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GRADINGS OF LIE ALGEBRAS, MAGICAL SPIN GEOMETRIES AND MATRIX FACTORIZATIONS

We describe a remarkable rank 14 matrix factorization of the octic Spin 14 -invariant polynomial on either of its half-spin representations. We observe that this representation can be, in a suitable sense, identified with a tensor product of two octonion algebras. Moreover the matrix factorisation can be deduced from a particular Z-grading of e 8 . Intriguingly, the whole story can in fact be extended to the whole Freudenthal-Tits magic square and yields matrix factorizations on other spin representations, as well as for the degree seven invariant on the space of three-forms in several variables. As an application of our results on Spin 14 , we construct a special rank seven vector bundle on a double-octic threefold, that we conjecture to be spherical.

Introduction

Recall that a matrix factorization of a polynomial W is a pair (P, Q) of square matrices of the same size, say N , with polynomial entries, such that

P Q = QP = W.Id N .
Matrix factorizations have attracted a lot of attention since their introduction by Eisenbud [START_REF] Eisenbud | Homological algebra on a complete intersection, with an application to group representations[END_REF] in connection with Cohen-Macaulay modules over hypersurfaces. Important examples of matrix factorizations, when W is a quadratic form, are provided by Clifford modules [START_REF] Buchweitz | Cohen-Macaulay modules on quadrics[END_REF][START_REF] Bertin | Clifford algebras and matrix factorizations[END_REF]. They can be obtained as follows. Suppose our base field is the field of complex numbers, and consider the simple Lie algebras so n , n ≥ 5, with their spin representations. When n is even, there are two half-spin representations ∆ + and ∆ -, of the same dimension N = 2 n 2 -1 . Their direct sum can be defined as a module over the Clifford algebra of the natural representation V n of so n , with its invariant quadratic form q. The Clifford multiplication yields equivariant morphisms

V n ⊗ ∆ + -→ ∆ - and V n ⊗ ∆ --→ ∆ + .
So for each v ∈ V n , we get morphisms P (v) : ∆ + → ∆ -and Q(v) : ∆ -→ ∆ + , depending linearly on v, and the fact that the total spin representation is a Clifford module yields the identities

P (v) • Q(v) = q(v)Id ∆- and Q(v) • P (v) = q(v)Id ∆+ .
In other words, we get a of rank N matrix factorization of the quadratic form q. Surprisingly, this is a non trivial matrix factorization of minimal size of a non degenerate quadratic form in n variables. This illustrates the difficulty to find explicit ones in general. One of the goals of this paper is precisely to describe several remarkable matrix factorizations, again related to spin representations. Our Date: January 2019. main result will be the description of a rank 14 matrix factorization of a particular degree eight polynomial in 64 variables, a Spin 14 -invariant polynomial on a halfspin representation ∆ 14 . In the next section, we will give a direct construction of this invariant and prove that it admits a matrix factorization (Theorem 2.3.2). Our proof is remarkably simple, and relies on the fact that ∆ 14 contains an open orbit of the action of C * × Spin 14 . We will observe in passing the intriguing fact that fixing a point in this open orbit determines a factorisation of ∆ 14 as the tensor product of two octonion algebras (Proposition 2.2.1).

In the last section, we will relate those observations to gradings of Lie algebras and the Freudenthal magic square. The point is that ∆ 14 appears in a particular Z-grading of the largest exceptional algebra e 8 , and that the octic invariant and its matrix factorization can be constructed directly from e 8 . Moreover, this particular Z-grading turns out to be related to the space of "points" in the Freudenthal geometry associated to E 8 .

Astonishingly, the whole story extends to the full magic square. Recall that this square associates to a pair (A, B) of normed algebras (either R, C, the algebra H of quaternions or the Cayley algebra O of octonions) a semisimple Lie algebra g(A, B). In particular g(O, O) = e 8 . The space of "points" in the corresponding Freudenthal geometry induces a grading of g(A, B) whose main component is always a spin representation, and this yields a matrix factorization (Theorem 3.2.1). Moreover, once one chooses a general point in that representation, it gets naturally identified with A ⊗ B.

Finally, we discuss the sporadic case of the third exterior power of a vector space of dimension seven, which is related with a certain Z-grading of e 7 .

One motivation for this study of matrix factorizations has been the construction of a special rank seven vector bundle on a double octic threefold obtained as a double cover of P 3 branched over a linear section of the octic hypersurface defined by the Spin 14 -invariant of ∆ 14 . We conjecture that this bundle is spherical. Such a double cover is in fact a Calabi-Yau threefold and there is an astonishing series of relationships, far from being completely understood yet, between exceptional Lie algebras and certain families of manifolds of Calabi-Yau type [START_REF] Abuaf | On quartic double fivefolds and the matrix factorizations of exceptional quaternionic representations[END_REF][START_REF] Iliev | Fano manifolds of Calabi-Yau Hodge type[END_REF]. We hope to come back to this conjecture in a subsequent paper.
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Spin geometry in dimension fourteen

Spin geometry in dimension twelve has several very remarkable features, two of which we would like to recall briefly. Let ∆ 12 be one of the half-spin representations of Spin 12 (see [START_REF] Landsberg | The projective geometry of Freudenthal's magic square[END_REF]Section 5] for more details).

(1) The action of Spin 12 on P∆ 12 has only four orbits, whose closures are the whole space, a degree four hypersurface, its singular locus, and inside the latter, the spinor variety S 12 , which parametrizes one of the families of maximal isotropic subspaces of a quadratic twelve dimensional vector space of the afore mentionned bisecant. An interesting consequence is that a double cover of the open orbit is naturally built in the spin geometry, which turns out to be intimately related with the family of double quartic fivefolds. Those varieties have attracted some interest from the early ages of mirror symmetry, being Fano manifolds of Calabi-Yau type that can be considered as mirror to certain rigid Calabi-Yau threefolds [START_REF] Candelas | Generalized Calabi-Yau Manifolds and the Mirror of a Rigid Manifold[END_REF][START_REF] Schimmrigk | Mirror Symmetry and String Vacua from a Special Class of Fano Varieties[END_REF].
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The goal of this section is to describe the similar properties that can be observed for the spin geometry in dimension fourteen. We will start by briefly recalling the orbit structure, which has classially been considered by several authors [START_REF] Kimura | A classification of irreducible prehomogeneous vector spaces and their relative invariants[END_REF][START_REF] Popov | Classification of the spinors of dimension fourteen, Uspehi Mat[END_REF][START_REF] Gatti | Spinors of 13-dimensional space[END_REF]. The quartic invariant hypersurface in P∆ 12 is in particular replaced by an octic invariant hypersurface in P∆ 14 on which the next section will focus. Here we will highlight a kind of multiplicative version of the one apparent double point property, which we find very remarkable.

