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The strong Malthusian behavior of
growth-fragmentation processes

Jean Bertoin∗ Alexander R. Watson†

Draft, January 21, 2019

Growth-fragmentation processes describe the evolution of systems of cells
which grow continuously and fragment suddenly; they are used in models of cell
division and protein polymerisation. Typically, we may expect that in the long
run, the concentrations of cells with given masses increase at some exponential
rate, and that, after compensating for this, they arrive at an asymptotic profile.
Up to now, this question has mainly been studied for the average behavior of
the system, often by means of a natural partial integro-differential equation
and the associated spectral theory. However, the behavior of the system as a
whole, rather than only its average, is more delicate. In this work, we show that
a criterion found by one of the authors for exponential ergodicity on average is
actually sufficient to deduce stronger results about the convergence of the entire
collection of cells to a certain asymptotic profile, and we find some improved
explicit conditions for this to occur.

Keywords: Growth-fragmentation process, Malthus behavior, intrinsic martingale, branching
process.
2010 Mathematics Subject Classification: 35Q92, 37A30, 47D06, 60G46, 60J80.

1 Introduction
This work is concerned with the large time asymptotic behavior of a class of branching
Markov processes in continuous time, which we call growth-fragmentation processes. These
may be used to model the evolution of a population, for instance of bacteria, in which an
individual reproduces by fission into two or more new individuals.
Each individual grows continuously, with the growth depending deterministically on

the current mass of the individual, up to a random instant at which fission occurs. This
individual, which may be thought of as a mother, is then replaced by a family of new
individuals, referred to as her daughters. We assume that mass is preserved at fission,
∗Institute of Mathematics, University of Zurich, Switzerland
†School of Mathematics, University of Manchester, UK
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meaning that the mass of the mother immediately before the division is equal to the sum
of the masses of her daughters immediately afterwards. The time at which the fission
occurs and the masses of her daughters at fission are both random, and depend on the
mass of the mother individual. After a fission event, the daughters are in turn viewed as
mothers of future generations, and evolve according to the same dynamics, independently
of the other individuals.
Mathematically, we represent this as a process in continuous time, Z = (Zt, t ≥ 0), with

values in the space of point measures on (0,∞). Each individual is represented as an atom
in Zt, whose location is the individual’s mass. That is, if at time t there are n ∈ N∪ {∞}
individuals present, with masses z1, z2, . . . , then Zt = ∑n

i=1 δzi
, with δz the Dirac delta at

z ∈ (0,∞).
Growth-fragmentation processes are members of the family of structured population

models, which were first studied using analytic methods in the framework of linear integro-
differential equations. To demonstrate this connection, consider the intensity measure µt
of Zt, defined by 〈µt, f〉 = E[〈Zt, f〉] for all f ∈ Cc. That is, f is a continuous function on
(0,∞) with compact support, and the notation 〈m, f〉 =

∫
f dm is used for the integral

of a function f against a Radon measure m on (0,∞), whenever this makes sense. In
words, µt(A) describes the concentration of individuals at time t with masses in the set
A ⊂ (0,∞), and, informally, the evolution of the branching Markov process Z entails that
the family (µt)t≥0 solves an evolution equation (see [25] for background) of the form

d
dt〈µt, f〉 = 〈µt,Af〉, f ∈ C1

c , (1)

where the infinitesimal generator

Af(x) = c(x)f ′(x) +B(x)
∫
P

( ∞∑
i=1

f(xpi)− f(x)
)
κ(x, dp)

is naturally associated to the dynamics of Z and f is a smooth function in the domain
of A. The meaning of this operator will be described precisely later, when we derive it
in equation (8). Briefly, c : (0,∞) → (0,∞) is a continuous function representing the
growth rate, B : (0,∞)→ [0,∞) is a bounded measurable function representing the fission
rate, and κ a measurable probability kernel describing the relative masses of the daughters
obtained at fission. That is, an individual of mass x grows at rate c(x), experiences fission
at rate B(x) and, if fission occurs, then the relative masses of the daughters are drawn
from the distribution κ(x, ·). We shall refer to (1) as the growth-fragmentation equation.
A fundamental problem in this analytic setting is to determine explicit conditions on the

parameters governing the evolution of the system that ensure the so-called (asynchronous)
Malthusian behavior: for all f ∈ Cc,

E[〈Zt, f〉] = 〈µt, f〉 ∼ eλt〈µ0, h〉〈ν, f〉 as t→∞, (2)

where λ ∈ R, h is positive function, and ν a Radon measure on (0,∞) with 〈ν, h〉 = 1.
When (2) holds, we call λ the Malthus exponent and ν the asymptotic profile. There exists
a vast literature on this topic, and we content ourselves here to cite a few contributions
[5, 14, 22, 27] amongst the most recent ones, in which many further references can be
found.
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Spectral analysis of the infinitesimal generator A often plays a key role for establishing
(2). Indeed, if there exist λ ∈ R, a positive function h and a Radon measure ν that solve
the eigenproblem

Ah = λh , A′ν = λν , 〈ν, h〉 = 1, (3)
with A′ the adjoint operator to A, then (2) follows rather directly. In this direction,
the Perron-Frobenius paradigm, and more specifically the Krein-Rutman theorem (which
requires compactness of certain operators related to A) yield a powerful framework for
establishing the existence of solutions to the eigenproblem (3). This method has been
widely used in the literature; see, for instance, [38, 2, 24, 36]. Then λ arises as the leading
eigenvalue of A, i.e., the eigenvalue with the maximal real part, and h and ν respectively
as a corresponding positive eigenfunction and dual eigenmeasure.
A stochastic approach for establishing (2), which is based on the Feynman-Kac formula

and circumvents spectral theory, has been developed by the authors in [11, 8] and Cavalli in
[15]. To carry out this programme, we introduce, under the assumption supx>0 c(x)/x <∞,
the unique strong Markov process X on (0,∞) with generator

Gf(x) = 1
x
Af̄(x)− c(x)

x
f(x),

where f̄(x) = xf(x). Assume that X is irreducible and aperiodic, and define the Feynman-
Kac weight

Et = exp
(∫ t

0

c(Xs)
Xs

ds
)
,

and the Laplace transform

Lx,y(q) = Ex[e−qH(y)EH(y)1{H(y)<∞}],

where H(y) = inf{t > 0 : Xt = y} denotes the first hitting time of y by X. A weaker
version of Theorem 1.2 in [8] (see also Theorem 1.1 in [11]) can then be stated as follows.

Theorem 0. Fix x0 > 0. Define

λ = inf{q ∈ R : Lx0,x0(q) < 1}.

The value of λ ∈ R and is independent of x0. If

lim sup
x→0+

c(x)
x

< λ and lim sup
x→∞

c(x)
x

< λ, (4)

then the Malthusian behavior (2) holds (so λ is the Malthus exponent) with

h(x) = xLx,x0(λ) and ν(dy) = dy
h(y)c(y)|L′y,y(λ)| .

