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Abstract This paper proposes a method for improving the

design of rockfall protection fences and accounting for the

variability of loading cases. It is based on a probabilistic

reliability analysis and can combine loading cases from

rockfall propagation simulations with numerical simulations

of the structure response to the block impact. The advantage

of such a reliability-based approach is that statistically rele-

vant results can be obtained concerning the fence’s efficiency

in stopping the block with a limited number of simulations.

This method was employed in a study case, involving a low-

energy tree-supported fence placed on a forested slope. The

trajectory simulations were conducted using Rockyfor3D

and the fence was modelled using a three-dimensional dis-

crete element method model. For demonstration purposes,

two parameters were considered: block velocity and the

block’s angle of incidence before impact. The probability of

the fence stopping the block was evaluated accounting for the

variability of these two parameters separately and together,

either considering these variables as non-correlated, or as

correlated. The value of this approach is demonstrated in

terms of computation cost. In addition, the results revealed

the importance of accounting for both these parameters in

designing the structure as well as in estimating the residual

hazard downslope from the protective structure.

Keywords Rockfall protection structures � Discrete
element model � Reliability analysis

List of Symbols

Cvi Coefficient of variation of random variable Xi

Ec, max Estimated maximum block impact energy

Fslip Cable clips sliding force

G Performance function, associated with the limit

state G = 0

~G Approximation of G

Li Lagrangian polynomial

mrock Block mass

Pf Fence failure probability, equals Prob(G[ 0)

py Probability density function of Y

T Gaussian standardization function

Vr Block translational velocity at impact

Vr, max Estimated maximum block translational velocity

at impact

Vz, out Norm of the block translational velocity after

contact with the fence

Vz, in Norm of the block translational velocity before

contact with the fence

X Vectorial Gaussian standard variable, related to Y

such as Y = T (X)

Xi Components of Gaussian standard random

variable X

xi Realization (chosen value) of component Xi of

vector X

Y Vectorial random variable associated with the

loading parameters

Yi Random variables

yi Uncertain parameters associated with the block

properties and its trajectory

Z Vectorial random variable associated with the

fence reponse
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Greek Symbols

ar Impact angle

k� Reduction factor for the strain at rupture of double-

twisted wires vs. single wire

kk Reduction factor for the stiffness of double-twisted

wires vs. single wire

li Mean value of the random variable Yi
qYiYj Correlation coefficient between the random

variables Yi and Yj
rYi Standard deviation of the random variable Yi
xr Norm of the block rotational velocity

1 Introduction

Protection against rockfall hazard often requires building

passive protection structures, such as embankments or

fences, forming obstacles on the block’s route down the

slope. The choice between these two countermeasure types

is governed mainly by the block’s kinetic energy and

topographic constraints. Fences are widely used to protect

roads, railways and buildings downhill of steep slopes,

from rock blocks with energies up to 5,000 kJ and some-

times more.

Fences consist of an interception structure, a support

structure and connecting components, most often made of

metallic elements such as a net, posts and cables (EOTA

2008). For energies less than 100 kJ, support structures

generally consist of fixed posts. For higher energies, cables

anchored in the soil and connected to the top of the posts

are necessary. Moreover, above a 500 kJ energy, friction

brakes are used to reduce the force transmitted to these

cables and their anchorage, with the aim of dissipating the

energy while allowing large displacements of the fence.

Similar to embankments, fences must be designed so as

to intercept the block trajectory and to withstand the

impact, respectively referred to as functional and structural

designs (Lambert and Bourrier 2013). Both these design

aspects require data from rockfall propagation simulations.

The trajectory simulation tools used for this purpose pro-

vide the design engineer with the statistical distributions of

the passing height and velocity of a given block of a certain

mass at any given point on the slope (Bourrier et al. 2009).

