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Vision-Based Control and Stability Analysis
of a Cable-Driven Parallel Robot

Zane Zake1,2, François Chaumette3, Nicolò Pedemonte2, and Stéphane Caro1,4

Abstract— In Cable-Driven Parallel Robots (CDPRs) rigid
links are substituted by flexible cables. This change in actuation
allows for a large workspace with a high payload to weight ratio,
among other appealing characteristics. However, the accuracy
for such systems needs to be improved to truly outperform
classical parallel robots. A possible and not yet well studied
solution is the use of vision-based control for CDPRs. This paper
deals with the stability analysis of such a control scheme with
regard to uncertainties lying both in the analytical models and
the experimental setup. Two CDPRs are analyzed as illustrative
examples. The results obtained show the system’s robustness
with respect to uncertainties.

I. INTRODUCTION

As the name suggests, a cable-driven parallel robot
(CDPR) is a parallel robot that is actuated by flexible cables
instead of rigid links. The main advantages of CDPRs are
their large workspace (WS), low mass in motion, high veloc-
ity and acceleration capacity [1], and reconfigurability [2].
However, their accuracy should be substantially improved
to meet a broader spectrum of industrial applications. In that
sense, different approaches can be considered, such as the use
of: (i) more precise, but more complex CDPR models [3];
(ii) force sensors to measure cable tensions [4]; (iii) angular
position sensors to measure cable angle position [5]; and
(iv) exteroceptive sensors, such as cameras, to measure
where the robot is with respect to its environment [6] [7] [8].

Vision-based control is becoming more and more popular
with the novel robot tasks, human-robot collaboration, and
the need for robustness to different uncertainties. There are
two main approaches of visual servoing: it can be either
image-based or pose-based [9]. In the latter, using informa-
tion from the image and some additional knowledge about
the object (usually its model), the pose of the object with
respect to (w.r.t.) the camera is retrieved. Then the control
scheme is minimizing the difference between this acquired
pose and the desired one. In image-based visual servoing,
2D image coordinates of the object or other image data
are retrieved instead of a Cartesian pose. Here, the control
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algorithm is minimizing an error in the image space by
comparing the desired and the current visual features.

It was found in [3] that even with a detailed CDPR model
the experiments showed either a decrease or just a slight
improvement in terms of accuracy. As a matter of fact, no
matter the robot complexity, it is not possible to perfectly
model the environment and predict the uncertainties. Hence,
using visual data in the control loop is a good way to know
precisely when the goal is reached, because it is directly
perceived. This is attained by onlooking the robot with a
camera fixed in the environment, which is the so called eye-
to-hand configuration [6] [7]. Another option is to perceive
the object of interest with a camera mounted on the moving
platform (MP), namely eye-in-hand configuration [8]. The
robot is actuated according to what is perceived in either
of the configurations. Dallej et al. [6] proposed multiple
control algorithms for large-scale CDPRs equipped with
multiple fixed cameras. Chellal [7] used six infrared cameras
to determine with high precision the position of the MP
of a medium scale CDPR: INCA 6D. To the best of our
knowledge, Remy et al. [8] have been the only ones using the
eye-in-hand configuration and a single camera. A simplified
3-DOF CDPR generating translational motions only was
used to successfully reach the vicinity of an object to be
grasped. With the control strategy proposed in this paper,
both the 3-DOF translational motions and 3-DOF rotational
motions of the MP are handled, while using only one camera
embedded in the MP.

The stability of CDPR usually deals with physical stability.
For example, Carricato et al. investigated the stability of
equilibrium for underconstrained CDPRs [10]. If one applies
a force to the MP, the latter will easily move while keeping
the cables taut and with the same lengths. While analyzing
the stability of given CDPR the authors determined the
final equilibrium pose, where the MP returns to once all
perturbations are ceased. On the contrary, this paper focuses
on stability analysis of CDPRs from a control viewpoint.
Investigating the stability of a system is a way to analyze
its sensitivity to different uncertainties, that is, to determine
whether the system will converge accurately to its goal
despite errors in its model [11]. Here, the largest ranges
of perturbations for which the CDPR remains stable are
assessed. Accordingly, this paper focuses on the stability
analysis for a pose-based visual servoing control (PBVS)
of a CDPR while determining its robustness to the various
uncertainties involved in the system design. A planar CDPR
and a spatial CDPR are considered as illustrative examples.
Experimental results show the robustness of the system to



uncertainties and a better positioning accuracy w.r.t. classical
model-based control.

