
HAL Id: hal-01987820
https://hal.science/hal-01987820

Submitted on 31 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IRIT at TRECVID HLF 2009: Audio to the Rescue
Hervé Bredin, Lionel Koenig, Hélène Lachambre, Elie El Khoury

To cite this version:
Hervé Bredin, Lionel Koenig, Hélène Lachambre, Elie El Khoury. IRIT at TRECVID HLF 2009:
Audio to the Rescue. TRECVid 2009, TREC Video Retrieval Evaluation Online Proceedings, 2010,
Gaithersburg, United States. �hal-01987820�

https://hal.science/hal-01987820
https://hal.archives-ouvertes.fr

IRIT @ TRECVid HLF 2009

Audio to the Rescue

Hervé Bredin12 and Lionel Koenig2 and Hélène Lachambre2 and Elie El Khoury2

1 Centre National de la Recherche Scientifique
2 Institut de Recherche en Informatique de Toulouse

Abstract

This notebook paper describes the six runs submitted for the first participation of IRIT at TRECVid
2009 High-Level Feature Extraction task. They were submitted in an attempt to start answering two
research questions:

1. Can acoustic information be of any help in this (historically) video-only task?

2. Are Support Vector Machines robust enough to deal with noisy and unbalanced datasets?

The six submitted runs can be described and compared as follows:

• Run 6 (A IRIT V Mono 6) SVM-based late-fusion of visual descriptors

• Run 4 (A IRIT AV Mono 4) SVM-based late-fusion of visual and audio descriptors

• Run 5 (A IRIT V Poly 5) Same as run 6 except scores from other concepts are added during the
late-fusion process

• Run 3 (A IRIT AV Poly 3) Same as run 4 except scores from other concepts are added during
the late-fusion process

• Run 1 (A IRIT AV BestAvg 1) For each concept, uses the best of runs 3 and 4

• Run 2 (A IRIT AV BestMax 2) Difference between runs 1 and 2 is explained in Section 4.3.

Taking into account the relatively poor performance of the six submitted runs (average precision ranges
between 0.022 and 0.027), no definitive answer can be given to the first question: audio definitely helps
for some concepts and is useless for others, and additional work has to be done on how to use SVM
efficiently in this task.

1 Introduction

This notebook paper describes the six runs submitted for the first participation of the SAMoVA team of
IRIT at TRECVid 2009 High-Level Feature Extraction task [?].

1.1 Notations

As for any supervised learning approach, our approach makes use of a training set. Because it is based on
a two-steps training, the training set had to be divided into two parts S1 and S2 as described in Figure 1 –
each of them being further divided into three disjoint cross-validation sets (CV1 to CV3).

Here is a quick list of notations used in the rest of the document. All concepts that are not clearly defined
in this list will be thoroughly introduced in the document. This list is meant to be used as an easy reminder
when reading the document.

• si is the ith shot / i ∈ J1, Nshots = NsK.

2007dev 2007test

Figure 1: Partitioning the training dataset into two disjoint sets S1 and S2

• yc

i
∈ {0, 1} is the cth concept groundtruth annotation for shot si / c ∈ J1, Nconcepts = NcK.

yc

i
= 1 means that shot si contains the cth concept, yc

i
= 0 means it does not.

• xd

i
is the dth descriptor extracted from shot si / d ∈ J1, Ndescriptors = NdK.

• SVMdc is the SVM classifier for cth concept, using
{

xd

i

}

descriptors as input.

• pdc

i
is the probability (as output by SVMdc) for shot si to contain the cth concept.

In other words, pdc

i
= p(yc

i
= 1|xd

i
,SVMdc).

• δdc ∈ {0, 1} is the indicator of usefulness of dth descriptor for cth concept detection.

• fc

i
is the late-fusion vector for shot si made from the selective concatenation of

{

pdc

i

}

/
{

d ∈ J1, NdK |δ
dc = 1

}

.

• SVMc is the SVM classifier for cth concept, using {fc

i
} vectors as input.

• pc

i
is the probability (as output by SVMc) for shot si to contain the cth concept.

In other words, pc

i
= p(yc

i
= 1|fc

i
,SVMc).

• fi is the cross-concept late-fusion vector for shot si made from the concatenation of {fc

i
} / c ∈ J1, NcK.

• SVMc∗ is the SVM classifier for cth concept, using {fi} vectors as input.