Classically, the functional design, which aims at defin-

ing the fence interception height, considers the block

passing height distribution while the structural design

mainly considers the block kinetic energy distribution. For

both these parameters, a statistical estimator of the distri-

bution is considered (95 % quantile, for example), so that

only a very limited percentage of blocks are not caught by

the structure or destroyed by it.

For the last two decades, rockfall protection fences have

received substantial attention through experimental and

numerical investigations (Hearn et al. 1996; Peila et al.

1998; Nicot et al. 2001; Gerber and Boell 2006; Volkwein

et al. 2009; Gottardi and Govoni 2010; Bertrand et al.

2012; Tran et al. 2013; Thoeni et al. 2013). Reviews of

these studies can be found in Gottardi and Govoni (2010)

and Peila et al. (1998). The vast majority of the studies

conducted to date concerns fences intended to intercept

blocks with kinetic energies from 1 to more than 5,000 kJ

given the very high demand for protection against cata-

strophic events. Rockfall fences designed for energies

amounting to 200 kJ or less have been marginally studied

even though they potentially concern a large number of

sites (Cazzani et al. 2002; Buzzi et al. 2012; Spadari et al.

2013). The real-scale tests conducted within the technical

agreement process covering fences in Europe (EOTA

2008) contribute to the research on the actual response of

the flexible barriers and provides validation data for the

numerical models developed (Bertrand et al. 2012; Genti-

lini et al. 2012).

Despite the recent advances in the impact response of

fences, limitations concerning their design can be identi-

fied. In particular, the fence design rarely considers the

block’s trajectory before impact, that is the impact point

location and the block kinematics when impacting the

fence (trajectory inclination with respect to the fence,

block rotational velocity, etc.). In addition, the variability

associated with the different loading parameters is not

accounted for. The numerous numerical tools that have

been developed for modelling the impact response of

fences could be used to analyse the response of the

structure for loading cases representative of the distribu-

tion of the block trajectories before impact. However,

from a practical point of view, such studies would require

conducting a large number of simulations to obtain sta-

tistically relevant results, meaning expensive computation

times.

This paper proposes an alternative methodology based

on reliability analyses (Baroth et al. 2012) to overcome this

key limitation to the use of numerical models for the design

of rockfall protection fences. In the methodology proposed,

probabilistic modelling of loading is deduced from the

rockfall simulations. The probability of the fence stopping

the block under probabilistic loading from the rockfall

simulations is calculated from a small number of impact

simulations using a specific probabilistic method (Baroth

et al. 2007). The fence design methodology is applied to a

case study focusing on two parameters identified as the

most important the case study, namely the block impact

velocity and the impact angle.
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2 Study Case

The design methodology proposed was illustrated on a

well-documented site for which the relevance of the block

propagation simulations was assessed from field experi-

ments. For illustration purposes, a particular type of rock-

fall protection fence with a previously developed numerical

model of the fence was considered, although the method-

ology could be applied to different types of fences. This

type of structure was developed for being installed on

forested slopes where rockfall can be initiated by wood

felling practices or above forest roads openings. The ass-

ement of this structure was based on real-scale impact tests

conducted on an experimental site and using a numerical

model of the structure, developed at the same time

(Bourrier et al. 2010; Lambert et al. 2009).

2.1 Study Site

An extensively documented field rockfall experimental site

was used. The study area covers an Alpine slope ranging

from 1200 m to 1400 m above sea level with a 38� mean

gradient in the ‘Forêt Communale de Vaujany’ in France

(lat. 45�120, long. 6�30). The slope’s surface mainly consists

of rockfall deposits. For the analysis, the 3D rockfall

simulation code Rockyfor3D was used. This software

simulates the propagation of spherical falling blocks by

successive phases of free flight and rebound on the slope

surface on a digital terrain model from user-defined

departure zones. Several studies simulating the rockfall

experiments have been conducted (Dorren et al. 2006;