This paper is organized as follows. Notations used
throughout this paper are shown in Table I. Section II
presents the vision-based control strategy for a CDPR, while
focusing both on a planar and a spatial CDPR. Section III
is dedicated to the stability analysis of both CDPRs. The
experimental validation on a small-scale CDPR is shown in
Section IV. Conclusions are drawn in Section V.

TABLE I
NOTATION USED THROUGHOUT THE PAPER

• i “ 1, . . . ,m denotes the cables, where m is the number of cables.
• Boldface lowercase characters denote vectors; boldface uppercase
characters are matrices.
• Fb, Fp, Fc, Fo denote the base, MP, camera and object frames
respectively (resp.).

• iTj “

«

iRj
itj

0 1

ff

is the homogeneous transformation matrix from

Fi to Fj . It is either a p3ˆ3q–matrix or a p4ˆ4q–matrix in the planar
and the spatial cases, resp.
• A: is the pseudo-inverse of A.
• pA and ê are the estimations of A and e, resp.
• resˆ denotes the cross-product matrix of vector e.
• cpθq and spθq denotes the cosine and the sine of the angle θ.
• ia is the vector a expressed in Fi

• Ai and Bi are the exit and the anchor points of the ith cable, resp.
• bai and pbi are the vectors pointing from origin of Fb and Fp and
to Ai and Bi, resp.

II. VISION-BASED CONTROL OF A CDPR

In this work, a PBVS [9] is selected, with a camera
mounted on the MP facing the object of interest. The
following subsections detail the kinematics of CDPRs (II-A)
and PBVS (II-B). First, the general equations are given and
then, if distinction between the planar and the spatial cases
is necessary, the details of the differences are also noted.

A. CDPR kinematics

Figures 1 and 2 show the schematics of a planar and a
spatial CDPR, respectively.
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Fig. 1. Schematic of a planar CDPR with 4 cables, a camera mounted on
its MP and an object in the WS
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Fig. 2. Schematic of a spatial CDPR with eight cables, a camera mounted
on its MP and an object in the WS

Since the camera is mounted on the MP, the transformation
matrix between the respective frames pTc does not change
with time, unlike the transformation matrix between the base
and the platform frames bTp, and the transformation matrix
between the camera and the object frames cTo.

The length li of the ith cable is the 2-norm of the vector
#        »

AiBi pointing from Ai to Bi, namely,

li “ ‖ #        »

AiBi‖2 (1)

with

li
bui “ b #        »

AiBi “
bbi ´

bai “
bRp

pbi `
btp ´

bai (2)

where bui is the unit vector of b
#        »

AiBi that is expressed as:

bui“
b #        »

AiBi∥∥∥b #        »

AiBi

∥∥∥
2

“
bbi ´

bai∥∥∥b #        »

AiBi

∥∥∥
2

“
bRp

pbi ´
bai `

btp∥∥∥b #        »

AiBi

∥∥∥
2

(3)

and bRp and btp are the rotation matrix and the translation
vector from Fb to Fp.

The cable velocities 9li are obtained upon differentiation of
Eq. (2) w.r.t. time:

9l “ A bvp (4)

where bvp is the Cartesian velocity of the MP expressed in
Fb, 9l is the cable velocity vector, and A is the Forward
Jacobian matrix of the CDPR, expressed as [13]:

A “

»

—

–

buT1 pbRp
pb1 ˆ

bu1q
T

...
...

buTm pbRp
pbm ˆ

bumqT

fi

ffi

fl

(5)

For a spatial CDPR with eight cables, the Jacobian A is
a p8ˆ 6q–matrix. For a planar CDPR, A is a (mˆ3)–matrix
and takes the form:

Apl “

»

—

–

buT1 pbRp
pb1q

TET bu1

...
...

buTm pbRp
pbmq

TET bum

fi

ffi

fl

(6)

with E “

„

0 ´1
1 0



.