2.1. Orbits. Recall that the half-spin representations of Spin 14 can be defined by choosing a splitting V 14 = E ⊕ F , where E and F are maximal isotropic subspaces. Note that the quadratic form q on V 14 induces a perfect duality between E and F . Then E acts on the exterior algebra ∧ * E by the wedge product, and F by twice the contraction by the quadratic form. The resulting action of V 14 on ∧ * E upgrades to an action of its Clifford algebra. By restriction, on gets an action of Spin 14 , as well as of its Lie algebra spin 14 ≃ ∧ 2 V 14 . The half-spin representations are then given by the even and odd parts, ∧ + E and ∧ -E, of the exterior algebra ∧ * E. We will let ∆ 14 = ∧ + E. (Of course the construction works to any Spin 2n , starting from a splitting of a 2n-dimensional vector space V 2n endowed with a non degenerate quadratic form. In the odd case, V 2n+1 can only be split as E ⊕ F ⊕ L, with E and F isotropic and L a line. The unique spin representation can then be identified with ∧ * E. See e.g. [START_REF] Chevalley | The algebraic theory of spinors and Clifford algebras[END_REF] for more details.)

According to Sato and Kimura [19, page 132], the fact that a half-spin representation ∆ 14 of Spin 14 is prehomogeneous under the action of C * × Spin 14 was first observed by Shintani in 1970, and the orbit structure was obtained by Kimura and Ozeki in 1973. The fact that there are only finitely many orbits is actually an immediate consequence of Kac and Vinberg's theory of θ-groups [START_REF] Kac | Some remarks on nilpotent orbits[END_REF][START_REF] Vinberg | Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra[END_REF]. Indeed, the half-spin representation ∆ 14 is a component of the Z-grading of e 8 defined by its first simple root.

Up to our knowledge, the classification of the orbits of Spin 14 was first published in 1977 by Popov [START_REF] Popov | Classification of the spinors of dimension fourteen, Uspehi Mat[END_REF], with explicit representatives of each orbit and the types of their stabilizers. It also appears in the paper by Kac and Vinberg in [START_REF] Gatti | Spinors of 13-dimensional space[END_REF], along with the the orbits of Spin 13 on the same representation. More details about the geometry of the orbit closures can be found in [START_REF] Kraskiewicz | Geometry of orbit closures for the representations associated to gradings of Lie algebras of type E 8[END_REF].

As we already mentionned there is an octic invariant J 8 (unique up to scalar), and each level set J -1 8 (c) is a single orbit of Spin 14 for c = 0. Inside the octic hypersurface (J 8 = 0), there are eight non trivial orbits. Among those, the most important one is the (pointed) cone over the spinor variety S 14 , which parametrizes the maximal isotropic subspaces of V 14 in the same family as F . The other family S ′ 14 of such spaces, to which E belongs, is naturally embedded inside the projectivization of the other half-spin representation, the dual ∆ ∨ 14 . By the way, although we will not use this fact, it is interesting to note that the projective dual of S ′ 14 is precisely the octic hypersurface (J 8 = 0) inside P(∆ 14 ).

For future use let us mention that the following points z 0 and z 1 are respectively outside the octic hypersurface, and inside the open orbit of this hypersurface [START_REF] Gatti | Spinors of 13-dimensional space[END_REF]: [START_REF] Abuaf | On quartic double fivefolds and the matrix factorizations of exceptional quaternionic representations[END_REF] z 0 = 1 + e 1237 + e 4567 + e 123456 ,

(2) z 1 = 1 + e 1237 + e 1587 + e 2467 + e 123456 .

Here we have fixed a basis e 1 , . . . , e 7 of E, and we have used the notation e ijkl for e i ∧ e j ∧ e k ∧ e l , and so on. We will also denote by f 1 , . . . , f 7 the dual basis of F , defined by the condition that q(e i , f j ) = δ ij . The stabilizer of z 0 was computed explicitely in [START_REF] Kimura | A classification of irreducible prehomogeneous vector spaces and their relative invariants[END_REF]Proposition 40], or more precisely its Lie algebra h ≃ g 2 × g 2 . Sato and Kimura observed that h stabilizes a unique pair of seven-dimensional subspaces of V 14 , each copy of g 2 acting irreducibly on one of these spaces and trivially on the other. To be more specific, the two invariant seven-dimensional subspaces are

V 7 = e 1 , e 2 , e 3 , f 1 , f 2 , f 3 , e 7 -f 7 and V ′
7 = e 4 , e 5 , e 6 , f 4 , f 5 , f 6 , e 7 + f 7 . Observe that V 7 and V ′ 7 are mutually orthogonal, and in direct sum (equivalently, the restriction of the quadratic form to these spaces is non degenerate). Moreover

E 3 := E ∩ V 7 = e 1 , e 2 , e 3 and E ′ 3 := E ∩ V ′ 7 = e 4 , e
5 , e 6 are maximal isotropic subspaces of V 7 and V ′ 7 . In particular we may identify the spin representations of spin(V 7 ) and spin(V ′ 7 ) with ∧ * E 3 and ∧ * E ′ 3 , respectively. Observe that their tensor product is

∧ * E 3 ⊗ ∧ * E ′ 3 ≃ ∧ * (E 3 ⊕ E ′ 3 ) ≃ ∧ + E = ∆ 14 . Under this identification, z 0 = 1 ⊗ 1 + e 123 ⊗ 1 + 1 ⊗ e 456 + e 123 ⊗ e 456 = (1 + e 123 ) ⊗ (1 + e 456 )
turns out to be decomposable. Moreover, the action of C * × Spin 7 on the spin representation is prehomogeneous; in fact there is a quadratic invariant Q, and the non trivial orbits are the pointed quadric and its complement; the vector 1 + e 123 belongs to the latter, and its stabilizer is isomorphic to G 2 = Aut(O) (by [START_REF] Kimura | A classification of irreducible prehomogeneous vector spaces and their relative invariants[END_REF]Proposition 25], the generic stabilizer has Lie algebra g 2 ; that it is really isomorphic to G 2 follows from the triality principle [2, Section 2.4]).