Indeed, in [8], it was even shown that (4) implies that (2) occurs at exponential rate.
Theorem 0 will form the basis of our work, the purpose of which is to investigate the
analog of (2) for the random variable 〈Zt, f〉 itself, rather than merely its expectation.
More precisely, assuming for simplicity that the growth-fragmentation process Z starts
from a single individual with mass x > 0 and writing Px for the corresponding probability
law, we prove the following result:
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Theorem 1. Under the assumptions of Theorem 0, the process Z exhibits strong Malthusian
behavior: for all x > 0 and for f any continuous function satisfying ‖f/h‖∞ < ∞, one
has

lim
t→∞

e−λt〈Zt, f〉 = 〈ν, f〉W∞ in L1(Px), (5)

where
W∞ = lim

t→∞
e−λt〈Zt, h〉 and Ex[W∞] = h(x).

The criterion (4) involves the Malthus exponent λ, which is itself usually not explicitly
known. It might therefore appear unsatisfactory. However, one can easily obtain lower-
bounds for λ solely in terms of the characteristics of the growth-fragmentation process, and
these yield a fully explicit criterion. We give an example of such a result as a conclusion
to this work.
Of course, even though the Malthusian behavior (2) suggests that its strong version (5)

might hold, this is by no means automatic. For instance, it should be plain that (5) cannot
hold when λ is negative.
The question of strong Malthusian behavior has been considered in the literature on

branching processes for several different models, including general Crump-Mode-Jagers
branching processes [37, 33, 34], branching random walks [12], branching diffusions [4,
26, 28, 29, 30], branching Markov processes [1, 18, 19, 43], pure fragmentation processes
[3, 10, 6] and certain other growth-fragmentation processes [9, 21, 41]. A notable recent
development is the study of the neutron transport equation and associated stochastic
processes [20, 32, 31], which uses a different probabilistic approach based on the notion of
quasi-stationarity, as in [16]. Of course, these are just a sample of works on this topic, and
many more references can be found cited within them. In particular, we can view (Zt, t ≥ 0)
as a general branching process in the sense of Jagers [33]. This means that, rather than
tracking the mass of individuals at a given time, we instead track the birth time, birth
mass and death (i.e., fission) time of every individual in each successive generation. This
process can be characterised in terms of a reproduction kernel; given the birth time and
mass of an individual, this describes the distribution of the birth times and masses of its
daughters. Assuming that this general branching process is Malthusian and supercritical
(as defined in Section 5 of [33] in terms of the reproduction kernel), and that a certain x log x
integrability condition and some further technical assumptions are fulfilled, Theorem 7.3 in
[33] essentially states that (5) holds with W∞ the terminal value of the so-called intrinsic
martingale. However, the assumptions and the quantities appearing in Theorem 7.3 in [33]
are defined in terms of the reproduction kernel, sometimes in an implicit way. It appears
to be rather difficult to understand the hypotheses and conclusions of [33] in terms of
the parameters of the growth-fragmentation process; for instance, it does not seem to be
straightforward to connect the general branching process with the eigenproblem (3).
Our approach combines classical elements with some more recent ingredients. Given the

Malthusian behaviour recalled in Theorem 0, the main technical issue is to find explicit
conditions, in terms of the characteristics of the growth-fragmentation, which ensure the
uniform integrability of the intrinsic martingale. However, the intrinsic martingale is
defined in terms of the generations of the associated general branching process rather than
in natural time (see Section 5 of [33]), and it is difficult to connect this to the dynamics of
the growth-fragmentation process.
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We will circumvent this difficulty as follows. As Theorem 0 may suggest, we first establish
a so-called many-to-one (or Feynman-Kac) formula, which provides an expression for the
intensity measure µt of the point process Zt in terms of a functional of the (piecewise
deterministic) Markov process X. Making use of results in [11], this enables us to confirm
that µt indeed solves the growth-fragmentation equation (1), and to construct a remarkable
additive martingale associated with the growth-fragmentation process Z, namely

Wt = e−λt〈Zt, h〉, t ≥ 0,

where the Malthus exponent λ and the function h are defined in terms of the Markov
process X. In fact,W is nothing but the version in natural times of the intrinsic martingale
indexed by generations, as defined in Section 5 of [33]. We shall then prove that the
boundedness in L2(Px), and hence the uniform integrability, of the martingale W follows
from (4) by adapting the well-known spinal decomposition technique (described in [13] for
branching random walks) to our framework.
The spine process, which is naturally associated to the intrinsic martingale, plays an

important role in the proof of the strong Malthusian behavior (5). Specifically, it yields a
key tightness property for the random point measures Zt, which then enables us to focus
on individuals with masses bounded away from 0 and from ∞. This is crucial to extend
the original method of Nerman [37] to our setting.
The rest of this paper is organized as follows. In Section 2, we describe the precise

construction of the growth-fragmentation process Z, which is needed in Section 3 to es-
tablish a useful many-to-one formula for the intensity measure µt of Zt. In particular,
a comparison with results in [11] makes the connection with the growth-fragmentation
equation (1) rigorous. The L2-boundedness of the intrinsic martingale is established in
Section 4 under the assumption (4), and we then prove the strong Malthusian behavior (5)
in Section 5. Section 6 is devoted to providing explicit conditions on the characteristics of
the growth-fragmentation that ensure (4).

2 Construction of the growth-fragmentation process
To start with, we introduce the three characteristics c, B and κ which govern the dynamics
of the growth-fragmentation process. First, let c : (0,∞)→ (0,∞) be a continuous function
with

sup
x>0

c(x)/x <∞, (6)

which describes the growth rate of individuals as a function of their masses. For every
x0 > 0, the initial value problem{

ẋ(t) = c(x(t)), t ≥ 0,
x(0) = x0,

(7)

has a unique solution that we interpret as the mass at time t of an individual with initial
mass x0 when no fission occurred before time t.
Next, we consider a bounded, measurable function B : (0,∞)→ [0,∞), which specifies

the rate at which a particle breaks (or branches) as a function of its mass. That is, the
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probability that no fission event has occurred by time t > 0 when the mass at the initial
time is x0, is given by

Px0 [no fission before time t] = exp
(
−
∫ t

0
B(x(s))ds

)
= exp

(
−
∫ x(t)

x0

B(y)
c(y) dy

)
.