B. Pose-based visual servoing

The control scheme considered in this paper is shown in
Fig. 3. An image is acquired from the camera and fed to a
computer vision algorithm, which in turn returns a 2D or 3D
pose of the object cso expressed in Fc. It is compared to the
desired pose c˚s˚o , from which an error e is defined.
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Fig. 3. Control scheme for pose-based visual servoing of a CDPR

For the spatial case e “ reTt eTω s
T , where et “

cto ´
c˚to “ rex ey ezs

T and eω “ uθ, u being the axis and θ the
angle of the rotation matrix cRc˚ .

For the planar case epl “ re
T
tpl

eθs
T “ rex ey eθs

T .
To decrease the error e, an exponential decoupled form is

selected 9e “ ´λe with a positive adaptive gain λ:

λpxq “ pλ0 ´ λ8qe´p
9λ0{pλ0´λ8qqx ` λ8 (7)

where
‚ x “ ||e||2 is the 2–norm of e at the current iteration
‚ λ0 “ λp0q is the gain for very small values of ||e||2
‚ λ8 “ λp8q is the gain for very high values of ||e||2
‚ 9λ0 is the slope of λ at ||e||2 “ 0

The adaptive gain is computed at each iteration, depending
on the current ||e||2, in order to decrease the time-to-
convergence [8].

Note that the error e tends towards zero when the actual
object pose s converges to the desired object pose s˚.

The relationship between 9e and the Cartesian velocity of
the camera cvc, expressed in Fc, is expressed as:

9e “ Ls
cvc (8)

where Ls is the interaction matrix and takes the following
form for the spatial case [9]:

Ls “

„

´I3 retsˆ
03 ´Lω



(9)

with:

Lωpu, θq “ I3 ´
θ

2
rusˆ `

´

1´
sincpθq

sinc2
p θ2 q

¯

rus2ˆ (10)

and sincpθq “ sinpθq{θ
The determinant of matrix Lωpu, θq is

detpLωq “
1

sinc2
pθ{2q

(11)

From Eq. (11), Lω , and thus Ls, is singular if and only
if (iff) θ “ 2kπ with k ‰ 0. Note that the configurations
leading to singular Ls matrix are out of the manipulator WS.

For the planar case, (9) simplifies to:

Lspl
“

»

–

´1 0 ey
0 ´1 ´ex
0 0 ´1

fi

fl (12)

Finally, the instantaneous velocity of the camera in its own
frame is expressed as a function of the pose error as follows:

cvc “ ´λpL´1
s e (13)

where pL´1
s is the inverse of an estimation of Ls. Note

that we can directly use the inverse, because the interaction
matrix is square and of full rank for PBVS [9].

C. Kinematics and vision

To combine the modeling shown in Sections II-A and II-
B, the MP twist, expressed in Fb, is defined as a function of
the camera velocity, expressed in Fc:

bvp “ Ad
cvc (14)

where Ad is the adjoint matrix. Its expression differs from
the spatial case to the planar case:

For the spatial case, the adjoint matrix takes the form [12]:

Ad “

„

bRc

“

btc
‰

ˆ

bRc

03
bRc



(15)

For the planar case, the adjoint matrix is expressed as [14]:

Adpl“

„

bRc ET btpc
0 0 1



“

„

bRp
pRc ET bRp

ptc
0 0 1



(16)

where btpc “
bRp

ptc and ptc is the vector from Op to Oc.

III. STABILITY ANALYSIS

The stability analysis of a system aims to determine
the level of uncertainties that is acceptable such that the
corresponding system converges towards the goal state for
sure. In this paper, Lyapunov analysis is used to assess the
stability of the closed-loop visual servoing system [11].

From Eqs. (4), (8) and (14) the model is the following:

9e “ Ls A
´1
d A: 9l (17)

Upon injecting (14) and (13) into (4), the output of the
control scheme, that is, the cable velocity vector takes the
form:

9l “ ´λ pA pAd
pL´1
s e (18)

where pA and pAd are the estimations of A and Ad, resp.
The following closed-loop equation is obtained from (17)
and (18):

9e “ ´λLs A
´1
d A: pA pAd

pL´1
s e (19)

From (19), the system stability criterion is defined as:

Π “ Ls A
´1
d A: pA pAd

pL´1
s ą 0,@t (20)

Π ą 0 is a sufficient condition to obtain global asymptotic
stability (GAS). It can be seen from the closed-loop equation
(19) that if Π is positive definite, then the control scheme
will ensure an exponential convergence of the error e to 0.
However, if it is negative then the error e will increase and
the system may diverge from the goal.