Any element g in the stabilier of z 0 which fixes V 7 must satisfy g(1 + e 123 ) = 1 + e 123 , and similarly for V ′ 7 . We can therefore conclude that G 2 × G 2 is the subgroup of this stabilizer that fixes V 7 and V ′ 7 . The stabilizer itself will be bigger only if it contains a transformation that swaps those two spaces, and this is indeed what happens.

Proposition 2.1.1. The open orbit in P(∆ 14 ) is isomorphic with the homogeneous space Spin 14 /(G 2 × G 2 ) ⋊ Z 2 .
Proof. It suffices to exhibit a transformation in Spin 14 that stabilizes z 0 and exchanges V 7 and V ′ 7 . Remember from [START_REF] Chevalley | The algebraic theory of spinors and Clifford algebras[END_REF] that Spin 14 embeds in the Clifford algebra of V 14 as the group generated by even products g = v 1 • • • v 2k of norm one elements of V 14 . Moreover the action on V 14 is obtained by mapping each v i to the corresponding orthogonal symmetry. Let

a i = (e i + f i )/ √ 2 and b i = (e i -f i )/ √ 2 for 1 ≤ i ≤ 7,
a set of vectors that constitute an orthonormal basis of V 14 . Then a straightforward computation shows that

g = (a 1 + a 4 )(b 1 + b 4 )(a 2 + a 5 )(b 2 + b 5 )(a 3 + a 6 )(b 3 + b 6 )a 7 b 7 /8
belongs to the stabilizer of z 0 in Spin 14 , and that its action on V 14 exchanges V 7 and V ′ 7 . 2.2. A multiplicative double point property. Note that an orthogonal decomposition V 14 = V 7 ⊕ V ′ 7 always determines a decomposition of ∆ 14 as ∆ 7 ⊗ ∆ ′ 7 , as follows. By the Borel-Weil theorem, we can realize ∆ 14 as H 0 (S 14 , L 14 ), where L 14 denotes the positive generator of the Picard group of the spinor variety S 14 . Similarly, we can realize ∆ 7 and ∆ ′ 7 as H 0 (S 7 , L 7 ) and H 0 (S 7 , L ′ 7 ), with similar notations. Points in S 7 and S ′ 7 are three-dimensional isotropic subspaces E 3 and E ′ 3 of V 7 and V ′ 7 . Their direct sum is still isotropic, and being of dimension six, it is contained in exactly two maximal isotropic spaces of V 14 , one of each family. In particular this defines a regular map φ : S 7 ×S ′ 7 → S 14 , such that φ * L 14 = L 7 ⊠L ′ 7 . By restriction this yields a map

∆ 14 ≃ H 0 (S 14 , L 14 ) -→ H 0 (S 7 × S ′ 7 , φ * L 14 ) = ∆ 7 ⊗ ∆ ′ 7 . This map is equivariant under Spin(V 7 ) × Spin(V ′ 7 )
, and certainly non zero. Its target being irreducible, it has to be surjective, and then an isomorphism since the source and target have the same dimension.

We can summarize this discussion as follows.

Proposition 2.2.1. Let [ψ] be a generic element of P(∆ 14 ).

(1) There exists a unique orthogonal decomposition 

V 14 = V 7 ⊕ V ′ 7 preserved by the stabilizer of [ψ] in Spin 14 . (2) Under the induced isomorphism ∆ 14 ≃ ∆ 7 ⊗ ∆ ′ 7 , we have [ψ] = [χ ⊗ χ ′ ] for [χ] and [χ ′ ]

2.3.

A matrix factorization for the octic invariant. We will construct later on a matrix factorization for the octic invariant J 8 . A first explicit but cumbersome construction was obtained by Gyoja [START_REF] Gyoja | Construction of invariants[END_REF]. Let us present a more direct approach.

Our main observation is that, according to [START_REF] Lie | A computer algebra package for Lie group computations[END_REF], the symmetric square of ∆ 14 contains a copy of ∧ 3 V 14 . This can be deduced from the Clifford action on the full spin representation, which decomposes into equivariant maps V 14 ⊗ ∆ 14 -→ ∆ ∨ 14 and V 14 ⊗ ∆ ∨ 14 -→ ∆ 14 . (Recall that ∆ ∨ 14 ≃ ∧ -E, on which E ⊂ V 14 acts by wedge product and F ⊂ V 14 by twice the contraction.) Composing those maps we get an equivariant morphism

∧ 3 V 14 ⊗ ∆ 14 ֒→ V 14 ⊗ V 14 ⊗ V 14 ⊗ ∆ 14 → V 14 ⊗ V 14 ⊗ ∆ ∨ 14 → V 14 ⊗ ∆ 14 → ∆ ∨ 14 .
Taking the transpose we get [START_REF] Beauville | Determinantal hypersurfaces[END_REF] Ω : S 2 ∆ 14 -→ ∧ 3 V 14 .

To be more explicit, we can fix a basis (v 1 , . . . , v 14 ) of V 14 (for example (e 1 , . . . e 7 , f 1 , . . . , f 7 )) and denote the dual basis by (w 1 , . . . , w 14 ) (which would be (f 1 , . . . f 7 , e 1 , . . . , e 7 ) for the same example). Then ( 4)

Ω z = i<j<k z, v i v j v k z w i w j w k ∈ ∧ 3 V 14 .
Here the natural pairing between z ∈ ∆ 14 = ∧ + E and z ′ ∈ ∧ -E is defined as the component of z ∧ z ′ on ∧ 7 E.

Lemma 2.3.1. The equivariant map Ω is non zero.

Proof. We consider Ω as a quadratic form on ∆ 14 , with values in ∧ 3 V 14 , and evaluate it at a general point, that is, at the point z 0 of the open orbit. We get

1 2 Ω z0 = e 123 -e 456 -f 123 -f 456 - 6 i=1 ǫ i e i7 f i - 6 i=1 e i f i7 ,
where ǫ i = 1 for i ≤ 3 and ǫ i = -1 for i ≥ 4. This is of course non zero.