To complete the description and specify the statistics at fission events, we need to
introduce some further notation. We call a non-increasing sequence p = (p1, p2, . . .) in the
unit sphere of `1, i.e.,

p1 ≥ p2 ≥ · · · ≥ 0 and
∑
i≥1

pi = 1,

a (proper) mass partition. In our setting, we interpret a mass partition as the sequence
(ranked in the non-increasing order) of the daughter-to-mother mass ratios at a fission
event, agreeing that pi = 0 when the mother begets less than i daughters. The space P of
mass partitions is naturally endowed with the `1-distance and we write B(P) for its Borel
σ-algebra. We consider a probability kernel

κ : (0,∞)× B(P)→ [0, 1],

and think of κ(x, dp) as the distribution of the random mass partition resulting from a
fission event that occurs when the mother has mass x > 0. We always implicitly assume
that κ(x, dp) has no atom at the trivial mass partition (1, 0, 0, . . .), as the latter corresponds
to a fictive fission.
We next provide some details on the construction of growth-fragmentation processes and

make the framework rigorous. We denote by U = ⋃
n≥0 Nn the Ulam-Harris tree of finite

sequences of positive integers, which will serve as labels for the individuals. As usual, we
interpret the length |u| = n of a sequence u ∈ Nn as a generation, and for i ∈ N, write ui
for the sequence in Nn+1 obtained by aggregating i to u as its (n+ 1)-th element, viewing
then ui as the i-th daughter of u. The unique element of N0, written ∅, will represent an
initial individual.
We fix x0 > 0 and aim at constructing the growth-fragmentation process (Zt, t ≥ 0)

started from a single atom at x0, which we understand to represent a single progenitor
individual, Eve. We denote by Px0 the corresponding probability measure. First consider
a random variable ζ in (0,∞] with cumulative distribution function

Px0 [ζ ≤ t] = 1− exp
(
−
∫ x(t)

x0

B(y)
c(y) dy

)
, t ≥ 0,

where x(·) denotes the solution to the flow velocity (7) started from x0. We view ζ as the
fission time of Eve, and thus the trajectory of Eve is

Z∅
t = x(t) for t < ζ.

We further set b∅ = 0 and d∅ = ζ, so [b∅, d∅) is the time interval during which Eve is
alive. We also view d∅ as the birth-time of the daughters of Eve and thus set bi = d∅ for
every i ∈ N.
Next, conditionally on d∅ = s < ∞, that is, equivalently, on Z∅

d∅− = x with x = x(s),
we pick a random mass partition p = (p1, . . .) according to the law κ(x, dp). We view
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xp1, xp2, . . . as the masses at birth of the daughters of Eve and continue the construction
iteratively in an obvious way. That is, conditionally on xpi = y > 0, the lifetime ζ i of the
i-th daughter of Eve has the same distribution as ζ under Py. Further set di = bi + ζ i, and
the trajectory of the i-th daughter of Eve is thus

Zi
t = x(t− bi) for t ∈ [bi, di),

with x(·) now denoting the solution to (7) started from y. We stress that, thanks to (6),
the boundary point 0 is a trap for the flow velocity, in the sense that the solution to (7)
with initial value x(0) = 0 is x(t) = 0 for all t. Thus 0 serves a cemetery state for particles,
and individuals with zero mass can be simply discarded.
This enables us construct recursively a trajectory (Zu

t : t ∈ [bu, du)) for every u ∈ U ,
and the state of the growth-fragmentation at time t is then given by the point measure on
(0,∞) with atoms at the locations of the individuals alive at time t, viz.

Zt =
∑
u∈U

1{t∈[bu,du)}δZu
t
.

We stress that the number of individuals may explode at a finite time even in situations
when every mother always begets finitely many children (see, e.g. [40]), and then infinitely
many fission events may occur on any non-degenerate time interval. On the other hand, it
is readily seen from our key assumption (6) that the total mass process increases at most
exponentially fast, specifically

〈Zt, Id〉 ≤ xeγt, Px-a.s.

where γ = supx>0 c(x)/x. Thus the point process Zt is always locally finite; however the
growth-fragmentation is not always a continuous time Markov chain.

3 A many-to-one formula
The first cornerstone of our analysis is a useful expression for the expectation of the integral
of some function with respect to the random point measure Zt in terms of a certain Markov
process X on (0,∞). In the literature, such identities are commonly referred to as many-
to-one formulas, they go back to [35, 39] and are known to play a crucial role in the analysis
of branching processes.
Recall that a size-biased pick from a mass partition p = (p1, . . .) refers to a random

element pK , where the distribution of the random index K is P(K = i) = pi for i ∈ N.
Size-biased picking enables us to map the probability kernel κ on (0,∞)×P into a kernel
k̄ on (0,∞)× (0, 1) by setting for every x > 0∫

(0,1)
g(r)k̄(x, dr) = B(x)

∫
P

∞∑
i=1

pig(pi)κ(x, dp)

for a generic measurable function g : (0, 1) → R+. We stress that
∫

(0,1) k̄(x, dr) = B(x)
since κ is a probability kernel on the space of proper mass partitions. We then introduce
the operator

Gf(x) = c(x)f ′(x) +
∫

(0,1)
(f(rx)− f(x))k̄(x, dr),
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say defined for functions f : (0,∞) → R which are bounded and possess a bounded and
continuous derivative. It is easily seen that G is the infinitesimal generator of a unique
Markov process, say X = (Xt, t ≥ 0). Recall that we have assumed condition (6) and that
B is bounded. By a slight abuse, we also use also the notation Px0 for the probability
measure under which this piecewise deterministic Markov process starts from X0 = x0.
The evolution of X can be described in words as follows. The process is driven by the

flow velocity (7) until it makes a first downwards jumps; more precisely, the total rate of
jump at state x is

∫
(0,1) k̄(x, dr) = B(x). Further, conditionally on the event that a jump

occurs when the process is about to reach x, the position after the jump is distributed
according to the image of the probability law B(x)−1k̄(x, dr) by the dilation r 7→ rx. An
alternative formulation which makes the connection to the growth-fragmentation process
more transparent, is that X follows the path of Eve up to its fission, then picks a daughter
at random according to a size-biased sampling and follows her path, and so on, and so
forth.
We now state a useful representation of the intensity measure of Zt in terms of the

Markov process X.

Lemma 2 (Many-to-one formula – Feynman-Kac representation). Define, for every t ≥ 0,

Et = exp
{∫ t

0

c(Xs)
Xs

ds
}
.

For every measurable f : (0,∞)→ R+ and every x0 > 0, we have

Ex0 [〈Zt, f〉] = x0Ex0

[
f(Xt)
Xt

Et
]
.

Lemma 2 is closely related to Lemma 2.2 in [11], which provides a representation of the
solution to the growth-fragmentation equation (1) by Feynman-Kac formula. Specifically,
introduce the growth-fragmentation operator A given for every f ∈ C1

c by

Af(x) = c(x)f ′(x) +
∫

(0,1)
r−1f(rx)k̄(x, dr)−B(x)f(x)

= c(x)f ′(x) +B(x)
∫
P

( ∞∑
i=1

f(xpi)− f(x)
)
κ(x, dp), (8)

then comparing Lemma 2 above and Lemma 2.2 in [11] shows that the intensity measure µt
of Zt solves (1) with µ0 = δx0 . A fairly natural approach for establishing Lemma 2 would
be to argue first that the intensity measure of Zt solves the growth-fragmentation equation
for A given by (8) and then invoke Lemma 2.2 in [11]. This idea is easy to implement
when the number of daughters after a fission event is bounded (for instance, when fissions
are always binary); however, making this analytic approach fully rigorous in the general
case would be rather tedious, as the total number of individuals may explode in finite time
and thus fission events accumulate. We rather follow a classical probabilistic approach and
refer to the treatise by Del Moral [23] and the lecture notes of Shi [42] for background.