1.2 Overview

Every run that was submitted by IRIT is a variation of a same generic and modular supervised learning
approach. Its modules will be described in detail in the rest of the paper. We give here a quick overview of
their interconnections.

In Figure 2, a large set of low-level descriptors are extracted from each shot si of the training set S1.
They are denoted {xd

i
}, d varying from 1 (first type of descriptor) to Nd (last type of descriptor). For each

high-level feature to be detected – we will call them concept in the rest of the document – groundtruth
annotation {yc

i
} is used in combination with each type of descriptor to train one support vector machine

classifier per type of descriptor.

Low-level
feature

extraction

SVM
training

Figure 2: Training an SVM classifier for cth concept using dth descriptors on subset S1

In the end, for each concept, Nd SVM classifiers are available that can be applied later on descriptors
extracted from the second half of the training set S2 to compute probabilities {pdc

i
} for shot si to contain

concept c. As shown in Figure 3, based on their indicator of usefulness {δdc} described in Section 4.1, some
of these Nd probabilites (or scores) are selected and concatenated into late-fusion vectors {fc

i
} used as input

of another SVM training step that performs the actual fusion.

Low-level
feature

extraction

...

...

...

...

C
o
n
caten

atio
n

SVM
training

Figure 3: Training an SVM classifier for cth concept using a late-fusion strategy on subset S2

For each shot of the test set S, descriptors {xd

i
} are extracted, their probabilites {pdc

i
} are predicted based

on {SVMdc}, then fused and the final scores are computed using {SVMc}.

Low-level
feature

extraction

...

...

...

...

C
o
n
caten

atio
n

Figure 4: Applying classifiers on test set S

2 Low-level feature extraction

2.1 Visual descriptors

For our first participation to the TRECVid HLF task, a very limited set of visual descriptors were available.
All of them were extracted from one keyframe per shot, as shown in Figure 5. Keyframes selection was
provided by the collaborative annotation effort [2].

Two out of three visual descriptors are based on local keypoints detected a la SIFT using the VLFeat
open source library [10]. From these keypoints, either Lowe’s SIFT descriptors [9] or hue histograms are
extracted. Eventually, each keyframe is described as a 250-dimensional TF-IDF vector.

OpenCV open source library [1] is used to perform face detection, leading to the extraction of a 3-
dimensional vector containing the number of detected faces in the keyframe, the size of the largest face and
the keyframe area covered by faces.

Number of faces
Height of biggest face
Total area covered by faces
(3 dimensions)

Hue histogram
(45 bins)

SIFT descriptor
(128 dimensions)

250 words
TF-IDF

SIFT / TF-IDF
(250 dimensions)

Hue / TF-IDF
(250 dimensions)

250 words
TF-IDF

Keypoint detection (VLFeat library / vlfeat.org)
Face detection (OpenCV library)

Figure 5: A limited number of visual descriptors

2.2 Acoustic descriptors

As far as low-level feature extraction is concerned, most of the effort was put into investigating how audio
descriptors can help in this task. Therefore, a large set of audio descriptors were extracted, the list of which
is given here.

2.2.1 Definitions

Unless stated otherwise, audio descriptors are computed on a 20 ms sliding window with a 10 ms overlap.
In the following definitions, N is the number of audio samples contained in the signal window and acoustic
samples are denoted xn with n ∈ J1, NK.

Energy is defined as the log-energy of the audio signal: E = log
∑

N

n=1 x
2
n

Zero-Crossing Rate is the rate of sign-changes along the audio signal. It is directly linked to the frequency
of the signal, and can be computed as follows: ZCR = 1

2

∑

N

n=1 |sign(xn−1) − sign(xn)|

4 Hz modulation The 4Hz modulation of energy [6] aims at capturing the 4Hz syllabic rate. Therefore,
the energy in 40 frequency subbands is filtered with a 4Hz band-pass filter. Energy is summed for
all channels. The modulation is obtained by computing the filtered energy variance (in dB) over one
second of signal. This parameter is higher for speech signal than it is for music or noise.

Spectral statistics are high-order statisitics on spectral power density of each signal window. Among them
are spectral mean, variance and kurtosis.

Mel-Frequency Cepstral Coefficients are descriptors extracted from the power spectral density of the
signal. They are commonly used in applications dealing with speech recognition or speaker authenti-
cation.