Observe moreover that 1 2 Ω z0 decomposes nicely as Ω -Ω ′ , where Ω ∈ ∧ 3 V 7 and Ω ′ ∈ ∧ 3 V ′ 7 are given by

Ω = e 123 -f 123 + ( 3 i=1 e i ∧ f i ) ∧ (e 7 -f 7 ), Ω ′ = e 456 + f 456 + ( 6 i=4 e i ∧ f i ) ∧ (e 7 + f 7 ).
Those forms Ω and Ω ′ are generic elements of ∧ 3 V 7 and ∧ 3 V ′ 7 (up to normalizations, they coincide with the generic three-form explicited in [START_REF] Manivel | The Cayley Grassmannian[END_REF]). Recall that we recover G 2 as the stabilizer of such a generic form.

Our second ingredient will be the equivariant map

Θ : S 2 (∧ 3 V 14 ) -→ End(V 14 )
obtained as follows. First embed ∧ 3 V 14 inside V 14 ⊗ ∧ 2 V 14 , Then recall that the quadratic form q on V 4 induces a quadratic form

q 2 : S 2 (∧ 2 V 14 ) -→ C,
whose polarization is given by the formula

q 2 (u 1 ∧ u 2 , v 1 ∧ v 2 ) = det(q(u i , v j )) 1≤i,ij≤2 .
Use this quadratic form to define the composition

Θ : S 2 (∧ 3 V 14 ) ֒→ S 2 (V 14 ⊗ ∧ 2 V 14 ) -→ S 2 V 14 ⊗ S 2 (∧ 2 V 14 ) -→ S 2 V 14 ֒→ End(V 14 ).
Finally, for z ∈ ∆, let M z = Θ(Ω z ) ∈ End(V 14 ). Using equation (4), we can compute explicitely ( 5)

M z = k,ℓ i<j, i,j =k,ℓ z, v i v j v k z z, w i w j w ℓ z w k v ℓ .
Theorem 2.3.2. The pair (M, M ) is a matrix factorization of the octic invariant J 8 of ∆ 14 .

Proof. We just need to check that M 2 z0 is a non zero multiple of the identity. So let us compute M z0 . We have seen that 1 2 Ω z0 = Ω -Ω ′ , where Ω and Ω ′ belong to

∧ 3 V 7 and ∧ 3 V ′ 7 , respectively. Lemma 2.3.3. Θ(Ω -Ω ′ ) = Θ(Ω) + Θ(Ω ′ ).
Proof. Indeed, let v 1 , . . . , v 7 and v ′ 1 , . . . , v ′ 7 be basis of V 7 and V ′ 7 , respectively. The polarisations of Ω and Ω ′ in V 14 ⊗∧ 2 V 14 will respectively be of the form

7 i=1 v i ⊗ω i and 7 i=1 v ′ i ⊗ ω ′ i , for some tensors ω i ∈ ∧ 2 V 7 and ω ′ i ∈ ∧ 2 V ′ 7 .
When we apply Θ and take the image in S 2 V 14 , the mixed terms are of the form q 2 (ω i , ω ′ j )v i v ′ j . But q 2 (ω i , ω ′ j ) is always zero since V 7 and V ′ 7 are orthogonal. In order to compute Θ(Ω), we first send Ω to V 14 ⊗ ∧ 2 V 14 by polarizing it. Let e 0 = e 7 -f 7 . We get Ω = e 1 ⊗ (e 23 + f 1 e 0 ) + e 2 ⊗ (e 31 + f 2 e 0 ) + e 3 ⊗ (e 12 + f 3 e 0 )+

+f 1 ⊗ (f 23 -e 1 e 0 ) + f 2 ⊗ (f 31 -e 2 e 0 ) + f 3 ⊗ (f 12 -e 3 e 0 )+ +e 0 ⊗ (e 1 f 1 + e 2 f 2 + e 3 f 3 ).
Now recall that q(e i , f i ) = 1 for all i, while q(e 0 ) = -2; moreover q evaluates to zero on any other pair of basis vectors. We deduce that q 2 (e 1 f 1 + e 2 f 2 + e 3 f 3 ) = 3, q 2 (e 23 + f 1 e 0 , f 23 -e 1 e 0 ) = q 2 (e 31 + f 2 e 0 , f 31 -e 2 e 0 ) = q 2 (e 12 + f 3 e 0 , f 12 -e 3 e 0 ) = 3, and that all the other scalar products are zero. This yields

Θ(Ω) = 3e 2 0 -6e 1 f 1 -6e 2 f 2 -6e 3 f 3 ∈ S 2 V 14 .
With respect to the quadratic form q, the dual basis of (e 0 , e 1 , e 2 , e 3 , f 1 , f 2 , f 3 ) is (-1 2 e 0 , f 1 , f 2 , f 3 , e 1 , e 2 , e 3 ). Considered as an element of End(V 14 ), the tensor Θ(Ω) is thus exactly -6π V7 , where π V7 denotes the orthogonal projection to V 7 . A similar computation shows that Θ(Ω ′ ) is +6π V ′ 7 . We finally get M z0 = 24(π V ′ 7 -π V7 ), whose square is 576 times the identity. This concludes the proof.

Remarks.

(1) Once we have observed that Θ(Ω z0 ) = Θ(Ω)+Θ(Ω ′ ), we can in fact conclude without any extra computation. Indeed, Θ(Ω) is an element of S 2 V 7 that must be preserved by the stabilizer of Ω, hence by a copy of G 2 . But up to scalar there is a unique such element. Moreover we already know one: the restriction to V 7 of the quadratic form on V 14 . The same being true for Ω ′ , we conclude that there exist scalars a and a ′ such that

M z0 = aπ V7 + a ′ π V ′ 7 .
But the trace of M z0 must be zero, otherwise we would get a non trivial quartic invariant on ∆ 14 , and we know there is none. So a + a ′ = 0, and the square of M z0 is a homothety.