Proof. We set T0 = 0 and then write T1 < T2 < · · · for the sequence of the jump times of
the piecewise deterministic Markov process X. We claim that for every generation n ≥ 0,
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there is the identity

Ex0

 ∑
|u|=n

f(Zu
t )1{bu≤t<du}

 = x0Ex0

[
1{Tn≤t<Tn+1}

f(Xt)
Xt

Et
]
. (9)

The many-to-one formula of Lemma 2 then follows by summing over all generations.
We shall now establish (9) by iteration. The identity

exp
(∫ t

0

c(x(s))
x(s) ds

)
= x(t)
x(0) (10)

for the solution to the flow velocity (7) makes (9) obvious for the generation n = 0.
Next, by considering the fission rates of Eve, we get that for every measurable function

g : [0,∞)× [0,∞)→ R+ with g(t, 0) = 0, we have

Ex0

[ ∞∑
i=1

g(bi, Zi
bi)
]

=
∫ ∞

0
dtB(x(t)) exp

(
−
∫ t

0
B(x(s))ds

) ∫
P
κ(x(t), dp)

∞∑
i=1

g(t, x(t)pi).

(11)
We then write ∞∑

i=1
g(t, x(t)pi) = x(t)

∞∑
i=1

pi
g(t, x(t)pi)
x(t)pi

,

so that by comparing with the jump rates of X, we see that the right-hand side of (11)
equals

Ex0

[
g(T1, XT1)

XT1

XT1−

]
= x0Ex0

[
g(T1, XT1)

XT1

ET1

]
,

where the identity stems from (10). Putting the pieces together, we have shown that

Ex0

[ ∞∑
i=1

g(bi, Zi
bi)
]

= x0Ex0

[
g(T1, XT1)

XT1

ET1

]
. (12)

We then assume that (9) holds for a given n ≥ 0. Applying the branching property at
the fission event of Eve, we get

Ex0

 ∑
|u|=n+1

f(Zu
t )1{bu≤t<du}

 = Ex0

[ ∞∑
i=1

g(bi, Zi
bi)
]
,

with

g(s, y) = Ey

 ∑
|u|=n

f(Zu
t )1{bu≤t−s<du}

 = yEy
[
1{Tn≤t−s<Tn+1}

f(Xt−s)
Xt−s

Et−s
]

for s ≤ t and g(s, y) = 0 otherwise. We conclude from the strong Markov property at the
first jump time T1 of X, the fact that the functional E is multiplicative, and (12), that the
many-to-one formula (9) holds for the generation n + 1. By induction, (9) holds for any
n.
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In the final section of this work, we shall also need a version of Lemma 2 extended to
the situation where, roughly speaking, individuals are frozen at times which are observable
from their individual trajectories. Specifically, we define a simple stopping line to be a
functional T on the space of piecewise continuous trajectories z = (zt)t≥0 and with values
in [0,∞], such that for every t ≥ 0 and every trajectory z, if T (z) ≤ t, then T (z) = T (z′)
for any trajectory z′ that coincides with z on the time-interval [0, t]. Typically, T (z) may
be the instant of the j-th jump of z, or the first entrance time T (z) = inf{t > 0 : zt ∈ A} in
some measurable set A ⊂ (0,∞). The notion of a simple stopping line is a particular case
of the more general stopping line introduced by Chauvin [17]. The restriction simplifies
the proofs somewhat, and will be sufficient for our applications later.
We next introduce the notion of ancestral trajectories. Recall from the preceding section

the construction of the trajectory (Zu
t : t ∈ [bu, du)) for an individual u = u1 . . . un ∈ U .

The sequence of prefixes uj = u1 . . . uj for j = 1, . . . , n forms the ancestral lineage of
that individual. Note that, as customary for many branching models, the death-time of a
mother always coincides with the birth-time of her children, so every individual u alive at
time t > 0 (i.e. with bu ≤ t < du) has a unique ancestor alive at time s ∈ [0, t), which is
the unique prefix uj with buj ≤ s < du

j . We can thus define unambiguously the mass at
time s of the unique ancestor of u which is alive at that time, viz. Zu

s = Zuj

s . This way,
we extend Zu to [0, du), and get the ancestral trajectory of the individual u.
For the sake of simplicity, for any simple stopping line T and any trajectory z, we write

zT = zT (z), and define the point process of individuals frozen at T as

ZT =
∑
u∈U

1{T (Zu)∈[bu,du)}δZu
T
.

Lemma 3. Let T be a simple stopping line. For every measurable f : (0,∞) → R+ and
every x0 > 0, we have

Ex0 [〈ZT , f〉] = x0Ex0

[
f(XT )
XT

ET (X), T (X) <∞
]
.

Proof. The proof is similar to that of Lemma 2, and we use the same notation as there. In
particular, we write x(·) for the solution to the flow velocity (7) started from x(0) = x0,
and set T (x(·)) = t0 ∈ [0,∞]. By the definition of a simple stopping line, we have obviously
that under Px0 , T (Z∅) = t0 a.s. on the event 0 ≤ T (Z∅) ≤ d∅, and also T (X) = t0 a.s. on
the event 0 ≤ T (X) ≤ T1. Using (10), we then get

E
[
f(Z∅

T )1{b∅≤T (Z∅)<d∅}
]

= x0Ex0

[
1{0≤T<T1}

f(XT )
XT

ET
]
.