Voicing percentage V% represents the harmonicity of the signal window. It is computed as the ratio
between the harmonic power and the power of each signal window [8].

Pitch is estimated using the YIN algorithm [4], which is based on the cumulative mean normalized difference

function defined as follows: cmnd(τ) =
∑+∞

n=−∞
(xn − xn+τ)

2
.

In case of a T -periodic signal, cmnd is minimum for τ = T . If cmnd(τ) reaches a value below a
predefined threshold, the signal window is set as pitched and the pitch value is the index of the first
minimum of the cmnd function. The pitch value is set to zero otherwise.

Vibrato is a periodic oscillation of the fundamental frequency of musical signals. For the singing voice, its
rate is between 4 and 8 Hz. We compute it on the fundamental frequency estimated with the YIN
algorithm. This parameter is supposed to be high in presence of singing voice.

2.2.2 Making sense of signal-level acoustic descriptor at shot level

Most of these audio descriptors are extracted every few milliseconds, using a sliding temporal window (every
10 ms typically). Therefore, the way the collaborative annotation was performed (a shot is labelled as
positive even though the feature is visible for only a fragment of the shot) makes the raw audio descriptors
difficult to use for training a binary classifier: Should we consider as positive samples all audio descriptors
extracted from a positively annotated shot even though most of them would be considered as negative in a
less coarse annotation?

This is an interrogation that we tried to avoid by using basic statistical properties of the audio descriptors
rather than the audio descriptors themselves. As shown in the right part of Figure 6, each shot can be
described as the dimension-wise mean, variance, minimum or maximum of the audio descriptors it contains.

TRECVid
segmentation

into shots

Segmentation
into homogeneous

audio segments

One audio
descriptor

every 10 ms

Mean or Variance or

Maximum or Minimum

Mean or Variance or

Maximum or Minimum

Mean or Variance or

Maximum or Minimum

Figure 6: Three levels of description

However, these basic transformations do not always make sense on the whole duration of a shot. Therefore,
we propose to use an additional segmentation step based on the sole acoustic information. The audio stream
is segmented into homogeneous zones, where each zone ideally corresponds to one single audio source.
Different music tones, speakers, noises or silence should be split into different segments. The algorithm was
first introduced in the context of speaker diarization [5] and uses a combination of the Generalized Likelihood
Ratio (GLR) and the Bayesian Information Criterion (BIC).

As shown in the left part of Figure 6, each acoustically homogeneous segment is described as the mean,
variance, minimum or maximum of the audio descriptors it contains. Then, each TRECVid shot is described
as the mean, variance, minimum or maximum of the audio segment descriptors it contains.

3 Support Vector Machines training

In order to train and perform the actual classification (i.e. to decide whether a shot contains a concept or
not), libSVM [3] implementation of the SVM classifier with RBF kernel was used. Parameters tuning (cost
and gamma) is based on a three-fold cross-validation grid search.

3.1 David & Goliath – SVM with unbalanced datasets

One main problem with 2-class SVMs is that they do not always behave at their best when training sets
are unbalanced. Figure 7 illustrates this unwanted behavior. 10.000 negative and 50 positive samples are

-2

-1

0

1

2

3

4

5

6

-3 -2 -1 0 1 2 3 4 5

-2

-1

0

1

2

3

4

5

6

-3 -2 -1 0 1 2 3 4 5

Figure 7: Left – 10.000 negative (light gray •) and 50 positive (dark gray •) samples drawn from two
normal 2D distributions. Right – negative support vectors (black •) computed by SVM with RBF kernel.

drawn from two normal distributions. Applying SVM as it is leads to the extraction of negative support
vectors that are very close to positive samples (if not coinciding with them). The resulting binary classifier
therefore tends to classify every new unknown sample as negative.

Table 1 provides a quick overview of the training set balance between positive, negative and un-annotated
shots in the development set provided by NIST for the TRECVid HLF 2009 task. It appears that, for some
concepts, negative samples are 1000 times more numerous than positive ones. This table also uncovers an
additional potential problem: there might not be enough positive samples to accurately train an efficient
SVM classifier.