(2) Let us also compute M z1 . We start by computing Ω z1 : 

⊗ (e 1 f 7 -f 35 ) + f 2 ⊗ (e 2 f 7 -f 34 ) + f 3 ⊗ (e 3 f 7 + f 15 + f 24 ) +f 4 ⊗ (e 17 + e 4 f 7 -f 23 -f 56 ) + -f 5 ⊗ (e 27 -e 5 f 7 + f 13 -f 46 ) -f 6 ⊗ (e 37 -e 6 f 7 + f 45 ) -f 7 ⊗ ( 6 i=1 e i f i ). If we write Θ 1 = 7 i=1 (e i ⊗ a i + f i ⊗ b i ),
it is straightforward to check that the only non zero scalar products between the two-forms a i , b j are the following:

q 2 (a 1 , b 4 ) = -2, q 2 (a 2 , b 5 ) = 2, q 2 (a 6 , b 3 ) = -2, q 2 (b 7 ) = 6.
We thus finally get M z1 as the following element of S 2 V 14 :

M z1 = 8(3f 2
7 -e 1 f 4 + e 2 f 5 + e 6 f 3 ). As an endomorphism of V 14 , M z1 has for image and kernel the same vector space V 7 = f 7 , e 1 , f 4 , e 2 , f 5 , e 6 , f 3 . In particular, the square of M z1 is zero, in agreement with the fact that J 8 (z 1 ) = 0. Note that V 7 is isotropic; moreover, since it meets E in odd dimension, it belongs to the same family of maximal isotropic subspaces, which is embedded in the other projectivized half-spin representation P(∆ ∨ 14 ). This is in agreement with the fact that the octic invariant hypersurface in P(∆ 14 ) can be obtained as the projective dual variety of the closed orbit S ′ 14 ⊂ P(∆ ∨ 14 ). In particular, the open orbit inside the octic is naturally fibered over S ′ 14 , and our z 1 must be sent to V 7 by this fibration.

Let us summarize what we have proved so far, which is amazingly similar to what happens for S 12 and ∧ 3 V 6 , see [26, (1) Let [z] belong to the open orbit in P(∆ 14 ), and let (V 7 , V ′ 7 ) be the associated pair of orthogonal non degenerate subspaces of V 14 . Then the associated three-form Ω z is the sum of generic three-forms

Ω ∈ ∧ 3 V 7 and Ω ′ ∈ ∧ 3 V ′ 7 . Moreover M z = m z (π V ′ 7 -π V7 ), with J 8 (z) = m 2 z . (2) Let [z]
belong to the open orbit in the invariant hypersurface (J 8 = 0) of P(∆ 14 ), and let V 7 be the associated maximal isotropic subspace of V 14 .

Then Ω z belongs to ∧ 2 V 7 ∧ V 14 , and M z is a square zero endomorphism whose image and kernel are both equal to V 7 .

Beware that in (1), the pair (V 7 , V ′ 7 ) is not ordered. Permuting V 7 and V ′ 7 changes the sign of m z , so only its square is well-defined. And J 8 is not globally a square.

2.4. Double octics. Consider the double cover π : D -→ P(∆ 14 ), branched over the octic hypersurface (J 8 = 0). This double cover can be interpreted as the octic hypersurface J 8 (z) -y 2 = 0 in the weighted projective space P = P(1 64 , 4). Moreover it inherits an action of the spin group Spin 14 .

Proposition 2.4.1.

(1) The double cover D is smooth in codimension 5.

(2) Its smooth locus D 0 is endowed with two rank seven equivariant vector bundles E + and E -, exchanged by the deck transformation ι of the double cover, which are two orthogonal subbundles of the trivial bundle V with fiber V 14 . Moreover there are exact sequences of vector bundles

0 -→ E ± -→ V -→ E ∨ ∓ -→ 0. The matrix factorization (M z , M z ) of J 8 (z) upgrades to a matrix factorization (M z + yId, M z -yId) of J 8 (z) -y 2 .
The bundles E + and E -can be defined at the point [z, y] as the kernels of M z + yId and M z -yId, respectively. Moreover, denote by P0 the complement in P of the singular locus of the hypersurface (J 8 = 0). Denote by j 0 the embedding of D 0 inside P0 . Then we have the following exact sequences of sheaves on P0 :

0 -→ V 14 ⊗ O P0 (-4) Mz±yId -→ V 14 ⊗ O P0 -→ j 0 * E ∨ ∓ -→ 0.
If L ⊂ P(∆ 14) is a general linear subspace of dimension at most four, then it is contained in D 0 . Over L we then get a double cover X L with two rank seven vector bundles E L and E ′ L . Conjecture. For a general three dimensional subspace L ⊂ P(∆ 14 ), the vector bundles E L and E ′ L over the double cover X L , are spherical. Note that in this case, X L is a Calabi-Yau threefold. By spherical, one means that the bundles of endomorphisms of E L and E ′ L has the same cohomology as a three-dimensional sphere:

H q (X, End(E L )) = H q (X, End(E ′ L )) = δ q,0 C ⊕ δ q,3
C. As already discussed in [START_REF] Iliev | Fano manifolds of Calabi-Yau Hodge type[END_REF], one can expect that a general double octic threefold X can always be represented as a section X L of the octic in P(∆ 14 ). Moreover there should exist only a finite number N of such representations (up to isomorphism). This is the exact analogue of the statement, due to Beauville and Schreyer, that a general quintic threefold can be represented as a Pfaffian, in only finitely many ways [START_REF] Beauville | Determinantal hypersurfaces[END_REF]Proposition 8.9].

Moreover, our construction of the supposedly spherical vector bundles E L and E ′ L would parallel those of spherical bundles of rank seven on the generic cubic sevenfold [START_REF] Iliev | Fano manifolds of Calabi-Yau Hodge type[END_REF], and of rank six on the generic double quartic fivefold [START_REF] Abuaf | On quartic double fivefolds and the matrix factorizations of exceptional quaternionic representations[END_REF].

Recall that a spherical object in the derived category of coherent sheaves of an algebraic variety defines a non trivial auto-equivalence of this category, called a spherical twist [START_REF] Seidel | Braid group actions on derived categories of coherent sheaves[END_REF]. If the previous conjecture is true, we would thus get, on a general octic threefold, N pairs of spherical vector bundles, generating a certain group of symmetries of the derived category. It would be interesting to determine N , and this symmetry group.

The reconstruction problem also looks very intringuing: starting from a general octic threefold X, its branch divisor D, and the vector bundle E L , how can we reconstruct the embedding of D as a linear section of the invariant octic in P(∆ 14 )?