Bourrier et al. 2009). In these studies, the topography of

the site was modelled as a raster map, i.e., a gridded array

of cells. Each cell represented a horizontal squared surface

of the site and a mean elevation value was associated with

this surface. The digital terrain model used was composed

of 4 m2 cells in order to keep the duration of the simula-

tions reasonable while having a rather precise description

of the whole site topography. This resolution is consistent

with engineering practices (Crosta and Agliardi 2004;

Agliardi et al. 2009). The parameters of the block rebound

model had also been characterized for the different parts of

the study site during field measurement campaigns. The

values of these parameters and the digital terrain model

used in the previous investigations on the study site

(Dorren et al. 2006; Bourrier et al. 2009) were used in this

study. The study case focuses on protecting the forest road

located at mid-slope from 0.2 m3 blocks (mass: 476 kg)

(Fig. 1). The departure zone of the block is located 20 m

above the forest road. In this context, the impact energy

may remain less than 50 kJ. The initial falling height of the

block was set at 0.5 m, assuming that the blocks were

reactivated from small topographical outgrowths and the

projected fence was located at an intermediate distance

between the block release point and the forest road to be

protected (Fig. 1).

The results from the rockfall simulations are intended to

characterize the loading conditions of the fence. In the

numerical model, the fence is assumed to be located at the

limit between raster cells. Consequently, for each block

release, the kinematics of the block was recorded at the

time the block crosses the fence. All the quantities defining

the block kinematics were measured along the block

propagation plane. Along this plane, when reaching the

Fig. 1 Definition of the block

release point and fence location

in the simulations. On the 3D

view of the simulations, the

colours of the raster map cells

depend on the frequency with

which the blocks pass inside the

cells (Pass. Freq.)
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fence, the block kinematics is fully characterized by the

norm Vr of its translational velocity, the norm xr of its

rotational velocity, and the impact angle ar (Fig. 2). Fig-

ure 3 presents distributions of trajectographic characteris-

tics resulting from simulations of the propagation of

100,000 rocks from the release point. These figures show

significant variability in the kinematical parameters of the

blocks when approaching the fence.

The design of the net based on a reliability approach

should make it possible to define the fence failure proba-

bility (i.e., corresponding to a block not stopped)

accounting for the variability of the kinematical parameters

of the block Vr, ar, and xr and of the impact point location

characterized by the vertical and horizontal location of the

block.

2.2 A Tree-Supported Structure for Low-Energy

Impacts

The structure is a particular fence using existing trees in

place of man-made posts to support the interception

structure (Fig. 4). Its installation, therefore, does not

require heavy machinery for soil moving or nailing, pre-

serving the forest stand. Moreover, it is rapid and easy to

install and remove, making these tree-supported structures

an adequate solution for temporary protection purposes for

instance during works on the slope. Using trees as supports

instead of posts globally simplifies the installation. How-

ever, the design of the structure must account for the

mechanical characteristics of the tree, which depend on the

tree diameter and species (Dorren et al. 2006) and on the

anchorage of the root system (Stokes et al. 2005). In

addition, the selected trees must be at the same altitude to

build a fence perpendicular to the average trajectory of the

falling blocks, and at an appropriate distance from one

another. Rockfall in this context may involve blocks with a

mass ranging from 1 to less than 1,000 kg, with velocities

less than 25 m/s, the maximum velocity of blocks on for-

ested slopes reported in the literature (Dorren et al. 2006).

The blocks’ kinetic energy is, thus, less than 200 kJ, which

is considered a low-energy value for rockfall protection

structures. Spadari et al. (2013) also provide additional

evidence that, in some environments, such low levels of

Fig. 2 Parameters describing the block trajectory when crossing the

fence

Fig. 3 Block kinematics when reaching the fence obtained from rockfall simulations: distributions of the translational velocity Vr, rotational

velocity xr, and impact angle ar

Fig. 4 Sketch of the

experimental tree-supported

fence (not to scale)
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block kinetic energy are involved. The tested structure