Concept ID 001 002 003 004 005 006 007 008 009 010
Positive (%) 1.66 0.72 0.02 0.05 0.17 0.61 0.03 0.13 0.02 2.52

Negative (%) 97.96 97.91 99.63 99.61 98.55 99.24 98.93 99.72 99.81 96.89
No annotation (%) 0.38 1.36 0.35 0.34 1.27 0.15 1.04 0.15 0.17 0.58

Concept ID 011 012 013 014 015 016 017 018 019 020
Positive (%) 0.03 0.31 0.05 1.00 3.21 0.08 0.93 0.70 0.46 1.47

Negative (%) 99.53 99.32 99.56 98.70 93.34 99.47 98.25 98.34 97.21 97.80
No annotation (%) 0.44 0.37 0.39 0.30 3.44 0.45 0.83 0.96 2.33 0.73

Table 1: Distribution of the training samples for each concept. Only 74 positive samples (out of 43161) are
available for the 9th feature. At best, for the 15th feature, 1502 positive samples are available.

3.2 Slimming down Goliath – Iterative removal of negative support vectors

In order to address the unbalance problem, we used an iterative process aiming at removing selected
samples from the dominant negative class (i.e. shots that do not contain the concept) in order to improve
the overal efficiency of SVM prediction. Figure 8 illustrates this algorithm when applied on simulated 2-D
datasets.

-2

-1

0

1

2

3

4

5

6

-3 -2 -1 0 1 2 3 4 5

-2

-1

0

1

2

3

4

5

6

-3 -2 -1 0 1 2 3 4 5

-2

-1

0

1

2

3

4

5

6

-3 -2 -1 0 1 2 3 4 5

-2

-1

0

1

2

3

4

5

6

-3 -2 -1 0 1 2 3 4 5

-2

-1

0

1

2

3

4

5

6

-3 -2 -1 0 1 2 3 4 5

-2

-1

0

1

2

3

4

5

6

-3 -2 -1 0 1 2 3 4 5

-2

-1

0

1

2

3

4

5

6

-3 -2 -1 0 1 2 3 4 5

-2

-1

0

1

2

3

4

5

6

-3 -2 -1 0 1 2 3 4 5

Figure 8: Evolution of negative support vectors for the first 7 iterations. Left to right, top to bottom.

First, SVM is trained using the whole training set. Support vectors (black •) from the (dominant)
negative class (light gray •) are removed from the training set and SVM is trained again using the resulting
training set. Using the cross-validation paradigm (training on 2 out of the 3 CVi sets and testing on the
other one), average precision is estimated after each iteration of the algorithm. The latter stops when at
least 10 iterations were performed and a local maximum was reached. For instance, in Figure 9, the optimal
number of iterations is set to 5.

This approach was used for the training of both mono-descriptor (Figure 2) and fusion (Figure 3) SVMs.

Iterations

Average

Precision

1 2 3 4 5 6 7 8 9 10

0.05

0.10

0.15

Figure 9: Average precision w.r.t. iterations

Average
Precision

"Worse"
than

random

Better
than

random
Probability
distribution
of random
classifiers

P
ro
b
ab

il
it
y

Figure 10: Indicator of usefulness

4 Late fusion

As mentioned in Section 1.2, all six runs are based on the late fusion of scores given by each type of
descriptors.

4.1 Indicator of usefulness δ
dc

For a given concept, some low-level descriptors happen to be very useful while others are completely
useless. Some of them might even be confusing for the final fusion stage. In order to estimate how well a
given descriptor performs, we compare its performance to the one of a random classifier (a random value
generator that outputs a score between 0 and 1 for each shot).

As shown in Figure 10, based on one hundred runs of a random classifier, it is possible to obtain the
probability distribution of scores of a random classifier for each concept c. A descriptor d is said to be
useful (δdc = 1) if it performs better than most of the random classifier runs (i.e. its average precision on
the cross-validation set is higher than µc + 2σc). It is said to be useless otherwise (δdc = 0). Only useful
descriptors are concatenated into the fusion vectors {fc

i
}.

4.2 Mono-concept vs. cross-concept fusion

This type of fusion is said to be mono-concept as selected fused scores into {fc

i
} are part of larger set of

scores {pdc

i
} all resulting from SVMs that were trained based on the sole annotation of a given concept c.

In other words, for a given concept c and a shot si, fc

i
will not depend on whether si contains concept c′ or

not.