3. Relations with Z-gradings of Lie algebras 3.1. Morphisms from gradings. Clerc was the first to realize that Z-gradings can be useful to determine certain invariants [START_REF] Clerc | Special prehomogeneous vector spaces associated to F4, E6, E7, E8 and simple Jordan algebras of rank 3[END_REF]. He starts with a simple Lie algebra g whose adjoint representation is fundamental. In other words (once we have fixed a Cartan and a Borel subalgebra), the highest root ψ is a fundamental weight. The corresponding simple root α defines a Z-grading on g, of length five:

g = g -2 ⊕ g -1 ⊕ g 0 ⊕ g 1 ⊕ g 2 .
In this grading, g 2 = g ψ and g -2 = g -ψ are one dimensional. Once we have chosen generators X ψ and X -ψ , we can define a g 0 -equivariant polynomial function J 4 on g 1 , homogeneous of degree four, by the relation

ad(z) 4 X -ψ = J 4 (z)X ψ , z ∈ g 1 .
For g exceptional, J 4 generates the space of semi-invariants for the action of g 0 on g 1 . (Recall that g 0 is not semisimple but only reductive, with a non trivial center. That J 4 is semi-invariant means that g 0 acts on it only through multiplication by some character.) There exist other gradings of length five of simple Lie algebras, notably of the exceptional ones, such that g 2 has dimension bigger than one. In this case, the very same idea yields morphisms

Sym 4 g 1 -→ Hom(g -2 , g 2 ) and Sym 4 g -1 -→ Hom(g 2 , g -2 ).
The representations g 1 and g -1 , as well as g 2 and g -2 , are in perfect duality through the Cartan-Killing form on g. But it is often the case that g 2 is in fact selfdual. The quite unexpected fact, discovered in [START_REF] Abuaf | On quartic double fivefolds and the matrix factorizations of exceptional quaternionic representations[END_REF], is that we can construct matrix factorizations from the resulting maps.

3.2.

A magic square of matrix factorizations. A remarkable framework in which we will obtain matrix factorizations is that of the Tits-Freudenthal magic square (see [2, Section 4.3] and references therein). Either in its algebraic, or in its geometric versions, this magic square (and its enriched triangular version due to Deligne and Gross [START_REF] Deligne | On the exceptional series, and its descendants[END_REF]) encodes all sorts of surprising phenomena related to the exceptional Lie algebras. We will describe another one in this section.

Remember that the magic square has its lines and columns indexed by the normed algebras R, C, H, O and is symmetric at the algebraic level, in the sense that there is a way to associate to a pair (A, B) a semisimple Lie algebra g(A, B), with g(A, B) = g(A, B). Here is the magic square over the complex numbers: Freudenthal enhanced this construction by associating to each pair (A, B) some special geometry, in a way which is not symmetric, but uniform along the lines (see [START_REF] Landsberg | The projective geometry of Freudenthal's magic square[END_REF]Section 2.1] and references therein). This means that for each A, one has four special geometries associated to the pairs (A, R), (A, C), (A, H), (A, O), with completely similar formal properties. Each of these geometries is made of elements that we call F-points (for the first line of the magic square), plus F-lines (for the second line), plus F-planes (for the third line), plus F-symplecta (for the fourth line). Moreover, each type of elements involved in the special geometry of the pair (A, B) is parametrized by a rational homogeneous space G/P , where G is an algebraic group whose Lie algebra is precisely g(A, B). The parabolic subgroup P , usually maximal, depends on the type of the element. All these data can be encoded in the following diagrams:

so
• • • • > 4 3 2 1 • • • • • • 1 2 3 2 1 4 • • • • • • • 4 3 2 1 • • • • • • • • 1 3 2 4
This must be interpreted as follows. Each of these diagrams corresponds to one column in the magic square. Recall that a Dynkin diagram encodes a semisimple Lie algebra (or Lie group, up to finite covers), and that a subset of vertices encodes a conjugacy class of parabolic subgroups. The geometry associated to the box (i, j), on the i-th line and the j-th column, is defined by considering the j-th Dynkin diagram above and suppressing the vertices numbered by integers bigger than i. This gives a Dynkin diagram D i,j marked by integers from 1 to i. The elements of the corresponding geometry are then parametrized by the homogeneous spaces G/P (k), 1 ≤ k ≤ i, where G is a semisimple Lie group with Dynkin diagram D i,j , and P (k) is a parabolic subgroup defined, up to conjugacy, by the vertices of D i,j marked by k. The spaces G/P (1) parametrize F-points, while the G/P (2) parametrize F-lines (for i ≥ 2), the G/P (3) parametrize F-planes (for i ≥ 3), and the G/P (4) parametrize F-symplecta (for i = 4). For example, the Dynkin diagram D(3, 2) has type A 5 , with the marks 1 at its extremities; so that the space of Fpoints for A = H and B = C is A 5 /P 1,5 , the flag variety of incident points and hyperplanes in P 5 . Let us focus on the square of homogeneous spaces X(A, B) parametrizing the F-points of the Freudenthal geometries, namely: Now, we define a five-step grading of g(A, B) as follows. As we have just explained, each X(A, B) is G/P I , where the standard parabolic subgroup P I of G is defined by the subset I of the set ∆ of simple roots (which correspond bijectively with the vertices of the Dynkin diagram). Let ω ∨ I = i∈I ω ∨ i denote the sum of the corresponding fundamental coweights. If we express a root α as a linear combination of simple roots, α = j∈∆ n j α j , then ω ∨ I (α) = i∈I n i . The associated Z-grading of g = g(A, B) is

A 1 /P 1 A 2 /P 1,2 C 3 /P 2 F 4 /P 1 A 2 /P 1 A 1 × A 1 /P
g k = δ k,0 t ⊕ ( ω ∨ I (α)=k g α ).
It turns out that g 0 is always made of orthogonal Lie algebras, that g 1 is always a spin representation, while g 2 is a natural representation, in particular self dual. Moreover g k = 0 for k > (1) g 1 is prehomogeneous under the action of g 0 , and the generic stabilizer is aut(A) × aut(B), (2) there exist equivariant morphisms

P, Q : Sym 4 g 1 -→ Sym 2 g 2 ֒→ End(g 2 )
such that (P, Q) is a matrix factorization of a semi-invariant J 8 on g 1 . This statement generalizes Theorem 2.3.2, which corresponds to the pair (O, O). All the other cases are somewhat degenerate, in the following ways.