consists of two cables supporting a hexagonal wire mesh

laterally lined by two bars. A double-twisted wire mesh as

the interception structure was selected among various

alternatives, because this product is widespread and easily

available. It is widely used for active rockfall and surface

erosion mitigation structures (Sasiharana et al. 2006). The

mesh is made of a 2.7-mm-diameter wire forming hexa-

gons 80 and 100 mm in height and width, respectively. The

tensile strength of this wire netting is 51 kN/m. The

interception structure is connected to both the upper and

lower cables, 12 mm in diameter, using regularly spaced

cable clips. The distance between the cables, or fence

height, is 3 m. Each cable extremity forms a loop around a

tree trunk, the cable dead end secured on the cable by three

cable clips. The loops are loosely tightened to avoid any

damage to the trunk. The distance between the upper and

lower cables is maintained constant with the two rigid bars

placed at each extremity of the wire mesh, parallel to the

tree trunks. For the experiments, the distance between the

trunks and the bars was 3 m but it can be reduced on real

structures. The trees selected for supporting the structure

were a spruce (Picea abies) 0.8 m in diameter and a maple

(Acer) 0.6 m in diameter, 22 m apart. This distance is the

average distance between trees in settled forest stands with

similar trunk diameters. These parameters were considered

in the numerical model presented hereafter and the

experiments provided data for its calibration (Bourrier

et al. 2010; Lambert et al. 2009).

2.3 Numerical Model of the Fence

The structure’s response was simulated based on the dis-

crete element method (DEM) (Cundall and Strack 1979)

using the open-source software Yade-DEM (Smilauer et al.

2010). DEM models consider the structure as a set of

particles interacting with each other. The interaction force

between a pair of particles is computed at each time step

from the interparticle distance resulting from the previous

time step’s calculations and considering the mechanical

characteristics of the structure between the particles. Then

the resultant of the forces acting on each particle is com-

puted before deriving its displacement using Newton’s

second law.

The tree-supported fence was modelled accounting for

the geometry of the fence, cables and bars, and the

boundary conditions. The supporting trees were modelled

as fixed points given that their displacement during the

impact experiments was negligible compared to the struc-

ture’s deformation (Lambert et al. 2009). Particles associ-

ated with the mesh were located at the intersections of

wires, while particles associated with linear elements (i.e.,

cables and bars) were distributed along these elements

(Fig. 5). The mass given to each particle depended on the

type of element with which it was associated.

In this structure, five different interparticular link types

can be distinguished: single wire of the wire mesh, double-

twist wire of the wire mesh, bar, supporting cable, and

cable connecting the trees and the bars. The forces asso-

ciated with single and double-twist wires were computed

using a specific interaction model available in Yade-DEM.

The algorithm is based on the model proposed by Bertrand

et al. (2008). It has been recently implemented into the

software and has proved efficient in modelling the response

of a hexagonal wire mesh in different conditions (Thoeni

et al. 2013). The single wire stress-strain response con-

sidered in the model is identical to that given in Bertrand

et al. (2008). As proposed by these authors, the stress-

strain response curve of the double-twist wire is derived

from that of the single wire one using the parameters kk and

k�: In this study, these parameters were given the value of

0.62 and 0.1, respectively.

Forces between particles located along the upper and

lower cables were calculated considering an elastic model

fully characterized by the cable diameter and its Young

modulus (140 GPa). An elastoplastic model was considered

for particles representing the cable between the tree and the

bar to account for the sliding of the cable clips that was

observed during the experiments. In the experiments, the

cable tension was measured during block impacts using a

dynamic force sensor installed in the top cable of the

structure. The maximum cable tension measured, corre-

sponding to sliding occurrence, was 40 kN (Lambert et al.

2009). The elastic model was, thus, considered for the

cable until a threshold force Fslip = 40 kN was reached.

Once this threshold value is reached, the interaction force

remains equal to Fslip if the distance between particles

increases. If the distance between particles decreases, the

interaction force decreases following a linear strain–stress

relationship with a Young modulus set at 140 GPa. The two

bars at the extremities of the wire mesh were modelled as

perfectly rigid assemblies of particles considering that the

strains of these steel bars were negligible.