This means that if the estimations of the Jacobian matrix
Â, the adjoint matrix Âd and the interaction matrix L̂´1

s are
not too coarse, Π will be near the identity matrix, and so
positive definite, ensuring that the system is GAS.



Here, the stability analysis is performed separately for
the planar and the spatial CDPRs. Section III-A deals with
the stability analysis of the planar CDPR shown in Fig. 1.
Section III-B is about the stability analysis of the spatial
CDPR shown in Fig. 2, which turns out to be more complex.

First, only uncertainties in the vision system, i.e., uncer-
tainties in object pose estimation, are taken into account
(Stability Analysis I). Then, uncertainties in the pose of the
camera w.r.t. Fp are considered (Stability Analysis II). Fi-
nally, the uncertainties in the MP pose w.r.t Fb and the errors
in anchor points Bi are examined (Stability Analysis III).

A. Stability analysis of the planar CDPR

1) Stability Analysis I: While considering the errors in
the vision system only, matrices pA and pAd are assumed to
be determined accurately. Thus, the stability criterion for the
planar CDPR is simplified to:

Πp1 “ Lspl
pL´1
spl
“

»

–

1 0 êy ´ ey
0 1 ex ´ êx
0 0 1

fi

fl ą 0 (21)

The symmetric part of Πp1, named
`

Πp1

˘

Sym
, is obtained

as follows:
`

Πp1

˘

Sym
“

1

2

´

Lspl
pL´1
spl
`
`

Lspl
pL´1
spl

˘T
¯

“

“

»

–

1 0
êy´ey

2

0 1 ex´êx
2

êy´ey
2

ex´êx
2 1

fi

fl (22)

Consequently, the eigenvalues of
`

Πp1

˘

Sym
are:

»

–

λ1

λ2

λ3

fi

fl “

»

—

–

?
pex´êxq2`pey´êyq2

2 ` 1

´

?
pex´êxq2`pey´êyq2

2 ` 1
1

fi

ffi

fl

(23)

For (21) to hold, the eigenvalues λ1, λ2, and λ3 should all
be positive [15]. Note that λ1 is always positive, as the term
under the square root is always positive. λ2 will be positive
iff the following condition holds true:

pex ´ êxq
2 ` pey ´ êyq

2 ă 4 (24)

Since epl “ s´ s˚ and ŝ˚ “ s˚, then (24) becomes:

psx ´ ŝxq
2 ` psy ´ ŝyq

2 ă 4 (25)

Considering that the desired accuracy is centimetric (if
not millimetric), then having a combined squared detection
uncertainty lower that 4 m can be easily ensured in practice.
Note that this is true for any CDPR because no uncertainty
in the CDPR model parameters is considered here.

2) Stability Analysis II: Here, the uncertainties in the
camera pose in Fp are considered along with the ones in the
vision system. Accordingly, matrix Adpl , expressed in (16),
is considered in the stability criterion (20), which becomes:

Πp2 “ Lspl
A´1
dpl

pAdpl
pL´1
spl
“

»

–

Rψ
d1

d2

0 0 1

fi

fl ą 0 (26)

where:
Rψ “

cRp
p
pRc “

„

cpψq ´spψq
spψq cpψq



(27)

d1 “ êycpψq ´ ey ` êxspψq ´∆tycpθcpq ´∆txspθcpq (28)

d2 “ ´êxcpψq`ex` êyspψq´∆tyspθcpq`∆txcpθcpq (29)

with ψ “ θcp ´ θ̂cp; ∆tx “ ptx ´ t̂xq and ∆ty “ pty ´ t̂yq
The eigenvalues of

`

Πp2

˘

Sym
are the following:

»

–

λ1

λ2

λ3

fi

fl “

»

—

–

cpψq
cpψq`1`

?
p1´cpψqq2`d21`d

2
2

2
cpψq`1´

?
p1´cpψqq2`d21`d

2
2

2

fi

ffi

fl

(30)

λ1 is positive iff

|ψ| “ |θcp ´ θ̂cp| ă π{2 (31)

λ2 is always positive, because the term under the square
root is always positive, given that (31) is held. Finally, due to
the complexity of the expression, λ3 is analyzed numerically.