However, we can definitely imagine some concept c (space shuttle, for instance) for which knowing that
another concept c′ (cow, for instance) is present or not would help a lot in the detection of the original
concept c. In our example, it is very unlikely to see both a space shuttle and a cow in the same shot.
Therefore, we also investigated this cross-concept notion by replacing each fusion vectors fc

i
by fi which is

the concatenation of all fc

i
(c ∈ J1, NcK).

Runs 3 and 5 are submissions using cross-concept fusion while runs 4 and 6 make use of mono-concept
fusion. However, we noticed during the preparation of our submissions that, for some concept, cross-concept
would help and for some others, it would not. Therefore, based on this knowledge (obtained by cross-
validation on the training set), we created runs 1 and 2 by selecting for each concept the best approach.

4.3 Switching S1 and S2

During the training process, datasets S1 and S2 can easily be exchanged, thus leading to the availability
of two classifiers per concept. They both output a score measuring how likely a shot contains a concept. We
investigated two ways of combining them by either averaging (runs 1 and 3 to 6 in Table 2) or taking their
maximum value (run 2) after an additional step of tanh normalization [7].

5 Discussion

Table 2 shows the performance of a collection of selected descriptors on the development set. One interest-
ing observation is that there is no universally best descriptor that would perform best for all concepts. Even
though SIFT descriptors have best performance on average, they are outperformed by audio descriptors for
some specific concepts: for instance, pitch for #3 infants, energy variance for #6 flying airplanes or voicing
percentage for #7 musical instruments.

Was audio helpful? In order to answer this question, we can compare cross-concept runs 3 (audio and
visual descriptors, AV) and 5 (visual descriptors only, V) or mono-concept runs 4 (AV) and 6 (V). In a
nutshell, the AV cross-concept run outperforms its V counterpart for 9 concepts out of 20, and the AV
mono-concept run outperforms its V counterpart for only 6 concepts out of 20. AV never outperforms
V for 9 concepts out of 20: #2 chair, #4 traffic intersection, #5 doorway, #6 airplane flying, #8 bus,
#10 cityscape, #15 hand, #18 boat and #20 singing. Note, however, that our best-performing run is an
audiovisual one (though it is agreed that the difference is most probably not statistically significant).

Was cross-concept fusion helpful? Similarly, we can compare mono- and cross-concept runs 3 and 4 or
5 and 6. In a nutshell, the cross-concept AV run outperforms its mono-concept counterpart for 9 concepts
out of 20, and the cross-concept V run outperforms its mono-concept counterpart for 7 concept out of 20.
Cross-concept runs never outperforms mono-concept runs for 7 concepts out of 20: #2 chair, #5 doorway,
#10 cityscape, #11 bicycle, #12 telephone, #13 person eating, #18 boat. Note that our best-performing run
is a mono-concept run.

Did fusion work as expected? An in-depth analysis of the separate performance of each descriptor is
planned in order to check the behavior of our fusion approaches.

References

[1] OpenCV: Open Computer Vision Library. Software available at http://sourceforge.net/projects/
opencvlibrary/.

[2] Stéphane Ayache and Georges Quénot. Video corpus annotation using active learning. Advances in
Information Retrieval, pages 187–198, 2008.

[3] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines, 2001. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[4] Alain de Cheveigné and H Kawahara. YIN, a fundamental frequency estimator for speech and music.
The Journal of the Acoustical Society of America, 111:1917, April 2002.

[5] Elie El Khoury, Christine Senac, and Régine André-Obrecht. Speaker Diarization: Towards a more
Robust and Portable System. In IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Honolulu, Hawaii, USA, pages 489–492. IEEE, 2007.

[6] T. Houtgast and J. M. Steeneken. A Review of the MTF Concept in Room Acoustics and its Use for
Estimating Speech Intelligibility in Auditoria. Journal of the Acoustical Society of America, 77(3):1069–
1077, 1985.

[7] Anil Jain, Karthik Nandakumar, and Arun Ross. Score normalization in multimodal biometric systems.
Pattern Recognition, 38(12):2270 – 2285, 2005.

[8] Lionel Koenig, Corinne Mailhes, Régine André-Obrecht, and Serge Fabre. A continuous voicing param-
eter in the frequency domain. In 13th International Conference on Speech and Computer, St Petersburg,
Russia, 6 2009.

[9] David G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of
Computer Vision, 60:91–110, 2004.

[10] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of computer vision algorithms.
http://www.vlfeat.org/, 2008.