The impact by the block was modelled by considering a

spherical element with a given mass and initial velocity.

The interaction between the block and the mesh particles

Fig. 5 Depending on their position in the structure, particles used in

the DEM method are given different characteristics
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was modelled by contact forces considering an elastic

normal contact law, with a block Young modulus of 100

GPa, and ignoring the block–fence friction. The resultant

force on each particle of the mesh is, therefore, the sum of

the contact forces with the projectile and of the interaction

forces with the adjoining mesh particles. The force applied

to the projectile is the sum of all contact forces with the

wire mesh particles. In the first phase, a simulation under

gravity loading is performed to reach the static equilibrium

of the structure. Second, the impact is simulated. The

spherical projectile is located at the impact point and initial

kinematic conditions are applied to the projectile. For each

impact simulation, the time evolution of the forces in the

cables and on the projectile was recorded as well as the

projectile trajectory.

The numerical model could be used to investigate the

influence of parameters related to the block (mass, velocity,

impact point, and inclination). The influence of various

structural choices might also be investigated in an opti-

mization process (single mesh dimensions, fence length,

cable diameter). However, the direct use of this model for

such exhaustive analyses cannot be envisaged in practice

due to the long duration of each impact simulation. The

approach proposed in the following is an alternative to

using such models for this purpose.

3 Reliability-Based Fence Design

The fence design first consists in evaluating its efficiency

in intercepting the block trajectory. This functional

design aims at defining the height of the structure,

mainly based on the block passing height determined

based on trajectory simulations. Then the structural

design is conducted, with the aim of assessing whether

or not the structure efficiently stops the block once its

trajectory is intercepted. The approach proposed for this

purpose consists in estimating the probability of the

block going over the fence given the distribution of the

block’s kinematics and properties (mass, most particu-

larly). For that purpose a criterion for defining whether

the block passes over the fence is first defined. Second,

reliability analyses are done to calculate the probability

of this limit criterion being reached.

3.1 Response Modes and Efficiency Criterion

Five different responses in terms of the post-impact block

trajectory can potentially be observed in the simulations or

the experiments:

– the block passes through the net (mode A),

– the block is sent uphill by the fence (mode B),

– the block is trapped in the fence, the wire mesh fringed

by the lower cable forming a pocket containing the

block (mode C),

– in an initial downward displacement relative to the

fence, the block rotates while in contact with the fence

and then goes under the lower cable (mode D),

– in an initial upward displacement relative to the fence,

the block rotates while in contact with the fence before

finally going over the upper cable (mode E).

Basically, in modes A, D and E, the block is not stopped,

while in modes B and C, the block is stopped. Only mode

A necessarily involves damage to the structure. The

occurrence of one of these modes depends on the block’s

translational and rotational incident velocities, incident

angle and impact point on the structure. Some modes are

rare compared to others and require a very particular block

kinematics (modes D and E). Mode E, which requires an

impact close to the upper supporting cable by a block with

an upward trajectory and high rotational velocity, was only

observed in simulations with a spherical block if the upper

cable was directly impacted. This was not observed during

the experiments. On the contrary, mode D, requiring an

impact close to the lower cable by a block with a down-

ward trajectory, was observed in both simulations and

experiments. However, the block velocity after going under

the fence is small, resulting in the block generally stopping

just after going under the fence. In addition, this situation

can easily be avoided in practice, adding a wire mesh panel

placed on the slope uphill of the fence, connected to its

lower cable. The case where the block goes through the

fence (mode A) is the most critical because the post-impact

block trajectory is valley-side oriented with a possible high

velocity.

The evolution of the block velocity during its interaction

with the net fence can be considered to evaluate the fence

efficiency. More precisely, the evolution of the sign of the

horizontal component of the velocity during impact is a

simple and straightforward way to assess the response of

the fence in all the cases noted above. Indeed, if the block

is trapped or pushed uphill by the fence, the horizontal

velocity of the block is initially positive and decreases

during impact to reach a nil or negative value after impact.