In the numerical analysis it was found that a multitude
of perturbation range combinations within system stability
is possible. That is, there is not one single limit for each
uncertainty, because the uncertainties do not affect the system
independently. For this reason, it is possible to find different
maximum values for the variables, depending on the other
variable choices. Some examples are shown in Fig. 4, where
each vertical line corresponds to one of the possible combi-
nations. For instance, from Combination (Cb.) 2 the system
will be stable if:

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

|epl| “

#

|ex| “ |sx ´ s
˚
x| ď 5.0 m

|ey| “ |sy ´ s
˚
y | ď 5.0 m

|∆epl| “

#

|∆ex| “ |ex ´ êx| ď 0.5 m
|∆ey| “ |ey ´ êy| ď 0.5 m

|∆t| “

#

|∆tx| ď 0.3 m
|∆ty| ď 0.3 m

|∆θ| “ |ψ| ď 6˝

From Cb. 13, the system will be stable if:
$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

|epl| “

#

|ex| “ |sx ´ s
˚
x| ď 0.5 m

|ey| “ |sy ´ s
˚
y | ď 0.5 m

|∆epl| “

#

|∆ex| “ |ex ´ êx| ď 0.3 m
|∆ey| “ |ey ´ êy| ď 0.3 m

|∆t| “

#

|∆tx| ď 0.2 m
|∆ty| ď 0.2 m

|∆θ| “ |ψ| ď 61˝

It should be noted, that for any combination, each variable
can take any value within the chosen limits. Therefore, it
can be concluded that the system is exhibiting very strong
robustness.

It should also be noted that at this level the stability
analysis is still independent of the CDPR model. Although
the estimation of camera pose in Fp is considered and
ranges ∆t and ∆θ are found, they are not dependent on
the actual ptc or θ. Therefore, the MP can take any size.
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Fig. 4. Example of possible combinations of design variables (e, ∆e, ∆t,
∆θ) for a stable system

3) Stability Analysis III: Finally, the uncertainties in the
MP pose w.r.t. Fb and the errors in anchor points Bi are
examined in addition to the previously mentioned ones. Here,
the stability criterion (20) cannot be simplified. Due to its
complexity, especially the pseudo-inverse of the Jacobian
matrix A:pl, the stability analysis is performed numerically.

Some sets of variable ranges that ensure system stability
are shown in Fig. 5. Considering the CDPR used for exper-
imental validation of the spatial case, the WS size of the
robot is supposed to be equal to 1 mˆ1 m. The origin of Fb
is located at the WS center. Similarly, due to the size of the
existing MP, the maximum offset between the origins of Fp
and Fc is equal to 0.055 m.

Fig. 5. Example of possible combinations of design variables (btp, ∆btp,
e, ∆e, ∆ptc, ∆pbi, ∆θcp, θpb, ∆θpb) for a stable system

Some other characteristics were also observed:
i) The smaller the actual working range btp compared to

WS, the larger the tolerated deviation ∆btp.
ii) The difference between e and ê should always be

smaller than e itself.
iii) ptc and θcp range do not have any effect on stability.
iv) Reducing ∆ptc often leads to significant increase in

the rotational range for θpb.
v) Similarly, reducing ∆bi allows having larger rotational

errors.
vi) For |btp| ď 0.5 m, the estimation of cable anchor points

cannot be coarse.
vii) If ∆btp and ∆epl are comparatively small, and the MP

is not in the vicinity of the WS limits, platform could
rotate up to 46˝. The closer the MP to the center of
the WS, the larger its range of rotation.

In conclusion, despite having so many input variables, the
system is highly robust.