Just as in the proof of Lemma 2, it follows readily by induction that for every generation
n ≥ 0, there is the identity

Ex0

 ∑
|u|=n

f(Zu
T )1{bu≤T (Zu)<du}

 = x0Ex0

[
1{Tn≤T<Tn+1}

f(XT )
XT

ET
]
,

and we conclude the proof by summing over generations.
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4 Boundedness of the intrinsic martingale in L2(P)
In order to apply results from [11, 8], we shall now make some further fairly mild as-
sumptions that will be enforced throughout the rest of this work. Specifically, we suppose
henceforth that

the Markov process X, with generator G, is irreducible and aperiodic. (13)

Although (13) is expressed in terms of the Markov processX rather than the characteristics
of the growth-fragmentation process, it is easy to give some fairly general and simple
conditions in terms of c, B and κ that guarantee (13); see notably Lemma 3.1 of [8] for
a discussion of irreducibility. We further stress that aperiodicity should not be taken to
granted if we do not assume the jump kernel k̄ to be absolutely continuous.
Remark 4. We mention that a further assumption is made in [11, 8], namely that the
kernel k̄(x, dy) is absolutely continuous with respect to the Lebesgue measure, and that
the function (0,∞) 3 x 7→ k̄(x, ·) ∈ L1(0,∞) is continuous. However, this is only needed in
[11] to ensure some analytic properties (typically, the Feller property of the semigroup, or
the connection with the eigenproblem (3)), but had no role in the probabilistic arguments
developed there. We can safely drop this assumption here, and apply results of [11, 8] for
which it was irrelevant.
Following [11], we introduce the Laplace transform

Lx,y(q) = Ex
[
e−qH(y)EH(y)1{H(y)<∞}

]
, q ∈ R,

where H(y) = inf{t > 0 : Xt = y}. For any x0 > 0, the map Lx0,x0 : R → (0,∞] is a
convex non-increasing function with limq→∞ Lx0,x0(q) = 0. We then define the Malthus
exponent as

λ := inf{q ∈ R : Lx0,x0(q) < 1}.

Recall that the value of λ does not depend on the choice for x0, and that although our defi-
nition of the Malthus exponent apparently differs from that in Section 5 of [33], Proposition
3.3 of [11] strongly suggests that the two actually should yield the same quantity.
With this in place, we define the functions `, h : (0,∞)→ (0,∞) by

`(x) = Lx,x0(λ) and h(x) = x`(x),

and may now state the main result of this section.

Theorem 5. Assume

lim sup
x→0+

c(x)
x

< λ and lim sup
x→∞

c(x)
x

< λ. (14)

Then for every x > 0, the process

Wt = e−λt〈Zt, h〉, t ≥ 0

is a martingale bounded in L2(Px).
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Before tackling the core of the proof of Theorem 5, let us first recall some features proved
in [11, 8] and their immediate consequences. From Section 3.5 in [8], it is known that (14)
ensures the existence of some q < λ with Lx0,x0(q) < ∞. By continuity and non-increase
of the function Lx0,x0 on its domain, this guarantees that

Lx0,x0(λ) = 1. (15)

Theorem 4.4 in [11] then shows that e−λt`(Xt)Et is a Px-martingale, and we can combine
the many-to-one formula of Lemma 2 and the branching property of Z to conclude thatWt

is indeed a Px-martingale. We therefore call h a λ-harmonic function; in this vein, recall
also from Corollary 4.5 and Lemma 4.6 in [11] that h is an eigenfunction for the eigenvalue
λ of (an extension of) the growth-fragmentation operator A which has been defined in (8).
We call W = (Wt : t ≥ 0) the intrinsic martingale, as it bears a close connection to the

process with the same name that has been defined in Section 5 of [33]. To explain this
connection, it is convenient to view the atomic measure e−λtZt as a weighted version of
point measure Zt, where the weight of any individual at time t is e−λt. In this setting, Wt

is given by the integral of the λ-harmonic function h with respect to the weighted atomic
measure e−λtZt. Next, consider for each k ∈ N, the simple stopping line Tk at which
a trajectory makes its k-th jump, and recall from the preceding section, that ZTk

then
denotes the point measure obtained from Z by freezing individuals at the instant when
their ancestral trajectories jump for the k-th time. In other words, ZTk

is the point process
that describes the position at birth of the individuals of the k-th generation. Just, as above,
we further discount the weight assigned to each individual at rate λ, so that the weight of
an individual of the k-th generation which is born at time b is e−λb (of course, individuals
at the same generation are born at different times, and thus have different weights). The
integral, say Wk, of the λ-harmonic function h with respect to this atomic measure, is
precisely the intrinsic martingale as defined in [33]. Using more general stopping line
techniques, one can check that the boundedness in L2 of (Wt : t ≥ 0) can be transferred
to (Wk : k ∈ N). Details are left to the interested reader.
Remark 6. Actually (15), which is a weaker assumption than (14), not only ensures that
the process in continuous time Wt = e−λt〈Zt, h〉 is a martingale, but also that the same
holds for the process indexed by generations (Wk : k ∈ N). Indeed, from the very definition
of the function Lx0,x0 , (15) states that the expected value under Px0 of the nonnegative
martingale e−λt`(Xt)Et, evaluated at the first return time H(x0), equals 1, and therefore
the stopped martingale

e−λt∧H(x0)`(Xt∧H(x0))Et∧H(x0), t ≥ 0

is uniformly integrable. Plainly, the first jump time of X, T1 occurs before H(x0), and the
optional sampling theorem yields

Ex0 [e−λT1ET1`(XT1)] = 1.

One concludes from the many-to-one formula of Lemma 3 (or rather, an easy pathwise
extension of it) that Ex[W1] = h(x) for all x > 0, and the martingale property of W can
now be seen from the branching property.

12



The rest of this section is devoted to the proof of Theorem 5; in particular we assume
henceforth that (14) is fulfilled.
To start with, we recall from Lemma 4.6 of [11] that the function ` is bounded and

continuous, and as a consequence

sup
y>0

h(y)/y = sup
y>0

`(y) = ‖`‖∞ <∞. (16)

Moreover ` and h are strictly positive, and thus bounded away from 0 on compact subsets
of (0,∞). We shall use often these facts in the sequel.
The heart of the matter is thus to establish boundedness of (Wt)t≥0 in L2(Px), for which

we follow the classical path based on the probability tilting and spine decomposition; see
e.g. [13] and references therein.
For an arbitrary time t > 0, one defines a probability measure P̃x on an augmented

probability space by further distinguishing an individual Ut, called the spine, in such a
way that

P̃x[Λ ∩ {Ut = u}] = h(x)−1e−λtEx[h(Zu
t )1Λ1{bu≤t<du}]

for Λ ∈ Ft = σ(Zt, s ≤ t) and u ∈ U . The projection of P̃x on Ft is then absolutely
continuous with respect to Px with density Wt/W0. Recall that the martingale property
of W ensures the consistency of the definition of P̃x. Precisely, under the conditional law
P̃x[· | Ft], the spine is picked at random amongst the individuals alive at time t according
to an h-biased sampling, and the ancestor Us of Ut at time s ≤ t serves as spine at time s.
In order to describe the dynamics of the mass of the spine X̃t = ZUt

t as time passes, we
introduce first for every x > 0

w(x) =
∫
P

∞∑
i=1

h(xpi)κ(x, dp)

and set
B̃(x) = w(x)

h(x)B(x) and κ̃(x, dp) = w(x)−1
∞∑
i=1

h(xpi)κ(x, dp). (17)

In short, one readily checks that just as X, X̃ increases steadily and has only negative
jumps. Its growth is driven by the flow velocity (7), and the total rate of negative jumps at
location x is B̃(x), which is the total fission rate of the spine when its mass is x. Further,
κ̃(x, dp) gives the distribution of the random mass partition resulting from the fission of
the spine, given that the mass of the latter immediately before that fission event is x. At
the fission event of the spine, a daughter is selected at random by h-biased sampling and
becomes the new spine. We now gather some facts about the spine which will be useful
later on.
Lemma 7. Set X̃t = ZUt

t for the mass of the spine at time t ≥ 0.
(i) The process X̃ is Markovian and exponentially point recurrent, in the sense that if

we write H̃(y) = inf{t > 0 : X̃t = y} for the first hitting time of y > 0 by X̃, then
there exists ε > 0 such that Ex[exp(εH̃(y)] <∞.

