semi-invariant J7 of ∧3V7.

Proof. Because of the quasi-homogeneity, it is enough to check this assertion at a
generic point z of ∧3V7. The stabilizer of this form is then a copy of G2. The
quadratic forms Rz and Pz on V∨

7 and V7 must be preserved by this stabilizer.
But up to scalar, there is a unique quadratic form on V7 (or its dual) preserved
by G2. After identifying V7 with its dual through this non degenerate quadratic
form (which depends on z), we get Rz and Pz as (non zero) homotheties, and our
statement immediately follows. �

Remark. In many respects, the case of (Spin14,∆14) is a doubled version of the
case of (SL7,∧3C7). Similarly, (Spin12,∆12) is a doubled version of (SL6,∧3C6)
(they both appear on the same line of Freudenthal’s magic square, see [22]), and
(Spin10,∆10) is a doubled version of (SL5,∧2C5) (see [25, Introduction] for more
details). The second pair has a clear complex-quaternionic interpretation. It would
be very nice to find a similar, or may be quaternio-octonionic interpretation of the
two other pairs.

3.5. Three-forms in eight variables. For completeness let us briefly discuss
the case of the degree sixteen SL(V8)-invariant of ∧3V8, the last prehomogeneous
space of skew-symmetric three-forms. This invariant is given by the equation of
the projective dual of the Grassmannian G(3, V8). This case is associated with the
grading of length seven of e8 defined by the simple root α2:

e8 = V ∨
8 ⊕ ∧2V8 ⊕ ∧3V ∨

8 ⊕ gl(V8)⊕ ∧3V8 ⊕ ∧2V ∨
8 ⊕ V8.

(For simplicity we wrote this grading as a decomposition into sl(V8)-modules.) The
adjoint action induces maps Sym2kg1 → Hom(g−k, gk), which for k = 2 and k = 3
yield the following:

P : Sym4(∧3V8) −→ Hom(∧2V8,∧2V ∨
8 ),

Q : Sym6(∧3V8) −→ Hom(V ∨
8 , V8).

Putting together P and Q, and using the contraction map ∧2V ∨
8 ⊗ V8 → V ∨

8 and
its dual, we get a morphism

R : Sym10(∧3V8) −→ Hom(V8, V
∨
8 ).

The computations made by Kimura in [18, Example 2.7] imply the following result:

Theorem 3.5.1. The pair of symmetric morphisms (Q,R) is a matrix factorization

of the degree sixteen semi-invariant J16 of ∧3V8.
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