B. Stability analysis of the spatial CDPR

1) Stability Analysis I: Similarly as in Section III-A.1,
when considering only the errors in the vision system, the
stability criterion (20) simplifies to:

Πs1 “ Ls
pL´1
s “

«

I3 ´

´

retsˆ ´ rêtsˆ

¯

pL´1
ω

03 Lω pL
´1
ω

ff

ą 0

(32)
Since Πs1 is a p6 ˆ 6q–matrix, the analytical stability

analysis of spatial CDPRs turns out to be very complex.
The numerical results are shown in Fig. 6.
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Fig. 6. Example of possible combinations of design variables (∆e, θ, ∆θ)

Note that ∆e “ e´ ê “
`

s´ s˚
˘

´
`

ŝ` s˚
˘

“ s´ ŝ.
Similarly to the stability analysis of the planar CDPR, the

variable ranges are interdependent. It means that the lower
∆e, the higher the acceptable range for θ and/or ∆θ. The
following maximum values were found: piq ∆e can be at
most 1.5 m (Fig. 6 Cb.1 through 10); piiq θ can be at most
160˝ (e.g. Cb. 56); piiiq ∆θ can be at most 90˝ (e.g. Cb. 55).

2) Stability Analysis II: Here, as in Section III-A.2,
only the Jacobian matrices disappear from the closed-loop
equation (19); therefore, the stability criterion (20) becomes:

Πs2 “ Ls A
´1
d

pAd
pL´1
s ą 0 (33)

with

Πs2 “

«

cRp
p
pRc d3

03 Lω
cRp

p
pRc

pL´1
ω

ff

(34)



where d3 “
`

cRp
p
pRcrêtsˆ´retsˆ

cRp
p
pRc`

cRp
pRb

´

“

btc
‰

ˆ́
“

bt̂c
‰

ˆ

¯

bRp
p
pRc

˘

pL´1
ω

Due to the high variability of the previous numerical
analysis (Fig. 6), adding another two sets of spatial rotation
makes such a graph useless. It means that there is an infinite
number of possible combinations of axis-angle uθ with rota-
tion matrices bRp, pRc, and p

pRc. Looking at (34), it is clear
that the rotations are not acting independently. Conversely,
their interaction affects the stability of the system.

However it is possible to make some conclusions for the
other variables.

i) The system will be stable if ∆e ď e.
ii) The lower ∆e, the larger the available rotational range.

iii) Finally, ∆ptc does not affect system stability, as long
as it is reasonably small (tested range was up to 0.2 m).

Note that the Jacobian matrix has not been considered
as it is assumed to be precisely estimated. Accordingly, the
stability criterion is affected only by the uncertainties in
the transformation matrix pTc and by the vision algorithm.
It appears that the system stability is little sensitive to
uncertainties in pTc. Therefore, the object pose estimation
should be the primary focus for reducing perturbations.

3) Stability Analysis III: Finally, the uncertainties in all
the matrices Ls, A, and Ad are taken into account. The
stability criterion is kept in its full unsimplified form (20).

Some variable range examples to ensure system stability
are shown in Fig. 7. For readability, rotation matrix bRp has
been transformed to Euler angles and is noted as RPY .

Similarly to Section III-A.3, the effect of uncertainties
in the CDPR model on the stability of the system is in-
vestigated. The model of ACROBOT, the CDPR prototype
shown in Fig. 8 is used. This model considers the Cartesian
coordinates of exit points Ai and connection points Bi. The
WS size is 1ˆ 1ˆ 1 m. It is assumed that ∆bx,i “ ∆by,i “
∆bz,i “ 0.008 m.

Some noteworthy characteristics were observed in addition
to (i)-(ii) of Section III-A.3 :

i) The smaller ∆btp or ∆ptc, the higher the range of
rotation of the MP, especially about Z axis.

ii) The lower the rotation of the MP about Z axis, the
higher its rotation about X and Y axis.

iii) System stability is heavily dependent on MP position
in the base frame Fb. The closer the MP to the origin
of Fb, the larger ∆btp while keeping the CDPR stable.

iv) Similarly, the closer the MP to the origin of Fb, the
larger the range of rotation.

Therefore, the presented system is robust to large uncer-
tainties, including those in the robot model. As a conclusion,
if the robot model is not defined accurately, then using
vision-based control will give lead to better robot accuracy
than using model-based control of CDPRs.