(ii) The following many-to one formula holds: for every nonnegative measurable function
f on (0,∞), we have

Ex[〈Zt, f〉] = eλth(x)Ẽx[f(X̃t)/h(X̃t)]. (18)
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(iii) Any function g : (0,∞)→ R such that g` is continuously differentiable belongs to the
domain of its extended infinitesimal generator G̃ and

G̃g(x) = 1
`(x)G(g`)(x) + (c(x)/x− λ)g(x), (19)

in the sense that the process

g(X̃t)−
∫ t

0
G̃g(X̃s) ds

is a P̃x-local martingale for every x > 0.

Proof. It follows immediately from the definition of the spine and the many-to-one formula
of Lemma 2 that for every t ≥ 0, the law of X̃t under P̃x is absolutely continuous with
respect to that of Xt under Px, with density e−λtEt`(Xt)/`(X0). Recall that the latter is
a Px-martingale, which served in Section 5 of [11] to construct a point-recurrent Markov
Y = (Yt, t ≥ 0) by probability tilting. Hence Y has the same one-dimensional marginals
as X̃, and since the two processes are Markovian, they have the same law.
The claim that X̃ (that is equivalently, Y ) is exponentially point recurrent, stems from

the proof of Theorem 2 of [8] and Lemma 5.2(iii) of [11]. The many-to-one formula (18)
merely rephrases the very definition of the spine. Finally, the third claim about the in-
finitesimal generator follows from Lemma 5.1 in [11].

Remark 8. The description of the dynamics governing the evolution of the spine entails
that its infinitesimal generator can also be expressed by

G̃f(x) = c(x)f ′(x) + B(x)
h(x)

∫
P

( ∞∑
i=1

h(xpi)f(xpi)− f(x)
)
κ(x, dp), (20)

say for any f ∈ C1
c . The agreement between (19) and (20) can be seen from the identity

G`(x) = (λ− c(x)/x)`(x), which is proved in Corollary 4.5(i) of [11].
We readily deduce from Lemma 7 that the intensity measure of the growth-fragmentation

satisfies the Malthusian behavior (2) uniformly on compact sets.

Corollary 9. For every compact set K ⊂ (0,∞) and every continuous function f with
‖f/h‖∞ <∞, we have

lim
t→∞

e−λtEx[〈Zt, f〉] = h(x)〈ν, f〉 uniformly for x ∈ K,

where the asymptotic profile is given by ν = h−1π, with π the unique stationary law of the
spine process X̃.

Proof. Suppose K ⊂ [b, b′] for some 0 < b < b′ < ∞, and fix ε <∈ (0, 1). For every
0 < x < y, let s(x, y) denote the instant when the flow velocity (7) started from x reaches
y.
Since the total jump rate B̃ of X̃ remains bounded on K and the growth rate c is

bounded away from 0 on K, we can find a finite sequence b = x1 < x2 < . . . < xj = b′

such that for every i = 1, . . . , j − 1 and every x ∈ (xi, xi+1):

s(x, xi+1) < 1 and s(xi, x) < 1,
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as well as

P̃x(H̃(xi+1) = s(x, xi+1)) > 1− ε and P̃xi
(H̃(x) = s(xi, x)) > 1− ε.

An immediate application of the simple Markov property now shows that for every i =
1, . . . , j − 1, every x ∈ (xi, xi+1), every t ≥ 1, and every nonnegative measurable function
g, the following bounds hold

(1− ε)Ẽxi+1(g(X̃t−s(x,xi+1))) ≤ Ẽx(g(X̃t)) ≤ (1− ε)−1Ẽxi
(g(X̃t+s(xi,x)))

On the other hand, we know that X̃ is irreducible, aperiodic and ergodic, with stationary
law π (recall Lemma 7(i)). Since ε can be chosen arbitrarily small, it follows from above
that X̃ is uniformly ergodic on K, in the sense that for every continuous and bounded
function g,

lim
t→∞

Ẽx(g(X̃t)) = 〈π, g〉 uniformly for x ∈ K.

We conclude the proof with an appeal to the many-to-one formula of Lemma 7 (ii), taking
g = f/h.

The next lemma is a cornerstone of the proof of Theorem 5.

Lemma 10. We have:

(i) There exists a <∞ such that, for all x > 0 and t ≥ 0,

Ẽx[1/`(X̃t)] ≤ at+ 1/`(x).

(ii) There exists some λ′ < λ such that, for all x > 0,

lim
t→∞

e−λ′tX̃t = 0 in L∞(P̃x).

Proof. (i) We apply Lemma 7(iii) to g = 1/`, with

G̃
(1
`

)
(x) = (c(x)/x− λ)/`(x).

Our assumption (14) ensures that the right-hand side above is negative for all x aside from
some compact subset of (0,∞). Taking a = supx>0 G̃ (1/`) < ∞, we deduce from Lemma
7(iii) by optional sampling that Ẽx[1/`(X̃t)]− at ≤ 1/`(x), which entails our claim.
(ii) Recall from the description of the dynamics of the spine before the statement that X̃

increases continuously with velocity c and has only negative jumps. As a consequence, X̃
is bounded from above by the solution to the flow velocity (7). One readily deduces that
limt→∞ e−λ′tx(t) = 0 for every λ′ > lim supx→∞ c(x)/x, and since lim supx→∞ c(x)/x < λ
according to our standing assumption (14), this establishes our claim.

We now have all the ingredients needed to prove Theorem 5

15



Proof of Theorem 5. Since the projection on Ft of P̃x is absolutely continuous with density
Wt/W0, the process W is bounded in L2(Px) if and only if supt≥0 Ẽx[Wt] <∞. We already
know from Lemma 10(ii) that supt≥0 Ẽx[e−λtX̃t] < ∞, and we are thus left with checking
that

sup
t≥0

Ẽx[W ′
t ] <∞, (21)

where
W ′
t = Wt − e−λtX̃t.