(1) For the pairs (O, C) and (O, H) of the last line, the fundamental semiinvariant has degree four, and we get a matrix factorization of its square. (2) For the pair (H, O) of the third line, g 2 is one dimensional, the fundamental invariant has degree four and admits a matrix factorization induced by the 5-grading, as in [START_REF] Abuaf | On quartic double fivefolds and the matrix factorizations of exceptional quaternionic representations[END_REF]. (3) For the pair (C, O) of the second line, there is no non trivial semi-invariant and g 2 is actually zero. The matrices P z and Q z will always be obtained as ad(z) 4 , up to some homothety, but the proof of the Theorem is unfortunately a case by case check. In the next section we will discuss the first degenerate case, that of V 2 ⊗ ∆ 10 where V 2 is twodimensional. The other cases are similar and simpler.

3.3. The case of C 2 ⊗∆ 10 . Here the action of GL(V 2 )×Spin 10 is prehomogeneous, and there is a quartic semi-invariant J 4 [START_REF] Kraskiewicz | Geometry of orbit closures for the representations associated to gradings of Lie algebras of type E 7[END_REF]. Note that this is the representation used by Hitchin in order to defined (a substitute for) GL 2 (O), with J 4 playing the rôle of the determinant [START_REF] Hitchin | SL(2) over the octonions[END_REF].

An important observation is that the natural map, again induced by Clifford multiplication, yields an isomorphism

∧ 2 ∆ 10 ≃ ∧ 3 V 10 .
We therefore get a morphism of SL(V 2 ) × Spin 10 -modules ( 6)

Ω : S 2 (V 2 ⊗ ∆ 10 ) -→ ∧ 2 V 2 ⊗ ∧ 2 ∆ 10 ≃ ∧ 3 V 10 .
This in turn induces a morphism

(7) M : S 4 (V 2 ⊗ ∆ 10 ) -→ S 2 (∧ 3 V 10 ) -→ S 2 V 10 ֒→ End(V 10 ),
where the first arrow is given by the square of Ω, and the second arrow is induced by the quadratic form on V 10 . Let us compute this morphism explicitely. According to [START_REF] Kraskiewicz | Geometry of orbit closures for the representations associated to gradings of Lie algebras of type E 7[END_REF], a generic element of V 2 ⊗ ∆ 10 is given by

z = v 1 ⊗ (1 + e 1234 ) + v 2 ⊗ (e 1235 + e 45 ).
Letting e 0 = e 4 + f 4 and f 0 = f 4 -e 4 , the associated three-form is

Ω z = e 123 + f 123 + e 0 (e 1 f 1 + e 2 f 2 + e 3 f 3 ) + f 0 e 5 f 5 .
Observe that this decomposes as the sum of Ω ∈ ∧ 3 V 7 and Ω ′ = f 0 e 5 f 5 ∈ ∧ 3 V 3 , where V 7 = e 0 , e 1 , e 2 , e 3 , f 1 , f 2 , f 3 and V 3 = f 0 , e 5 , f 5 are orthogonal spaces, on which the quadratic form q is non degenerate. The associated element in S 2 V 10 is 6e 1 f 1 + 6e 2 f 2 + 6e 3 f 3 + 3e 2 0 + f 2 0 -2e 5 f 5 , and since q(e 0 ) = 2 and q(f 0 ) = -2, the corresponding endomorphism is

M z = 6π V7 -2π V3 ∈ End(V 10 ),
where π V7 and π V3 are the two projections relative to the direct sum decomposition V 10 = V 7 ⊕ V 3 . This endomorphism has non zero-trace, which allows to define a degree four invariant J 4 (z) := trace(M z ). We then get (M z -1 18 J 4 (z)Id V10 ) 2 = 1 162 J 4 (z) 2 Id V10 , a matrix factorization of the octic J 8 = 1 162 J 2 4 . 3.4. Three-forms in seven variables. A sporadic case to which the same circle of ideas can be applied is that of the degree seven invariant of ∧ 3 V 7 . This heptic invariant has been known for a long time, as given by the equation of the projective dual of the Grassmannian G(3, V 7 ), or of the complement of the open GL 7 -orbit of ∧ 3 V 7 consisting of forms with stabilizer bigger than G 2 . This case is associated with the grading of length five of e 7 defined by the simple root α 2 :

e 7 = V 7 ⊕ ∧ 3 V ∨ 7 ⊕ gl(V 7 ) ⊕ ∧ 3 V 7 ⊕ V ∨ 7 .
(For simplicity we wrote this grading as a decomposition into sl(V 7 )-modules.) For any ω ∈ ∧ 3 V 7 and y ∈ V ∨ 7 , we denote by i y (ω) ∈ ∧ 2 V 7 the contraction of ω with y. Then P (ω, y) = 1 6 ω ∧i y (ω)∧i y (ω) belongs to ∧ 7 V 7 ≃ C. This defines an equivariant morphism [START_REF] Clerc | Special prehomogeneous vector spaces associated to F4, E6, E7, E8 and simple Jordan algebras of rank 3[END_REF] P : S 3 (∧ 3 V 7 ) -→ S 2 V 7 ⊗ detV 7 .

On the other hand, recall that ∧ 3 V 7 ≃ (∧ 4 V 7 ) ∨ and that (∧ 4 V 7 ) ∨ is a submodule of V ∨ 7 ⊗ (∧ 3 V 7 ) ∨ . Moreover the natural map End(V 7 ) -→ End(∧ 3 V 7 ) has for transpose an equivariant map End(∧ 3 V 7 ) = (∧ 3 V 7 ) ∨ ⊗ (∧ 3 V 7 ) -→ End(V 7 ). This yields a morphism [START_REF] Deligne | On the exceptional series, and its descendants[END_REF] θ : S 2 (∧ 3 V 7 ) -→ V ∨ 7 ⊗ End(V 7 ) ⊗ detV 7 . Taking its symmetric square and composing with the trace map, we get (10) R : S 4 (∧ 3 V 7 ) -→ S 2 V ∨ 7 ⊗ S 2 End(V 7 ) ⊗ (detV 7 ) 2 -→ S 2 V ∨ 7 ⊗ (detV 7 ) 2 .