IV. EXPERIMENTAL VALIDATION

A. Experimental Setup
To validate the stability analysis presented above, a small

spatial CDPR, named ACROBOT and shown in Fig. 8, is
used. It is assembled in a suspended configuration.

Fig. 7. Example of possible combinations of design variables (btp, ∆btp,
∆ptc, e, ∆e, φ, θ, ψ, ∆φ, ∆θ, ∆ψ)

base

�prilTags

camera

moving platform

cable

pulley

Fig. 8. ACROBOT: a CDPR prototype located at IRT Jules Verne, Nantes

For the visual servoing, a simple webcam Media-tech
AUTOPIX MT4018 is used. It is mounted on the MP of the
ACROBOT (eye-in-hand configuration) facing the ground.

To simplify the computer vision part, AprilTags [16] are
used as objects. They are recognized and localized with
algorithms available in ViSP library [17]. These tags are put
in various places on the ground as shown in Fig. 8. The robot
can then be controlled to reach any one of these tags as long
as it is in the field of view.

B. Experimental Results

The sources of known “base” uncertainties are:
i) Cable anchor points Bi cannot be precisely measured

due to the mechanical connections between the cables
and MP. In the model Bi is considered as a point,



while in experiments it is actually a point located on
a I0.016 m sphere around its nominal location;

ii) To be able to compute the Forward Jacobian as in (5),
we need to know bRp and cable unit vectors bui
from (3), which depend on actual pose of the MP in the
base frame expressed by the transformation matrix bTp.
It is complex to determine bTp, therefore an estimation
is made based on the camera velocity cvc using the
exponential map [14]:

pbTpqt`∆t “ p
bTcqt`∆t

cTp “ p
bTcqt expp

cvc,∆tq cTp
(35)

Note that cvc is the output of the control scheme, and
that pbTpqt“0 is an estimation itself1, because the initial
MP pose is not precisely known. Therefore, pbTpqt`∆t

is a coarse approximation.
iii) The auto-focus option of the chosen camera leads to

the image being zoomed in and out. This is not taken
into account, when the AprilTag is being detected,
leading to an imprecise computed object pose s.

Despite these uncertainties, the experiments show that they
do not destabilize the system.

Three types of experiments were made. First, with the
aforementioned “base” uncertainties. Second, adding volun-
tary perturbations within the stability bounds exhibited in
the previous section. And third, adding perturbations that do
not respect these bounds. The perturbation input values were
taken from Combination 18 in Fig. 7.

The experiments were defined as follows: initial MP pose
is ps “

“

0.097 ´0.026 0.323 20˝ ´20˝ 45˝
‰

. The
final MP pose is pf “

“

0.35 0.28 0.06 0˝ 0˝ 0˝
‰

.
Additional tolerable perturbations: 0.1 m for each component
of ∆btp; 5˝ about each axis. Additional perturbations out
of bounds of stability: 0.2 m for each component of ∆btp;
10˝ about each axis.

The experimental results are shown in Fig. 9 (see also the
accompanying video). The AprilTag trajectories are shown
in the first column. The error e over time is given in the
second column. The main conclusions are:

i) Despite the noise in the “base” case, a good decoupled
exponential decrease of e can be observed in Fig. 9(b).

ii) The trajectory of the center of the target is not a straight
line due to “base” perturbations (Fig. 9(a)).

iii) Once tolerable perturbations are added, the trajectory
becomes disrupted (see Fig. 9(c)) and the convergence
time increases (see Fig. 9(d)), but the system still
converges to its goal.

iv) Perturbations in the last case are out of the stability
bounds. Hence, the AprilTag leaves the image instead
of converging to its center as shown in Fig. 9(e).