In this direction, it is well-known and easily checked that the law of Z under the new
probability measure P̃x can be constructed by the following procedure, known as the spine
decomposition. After each fission event of the spine, all the daughters except the new
spine start independent growth-fragmentation processes following the genuine dynamics of
Z under P. This spine decomposition enables us to estimate the conditional expectation
of W ′

t under P̃x, given the spine and its sibling. At each time, say s > 0, at which a fission
occurs for the spine, we write p(s) = (p1(s), . . .) for the resulting mass partition, and I(s)
for the index of the daughter spine. Combining this with the fact that (Ws : s ≥ 0) is a
Py-martingale for all y > 0 entails the identity

Ẽx
[
W ′
t | (X̃s,p(s), I(s))s≥0

]
=

∑
s∈F̃ ,s≤t

e−λs
∑
i 6=I(s)

h(X̃s−pi(s)) ,

where F̃ denotes the set of fission times of the spine. Note from (16) that∑h(xpi) ≤ x‖`‖∞
for every x > 0 and every mass-partition p = (p1, . . .), so the right-hand side is bounded
from above by

‖`‖∞
∑

s∈F̃ ,s≤t

e−λsX̃s−,

and to prove (21), we now only need to check that

Ẽx

∑
s∈F̃

e−λsX̃s−

 <∞.
Recall from (17) that B̃ = wB/h describes the fission rate of the spine, and observe

from (16) that w(x) ≤ ‖`‖∞x, so that

B̃(x) ≤ ‖`‖∞‖B‖∞
1
`(x) for all x > 0.

This entails that

Ẽx

∑
s∈F̃

e−λsX̃s−

 ≤ ‖`‖∞‖B‖∞Ẽx
[∫ ∞

0
e−λs X̃s

`(X̃s)
ds
]
.

We now see that the expectation in the right-hand side is indeed finite by writing first∫ ∞
0

e−λs X̃s

`(X̃s)
ds =

∫ ∞
0

1
`(X̃s)

· e−λ′sX̃s · e−(λ−λ′)s ds

and then applying Lemma 10.
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5 Strong Malthusian behavior
We assume again throughout this section that the assumption (14) is fulfilled. We will
prove Theorem 1: the strong Malthusian behavior (5) then holds.
The proof relies on a couple of technical lemmas. Recall from Section 3 the notation

Zu : [0, du)→ (0,∞) for the ancestral trajectory of the individual u, and agree for the sake
of simplicity that f(Zu

t ) = 0 for every function f whenever t ≥ du.
The first lemma states a simple tightness result.

Lemma 11. For every x > 0 and ε > 0, there exists a compact K ⊂ (0,∞) such that for
all t ≥ 0:

e−λtEx

 ∑
u∈U :bu≤t<du

h(Zu
t )1{Zu

t 6∈K}

 < ε.

Proof. From the very definition of the spine X̃, there is the identity

e−λtEx

 ∑
u∈U :bu≤t<du

h(Zu
t )1{Zu

t 6∈K}

 = h(x)P̃x
[
X̃t 6∈ K

]
.

Recall from Lemma 7(i) that X̃ is positive recurrent; as a consequence the family of its
one-dimensional marginals under P̃x is tight, which entails our claim.

The second lemma reinforces the boundedness in L2 of the intrinsic martingale, cf.
Theorem 5.

Lemma 12. For every compact set K ⊂ (0,∞), we have

sup
x∈K

sup
t≥0

Ex
[
W 2
t

]
<∞.

Proof. We may assume that K = [b, b′] is a bounded interval. For any x ∈ (b, b′], we write
s(x) for the time when the flow velocity (7) started from b reaches x. We work under Pb
and consider the event Λx that the Eve individual hits x before a fission event occurs.
We have on the one hand, that the law of Zs(x)+t conditionally on Λx is the same as that

of Zt under Px. In particular, the law of Wt under Px is the same as that of eλs(x)Ws(x)+t
under Pb[· | Λx], and thus

sup
t≥0

Ex
[
W 2
t

]
≤ eλs(x)

Pb[Λx]
Eb
[
W 2
∞

]
.

On the other hand, for every x ∈ (b, b′], we have s(x) ≤ s(b′) <∞ and

Pb[Λx] ≥ Pb[Λb′ ] = exp
(
−
∫ b′

b

B(y)
c(y) dy

)
> 0,

and our claim is proven.

We have now all the ingredients to prove Theorem 1.
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Proof of Theorem 1. We suppose that 0 ≤ f ≤ h, which induces of course no loss of
generality. Our aim is to check that e−λ(t+s)〈Zt+s, f〉 is arbitrarily close to 〈ν, f〉Wt in
L1(Px) when s and t are sufficiently large. In this direction, recall that Ft denotes the
natural filtration generated by Zt and use the branching property at time t to express the
former quantity as

e−λ(t+s)〈Zt+s, f〉 =
∑

u∈U :bu≤t<du

e−λth(Zu
t ) · 1

h(Zu
t )e−λs〈Z(u)

s , f〉,

where conditionally on Ft, the processes Z(u) are independent versions of the growth-
fragmentation Z started from Zu

t .
Fix ε > 0. To start with, we choose a compact subset K ⊂ (0,∞) as in Lemma

11, and restrict the sum above to individuals u with Zu
t 6∈ K. Observe first that, since

〈Z(u)
s , f〉 ≤ 〈Z(u)

s , h〉 and h is λ-harmonic, taking the conditional expectation given Ft yields

Ex

 ∑
u∈U ,

bu≤t<du

e−λth(Zu
t )1{Zu

t 6∈K} ·
1

h(Zu
t )e−λs〈Z(u)

s , f〉

 ≤ Ex

 ∑
u∈U ,

bu≤t<du

e−λth(Zu
t )1{Zu

t 6∈K}

 .
From the very choice of K, there is the bound

Ex

 ∑
u∈U :bu≤t<du

e−λth(Zu
t )1{Zu

t 6∈K} ·
1

h(Zu
t )e−λs〈Z(u)

s , f〉

 ≤ ε. (22)

Next, recall from Lemma 12 that

C(K) := sup
y∈K

sup
s≥0

Ey
[
W 2
s

]
<∞,

and consider
A(u, t, s) = 1

h(Zu
t )e−λs〈Z(u)

s , f〉

together with its conditional expectation given Ft

a(u, t, s) = Ex[A(u, t, s) | Ft].

Again, since 0 ≤ f ≤ h, for every u with Zu
t ∈ K, we have

Ex[(A(u, t, s)− a(u, t, s))2 | Ft] ≤ 4C(K).

Since conditionally on Ft, the variables A(u, t, s)− a(u, t, s) for u ∈ U are independent
and centered, there is the identity

Ex


∣∣∣∣∣∣

∑
u∈U :bu≤t<du

e−λth(Zu
t )1{Zu

t ∈K} · (A(u, t, s)− a(u, t, s))

∣∣∣∣∣∣
2


= Ex

 ∑
u∈U :bu≤t<du

e−2λth2(Zu
t )1{Zu

t ∈K} · Ex
[
(A(u, t, s)− a(u, t, s))2

∣∣∣ Ft]
 ,
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and we deduce from above that this quantity is bounded from above by

4C(K)e−λth(x) max
y∈K

h(y).