Remark. The morphism R is induced from the quartic SL 6 -invariant of ∧ 3 U 6 , in the following way. This quartic corresponds to a GL 6 -equivariant linear map:

ψ U6 : S 4 (∧ 3 U 6 ) -→ det(U 6 ) ⊗2 .
Now the Borel-Weil Theorem implies that ∧ 3 V 7 = H 0 (P(V 7 ), ∧ 3 Q), where Q is the tautological quotient on P(V 7 ), the projective space of lines in V 7 . We can then consider the composition S 4 H 0 (P(V 7 ), ∧ 3 Q) -→ H 0 (P(V 7 ), S 4 (∧ 3 Q)) -→ H 0 (P(V 7 ), det(Q) ⊗2 ),

where the first arrow is surjective because Q is globally generated, and the second arrow is defined by ψ Q . Finally, the Borel-Weil Theorem implies that H 0 (P(V 7 ), det(Q) ⊗2 ) = S 2 V ∨ 7 ⊗ det(V 7 ) ⊗2 , and the resulting morphism is nothing else but R.

As was first done by Gyoja and Kimura [START_REF] Kimura | Remark on some combinatorial construction of relative invariants[END_REF], we can now define the heptic semi-invariant J 7 on ∧ 3 V 7 by contracting R with P :

J 7 (z) = P z , R z ∈ (det V 7 ) ⊗3 .
But in fact a much stronger statement is true. Observe that S 2 V 7 is a submodule of Hom(V ∨ 7 , V 7 ), as well as S 2 V ∨ 7 is a submodule of Hom(V 7 , V ∨ 7 ). In other words,

  sections 3.3 and 3.4]. Proposition 2.3.4.

  ) The spinor variety S 12 ⊂ P∆ 12 is a variety with one apparent double point, Spin 12 /SL 6 ⋊ Z 2 , where the Z 2 factor exchanges the two points in S 12

which means that through a general point of P∆ 12 passes a unique line which is bisecant to S 12 . One can deduce that the open orbit O 0 ≃

  Polarizing, we get the following tensor Θ 1 in V 14 ⊗ ∧ 2 V 14 : e 1 ⊗ (e 23 + e 56 + f 4 e 7 -f 17 ) + e 2 ⊗ (e 46 -e 13 -f 5 e 7 -f 27 ) +e 3 ⊗ (e 12 -f 6 e 7 -f 37 ) -e 4 ⊗ (e 26 + f 47 ) -e 5 ⊗ (e 16 + f 57 ) +e 6 ⊗ (e 15 + e 24 -f 67 ) + e 7 ⊗ (e 2 f 5 -e 1 f 4 + e 3 f 6 ) +f 1

1 2 Ω z1 = e 123 + e 156 + e 246 -f 135 -f 234 -f 456 + +(e 2 f 5 -e 1 f 4 + e 3 f 6 )e 7 -( 6 i=1 e i f i )f 7 .

  3 sl 3 sp 6 f 4 sl 3 sl 3 × sl 3 sl 6 e 6

	sp 6	sl 6	so 12 e 7
	f 4	e 6	e 7	e 8

  1,1 A 5 /P 2 E 6 /P 1 C 3 /P 1 A 5 /P 1,5 D 6 /P 2 E 7 /P 1 F 4 /P 1 E 6 /P 1,6 E 7 /P 6 E 8 /P 1

  2. It was argued in[START_REF] Landsberg | The projective geometry of Freudenthal's magic square[END_REF] Proposition 3.2] that g 1 should be thought of as A ⊗ B and g 2 as A 0 ⊕ B 0 , where A 0 is the hyperplane of imaginary elements in A. Here is the table giving the semisimple part of g 0 : spin 8 sl 2 × spin 10 spin 14 Theorem 3.2.1. For each pair (A, B) the representations g 1 , g 2 of the reductive Lie algebra g 0 have the following properties:

	0 sl 2 sp 4 spin 7	0 sl 2 2 sl 4	sl 2 2 sl 2 × sl 4 sl 2 2 × sl 3	spin 7 spin 10 spin 12

we can consider R z and P z as symmetric morphisms from V 7 to V ∨ 7 and from V ∨ 7 to V 7 , respectively. The following result appears in [START_REF] Kimura | Introduction to prehomogeneous vector spaces[END_REF]Example 2.6]. We give a short proof, without computation.

Theorem 3.4.1. The pair of symmetric morphisms (P, R) is a matrix factorization of the heptic semi-invariant J 7 of ∧ 3 V 7 .

Proof. Because of the quasi-homogeneity, it is enough to check this assertion at a generic point z of ∧ 3 V 7 . The stabilizer of this form is then a copy of G 2 . The quadratic forms R z and P z on V ∨ 7 and V 7 must be preserved by this stabilizer. But up to scalar, there is a unique quadratic form on V 7 (or its dual) preserved by G 2 . After identifying V 7 with its dual through this non degenerate quadratic form (which depends on z), we get R z and P z as (non zero) homotheties, and our statement immediately follows.

Remark. In many respects, the case of (Spin 14 , ∆ 14 ) is a doubled version of the case of (SL 7 , ∧ 3 C 7 ). Similarly, (Spin 12 , ∆ 12 ) is a doubled version of (SL 6 , ∧ 3 C 6 ) (they both appear on the same line of Freudenthal's magic square, see [START_REF] Landsberg | The projective geometry of Freudenthal's magic square[END_REF]), and (Spin 10 , ∆ 10 ) is a doubled version of (SL 5 , ∧ 2 C 5 ) (see [START_REF] Manivel | Double spinor Calabi-Yau varieties[END_REF]Introduction] for more details). The second pair has a clear complex-quaternionic interpretation. It would be very nice to find a similar, or may be quaternio-octonionic interpretation of the two other pairs. 3.5. Three-forms in eight variables. For completeness let us briefly discuss the case of the degree sixteen SL(V 8 )-invariant of ∧ 3 V 8 , the last prehomogeneous space of skew-symmetric three-forms. This invariant is given by the equation of the projective dual of the Grassmannian G(3, V 8 ). This case is associated with the grading of length seven of e 8 defined by the simple root α 2 :

(For simplicity we wrote this grading as a decomposition into sl(V 8 )-modules.) The adjoint action induces maps Sym 2k g 1 → Hom(g -k , g k ), which for k = 2 and k = 3 yield the following:

). Putting together P and Q, and using the contraction map ∧ 2 V ∨ 8 ⊗ V 8 → V ∨ 8 and its dual, we get a morphism

). The computations made by Kimura in [18, Example 2.7] imply the following result: Theorem 3.5.1. The pair of symmetric morphisms (Q, R) is a matrix factorization of the degree sixteen semi-invariant J 16 of ∧ 3 V 8 .