On the contrary, if the block passes through, above or

below the fence during impact, the horizontal velocity of

the block decreases but does not reach negative or nil

values.

This analysis naturally leads to considering G = Vz, out/

Vz, in as an estimator of the efficiency of the structure,

where Vz, in and and Vz, out are the components along the

horizontal z-axis of the block velocity before and after

contact with the fence, respectively. G B 0 means that the

block is stopped (safety domain, modes B and C). On the
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contrary, the block is not stopped if G[ 0, according to

modes A, D or E (failure domain).

4 Principles of the Reliability-Based Approach

This section presents the methodology used to characterize

the probability Pf = Prob(G[ 0) for the fence failure

using the DEM model of the fence. Contrary to classical

Monte Carlo simulations, the approach proposed does not

require covering all the parameter ranges. On the contrary,

it allows calculating Pf using only a very small number of

impact simulations, which ensures its practical feasibility.

The variability of the impact conditions can be charac-

terized by a set of uncertain parameters yi associated with the

properties of the block (mass, shape) and its trajectory

(impact velocities, impact point location). These parameters

can be considered as the different components of a vectorial

random variable Y with a probability density function py.

In this context, the mechanical response of the fence is

modelled by a random variable Z ¼ f ðYÞ to be character-

ized. In this study, this response is the estimator of the

fence’s efficiency G = Vz, out/Vz, in, called the ‘‘perfor-

mance function’’. Assuming that Y can be related to a

standard random variable X (Gaussian), such as Y ¼ TðXÞ;
the performance function is expressed as G ¼ f � TðXÞ:
Appendix 2 provides an example of Gaussian standardi-

zation of two correlated log-normal random variables

(Baroth et al. 2006).

If there is one uncertain input parameter ðY1Þ ¼ Y; the

performance function G may be approximated by writing

the approximation ~G of G as an expansion in Lagrange

polynomials of a standard Gaussian random variable X1

(Baroth et al. 2007), such that:

GðXÞ ’ ~GðX1Þ ¼
X

N

i¼1

GiLiðX1Þ; ð1Þ

where Gi = G(xi) is a set of N values of G and Li are

Lagrangian polynomials. Li(X1) is written

LiðX1Þ ¼
Y

N

k¼1
k 6¼i

X1 � xk

xi � xk
: ð2Þ

Similarly, if there are two uncertain input parameters

ðY1; Y2Þ ¼ Y; the performance function G may be

approximated, such that:

GðXÞ ’ ~GðX1;X2Þ ¼
X

N

i¼1

X

N

j¼1

Gi;jLiðX1ÞLjðX2Þ; ð3Þ

where Gi, j = G(xi, xj) is a set of N
2 values of G and Li, Lj

are Lagrangian polynomials.

The performance function can be calculated for a larger

number of uncertain input parameters, although it will not

be presented in the following.

The calculation of P(G[ 0) first requires defining the

points xi and xj. X being a Gaussian standard random

variable, we use roots of Nth-degree Hermite polynomials

as the values of xi and xj (Press et al. 1994), given that they

are orthogonal with respect to the Gaussian standard

measure. The values of xi for different values of N are

given in Appendix 1.

Second, the values of ðyi; yjÞ ¼ y corresponding to the

values of the ðxi; xjÞ ¼ x are determined using the rela-

tionships y ¼ TðxÞ: The values yi and yj depend on the

statistical law associated with the random variable Y and

on the number N of the points considered (Baroth et al.

2007). Appendix 2 details T with two correlated lognormal

random variables.

Then, the values of the performance function G(xi)

(resp. G(xi, xj)) are obtained from numerical simulations of

impact on the fence using the set of parameters yi (resp.

(yi, yj)) corresponding to xi (resp. (xi, xj)).