Concept ID
001 002 003 004 005 006 007 008 009 010
011 012 013 014 015 016 017 018 019 020

Cross-validation on the training set (average-precision @ 2000)
Avg.

SIFT
.002 .005 .003 .307 .013 .003 .004 .000 .016 .011

.050
.239 .001 .238 .005 .030 .002 .090 .022 .013 .001

Hue
.000 .006 .001 .276 .002 .006 .004 .001 .008 .004

.038
.200 .000 .217 .001 .006 .002 .011 .003 .008 .001

Face
.000 .004 .001 .005 .001 .000 .001 .001 .000 .001

.006
.005 .002 .002 .001 .004 .002 .001 .002 .090 .001

MFCC .001 .002 .001 .279 .010 .001 .002 .001 .012 .005
.039

(avg.) .242 .002 .200 .006 .005 .001 .001 .002 .011 .002
MFCC .000 .001 .001 .270 .002 .000 .005 .000 .000 .007

.038
(var.) .226 .002 .226 .000 .005 .002 .001 .003 .012 .004

Pitch .002 .001 .001 .002 .003 .003 .004 .001 .000 .013
.003

(avg.→avg.) .001 .001 .003 .000 .003 .001 .002 .009 .003 .001

V% .001 .001 .001 .001 .003 .002 .025 .001 .001 .001
.003

(avg.→avg.) .004 .000 .001 .002 .005 .000 .002 .003 .002 .004

{ Pitch, V% }
.001 .001 .005 .005 .001 .005 .002 .001 .000 .000

.003
.001 .001 .020 .001 .004 .000 .003 .002 .005 .001

Energy .001 .001 .001 .004 .002 .046 .003 .000 .001 .001
.004

(var.→avg.) .001 .002 .001 .000 .004 .000 .002 .006 .004 .001
Vibrato .000 .001 .001 .001 .001 .000 .002 .000 .000 .004

.001
(mean) .001 .000 .001 .001 .004 .001 .001 .001 .005 .001
ZCR .001 .002 .001 .001 .002 .006 .003 .000 .000 .010

.003
(var.→avg.) .001 .000 .000 .000 .006 .001 .003 .015 .005 .001

Spect. stats .007 .002 .002 .001 .004 .000 .002 .001 .000 .000
.002

(avg.→avg.) .001 .001 .000 .002 .002 .001 .001 .001 .002 .003
(avg.) means average on TRECVid shots. (var.) means variance on TRECVid shots.

(var.→avg.) means variance on audio segments, followed by average on TRECVid shots.

Best .007 .006 .005 .307 .013 .046 .025 .001 .016 .013
.058

descriptor .242 .002 .238 .006 .030 .002 .090 .022 .090 .004

Actual performance on test set (average-precision @ 2000)
Avg.

Run 1 .001 .001 .000 .043 .012 .000 .006 .000 .011 .005
.026

AV BestAvg .017 .013 .209 .009 .009 .008 .064 .030 .083 .000
Run 2 .001 .002 .000 .044 .012 .000 .005 .000 .009 .005

.023
AV BestMax .015 .013 .207 .007 .008 .008 .058 .032 .043 .000

Run 3 .001 .001 .001 .044 .008 .001 .006 .000 .011 .002
.022

AV Poly .017 .000 .208 .009 .009 .008 .069 .006 .049 .000
Run 4 .000 .002 .000 .043 .012 .000 .004 .000 .008 .005

.027
AV Mono .024 .013 .209 .001 .026 .005 .064 .030 .083 .002

Run 5 .001 .004 .000 .047 .015 .005 .004 .001 .006 .002
.025

V Poly .013 .000 .206 .000 .051 .001 .060 .023 .056 .002

Run 6 .002 .004 .001 .046 .023 .003 .002 .000 .021 .007
.025

V Mono .017 .000 .206 .001 .030 .008 .063 .030 .043 .002

Best run
.002 .004 .001 .047 .023 .005 .006 .001 .021 .007

.030
.024 .013 .209 .009 .051 .008 .069 .032 .083 .002

Table 2: Comparison of the efficiency of a few selected visual and audio descriptors on the training set (upper
part). Actual results obtained by our six runs (lower part). .000 means descriptor (or run) performs best
for the corresponding concept. .000 (bold font) means that δdc = 1, i.e. the corresponding descriptor was
selected during the late fusion step.