To compare the vision-based control method of CDPRs to
other existing methods, it was chosen to implement a simple
model-based control. Given the previously mentioned initial

1For this CDPR, the initial pose was defined at the center of the WS,
which itself was measured by hand with a measurement error of ˘2 cm
along X and Y axes, resp. This allows to avoid the computation of forward
kinematics, which is a difficult task, since it requires a good knowledge of
cable lengths and tensions.
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Fig. 9. CDPR behavior depending on added perturbations. paq and pbq:
the AprilTag trajectory and error e over time for the “base” case; system
is stable. pcq and pdq: the AprilTag trajectory and error e over time when
tolerable perturbations are added; system is stable. peq and pfq: the AprilTag
trajectory and error e over time when significant perturbations out of bounds
of stability are added; system is not stable.

and final MP poses, ps and pf resp., a trajectory is generated
using a fifth-order polynomial [18]:

s “ bt5 ` ct4 ` dt3 ` et2 ` ft` g (36)

while considering the following conditions at the start and at
the end of the trajectory: sptsq “ 9sptsq “ :sptsq “ 0, sptf q “
1, and 9sptf q “ :sptf q “ 0.

The MP position btp and translational velocity bvp as a
function of time are expressed as:

#

btpptq “ ts ` ptf ´ tsq sptq
bvpptq “ ptf ´ tsq 9sptq

(37)

where ts and tf are the translational parts of ps and pf , resp.
As for the rotation, we start from psRpf “

bRT
ps
bRpf ,

where bRps and bRpf are the rotation matrices for poses ps
and pf , resp. When changed to axis-angle representation,
psRpf is noted as θpup. Here, the unit vector u is constant
and the angle θp is a function of time θpptq “ θpsptq, which
corresponds to a rotation matrix psRpcurr and allows us to
compute the current rotation matrix of the MP:

bRpcurr
“ bRps

psRpcurr
(38)



Finally, the angular velocity bωp is computed as:
bωpptq “ θpup 9sptq (39)

From the estimation of the MP pose through (37) and
(38), it is possible to update the estimated Jacobian matrix
pA. Then the cable velocities are computed as:

9l “ pA bvpptq (40)

where bvpptq “
“

bvTp ptq
bωTp ptq

‰T

Figure 10 shows the final pose of the MP. It appears that no
matter the additional perturbations, the MP reaches the same
pose with PBVS control as seen in Figs. 10(a) and 10(c).
On the contrary, using model-based control the final MP
pose is far from the targeted one for both the “base” case
(see Fig. 10(b)) and the “perturbed” one (see Fig. 10(d)).
Thus, CDPR model-based control is highly sensitive to un-
certainties in the robot model. On the contrary, PBVS control
turns out to be much more robust to perturbations. Indeed,
as long as the system is stable, any uncertainty in the model
has an effect on the transient phase, namely, the trajectory
performed to reach the goal, but not on the final reached
pose, which makes a clear difference in terms of accuracy
between vision-based control and pure model-based control.

(a) (b)

(c) (d)

Fig. 10. MP pose at the end of a prescribed trajectory: the “base case”
with paq PBVS control and pbq Model-based control; the “perturbed” case
with pcq PBVS control and pdq Model-based control

V. CONCLUSIONS

This paper proposed a method to analyze the stability of
Cable-Driven Parallel Robots (CDPRs) under vision-based
control. First, the stability of a planar CDPR was evaluated
analytically when possible, numerically otherwise. Then, the
stability of a spatial CDPR was assessed and experimentally
tested. Here, the stability is a function of the uncertainties
in the system. Different combinations of uncertainty ranges
that guarantee the CDPR stability were determined.

From the analysis carried out in this paper, it turns out that
a CDPR with a Pose-Based Visual Servoing (PBVS) control

is little sensitive to uncertainties in the robot model. Since
the object of interest is observed with a PBVS control, it is
possible to know whether the desired pose has been reached
or not. It means that no matter the amount of perturbations
in the system, the moving-platform (MP) will always reach
its targeted pose as long as the system is stable.

As a consequence, with a PBVS control the CDPR accu-
racy only depends on camera quality and the goal thresh-
olding algorithm. Therefore, vision-based control is a good
alternative to model-based control to improve the accuracy
of CDPRs.

Later on, a PBVS control will be implemented on a large
semi-industrial CDPR located at IRT Jules Verne and its sta-
bility will be studied. Image-Based Visual Servoing (IBVS)
will be considered instead of PBVS, and their robustness will
be compared. Finally, real objects will be used instead of
AprilTags to increase the uncertainties in the vision system.
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