This upper-bound tends to 0 as t→∞, and it thus holds that

Ex

∣∣∣∣∣∣
∑

u∈U :bu≤t<du

e−λth(Zu
t )1{Zu

t ∈K} · (A(u, t, s)− a(u, t, s))

∣∣∣∣∣∣
 < ε

for all t sufficiently large.
On the other hand, writing y = Zu

t , we have from the branching property

a(u, t, s) = 1
h(y)e−λsEy [〈Zs, f〉] ,

and Corollary 9 entails that for all s sufficiently large, |a(u, t, s) − 〈ν, f〉| ≤ ε for all
individuals u with Zu

t ∈ K. Using the bound (22) with h in place of f for individuals u
with Zu

t 6∈ K and putting the pieces together, we have shown that for all s, t sufficiently
large,

Ex
[∣∣∣e−λ(t+s)〈Zt+s, f〉 − 〈ν, f〉Wt

∣∣∣] ≤ (2 + h(x))ε,

which completes the proof.

6 Explicit conditions for the strong Malthusian behavior
The key condition for strong Malthusian behavior, (14), is given in terms of the Malthus
exponent λ, which is not known explicitly in general. In this final section, we discuss
explicit criteria in terms of the characteristics of Z ensuring that λ > 0, so that condition
(14) then immediately follows from the simpler requirement

lim
x→0+

c(x)/x = lim
x→∞

c(x)/x = 0.

In this direction, we recall first that Theorem 1 in [24] already gives sufficient conditions for
the strict positivity of the leading eigenvalue in the eigenproblem (3). More recently, it has
been pointed out in Proposition 3.4(ii) of [8] that if the Markov process X is recurrent, and
the uninteresting case when c(x) = ax is a linear function excluded, then λ > infx>0 c(x)/x.
(If c(x) = ax, then λ = a, h(x) = x, and one readily checks that the martingale W is
actually constant.) It was further argued in Section 3.6 in [8] that sufficient conditions
warranting recurrence for X are easy to formulate. For instance, it suffices that there exist
some q∞ > 0 and x∞ > 0 such that

q∞c(x)/x+
∫

(0,1)
(rq∞ − 1)k̄(x, dr) ≤ 0 for all x ≥ x∞,

and also some q0 > 0 and x0 > 0 such that

−q0c(x)/x+
∫

(0,1)
(r−q0 − 1)k̄(x, dr) ≤ 0 for all x ≤ x0.
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In this section, we shall show that a somewhat weaker condition actually suffices. For
the sake of simplicity, we focus on the situation when fissions are binary (which puts Z in
the class of Markovian growth-fragmentations defined in [7]). However, it is immediate to
adapt the argument to the general case.
Assume that, for all x > 0, κ(x, dp) is supported by the set of binary mass partitions

p = (1 − r, r, 0, . . .) with r ∈ (0, 1/2]. It is then more convenient to represent the fission
kernel κ by a probability kernel %(x, dr) on (0, 1/2], such that for all functionals g ≥ 0 on
P , ∫

P
g(p)κ(x, dp) =

∫
(0,1/2]

g(1− r, r, 0, . . .)%(x, dr).

In particular, there is the identity∫
(0,1)

f(r)k̄(x, dr) = B(x)
∫

(0,1/2]
((1− r)f(1− r) + rf(r))%(x, dr).

Proposition 13. In the notation above, assume that there exist q∞, x∞ > 0 such that

q∞c(x)/x+B(x)
∫

(0,1/2]
(rq∞ − 1)%(x, dr) ≤ 0 for all x ≥ x∞,

and q0, x0 > 0 such that

−q0c(x)/x+B(x)
∫

(0,1/2]
((1− r)−q0 − 1)%(x, dr) ≤ 0 for all x ≤ x0.

Then, the Malthus exponent λ is positive.

Proof. Let a ∈ (x0, x∞). By the definition of the Malthus exponent in Section 4 and the
right-continuity of the function La,a, we see that λ > 0 if and only if La,a(0) ∈ (1,∞]. We
thus have to check that

Ea
[
EH(a), H(a) <∞

]
> 1,

that is, thanks to the many-to-one formula of Lemma 3, that

Ea[〈ZH(a),1〉] > 1,

where 1 is the constant function with value 1. A fortiori, it suffices to check that
〈ZH(a),1〉 ≥ 1 Pa-a.s., and that this inequality is strict with positive Pa-probability. In
words, we freeze individuals at their first return time to a; it is easy to construct an event
with positive probability on which there are two or more frozen individuals, so we only
need to verify that we get at least one frozen individual Pa-a.s.
In this direction, we focus on a specific ancestral trajectory, say X∗, which is defined as

follows. Recall that any trajectory is driven by the flow velocity (7) between consecutive
times of downward jumps, so we only need to explain how we select daughters at fission
events. When a fission event occurs at a time t with X∗t− = x∗ > a, producing two
daughters, say rx∗ and (1 − r)x∗ for some r ∈ (0, 1/2], then we choose the smallest
daughter, i.e. X∗t = rx∗, whereas if x∗ < a then we choose the largest daughter, i.e.
X∗t = (1− r)x∗. The process X∗ is then Markovian with infinitesimal generator

G∗f(x) = c(x)f ′(x) +B(x)
∫

(0,1/2]
(1{x>a}f(rx) + 1{x<a}f((1− r)x)− f(x))%(x, dr).
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We now outline a proof that X∗ is point-recurrent. Since the process has only negative
jumps, it is sufficient to show that X∗t →∞ and X∗t → 0, as t→∞, are both impossible.
For the former, consider starting the process at x > x∞ and killing it upon passage below
x∞. Denote this process by X~ and its generator by

G~f(x) = c(x)f ′(x) +B(x)
∫

(0,1/2]
(1{rx>x∞}f(rx)− f(x))%(x, dr).

(The dependence on a in the integral vanishes since x∞ > a.) Now, let V (x) = xq∞ ,
for x ≥ x∞. The conditions in the statement imply that G~V ≤ 0, so V (X~) is a
supermartingale. This ensures that X~ cannot converge to +∞, and indeed the same for
X∗ itself. To show X∗ cannot converge to 0, we start it at x < x0 and kill it upon passing
above x0, and follow the same argument with V (x) = x−q0 .
To conclude, we have shown that that X∗ is point-recurrent, and therefore Pa-almost

surely hits a. This shows that Pa[〈ZH(a),1〉 ≥ 1] = 1, and completes the proof.

We remark that a similar argument was carried out in Section 3.6 of [8], using instead the
Markov process X. The Markov process X can be selected from the process Z by making a
size-biased pick from the offspring at each branching event; that is, from offspring of sizes
rx and (1 − r)x, following the former with probability r and the latter with probability
1− r. On the other hand, in the process X∗ in the proof above, we pick from the offspring
more carefully in order to follow a line of descent which is more likely to stay close to the
point a. This accounts for the improvement in conditions between [8] and this work.
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