Finally, the numerical (and time-consuming) perfor-

mance function G is approximated by the analytical func-

tion ~G: From this function, the cumulative distribution

function and the probability Prob(G[ 0) can be evaluated.

4.1 Application to the Study Case

The impact conditions are characterized by the kinematical

parameters of the block Vr, ar, and xr and by the vertical

and horizontal location of the impact point. Given the large

number of random variables mentioned above and the

potentially significant correlations between these variables,

considering all the loading parameters as random variables

can substantially increase the complexity of the assessment

of the fence failure probability. In practice, the number of

random variables considered has to be reduced. The choice

of the parameters to be considered as random variables is

crucial. This choice should account for the influence of the

different parameters on the impact process and for the

capacity of the rockfall model to accurately quantify these

parameters.

Due to the resolution of the digital terrain model (4 m2),

the horizontal and vertical location of the impact point for

the different block release simulations cannot be extracted

precisely from the simulations. Both the horizontal and

vertical location of the impact point are strongly related to

micro-topographical changes that are not included in the

digital terrain model due to its resolution. Given the

potential errors on the estimation of the location of the

impact point, it was assumed to be located in the centre of

the fence. In addition, the rotational velocity xr was set at
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the mean value obtained from rockfall simulations con-

sidering that this parameter had a second-order influence in

the simulation results. This is justified by the low friction

angle between the block and the fence and by the spherical

shape of the block, resulting in a negligible influence of the

rotational velocity on the block post-impact trajectory and

on the fence’s mechanical response. However, for different

conditions, i.e., angular blocks and greater friction, the

influence of the rotational velocity can become non-neg-

ligible (Tran et al. 2013). Finally, two variables are used

for the impact simulations: the impact velocity Vr and the

impact angle ar.

As shown in Fig. 6, the probability density functions

resulting from the trajectory analysis for these two

parameters can be satisfactorily modelled using log-normal

laws. Using the log-normal law is a satisfactory compro-

mise taking into account the trend of histograms and pre-

venting negative realizations (negative impact velocities, in

particular) while allowing an easy probabilistic treatment.

Moreover, the different values of the couples (Vr, ar)

show a significant negative correlation between the two

random variables (Fig. 7). For increasing values of

Vr, decreasing mean values and variability of ar are

observed. This correlation can either be ignored or

accounted for in evaluating fence efficiency. In the latter

case, the correlation was modelled by considering a linear

correlation with a coefficient of -0.477 between the two

random variables. This coefficient was estimated from

a principal component analysis of rockfall simulations,

with a confident indicator (95 % confidence interval:

[-0.481, -0.472]). This modelling remains a simple

approximation of the complex correlations between the two

variables, but it accounts for the general trends observed,

i.e., decreasing mean values and variability of ar for

increasing values of Vr, from simple relationships. This

simple model was used to evaluate the interest of

accounting for the correlation. Table 1 presents the mean

and coefficient of variation of the random variables con-

sidered and the correlation coefficient between them.

In the following, the influence of these two parameters

on the efficiency of the fence will be studied first separately

and then jointly. In the latter case, these two parameters are

first considered as non-correlated before accounting for the

linear correlation. For this reason, the two variables

(namely the impact velocity Vr = Y1 and the impact angle

ar = Y2) are modelled as two correlated log-normal ran-

dom variables, denoted ðY1; Y2Þ ¼ Y: As detailed in

Appendix 2, the Gaussian standardization of Y; using the

relation Y ¼ TðXÞ; is used to apply the collocation method.

One or two non-correlated variables can be considered

using this framework by using only the expression of Y1 or

setting the correlation coefficient qY1Y2 at nil value,

respectively.

Fig. 6 Approximation of the

simulated distributions of Vr and

ar by log-normal laws

Fig. 7 Couples (Vr, ar) obtained from rockfall simulations

Table 1 Means and coefficients of variation of the log-normal ran-

dom variables associated with the velocity Vr and impact angle ar,

with correlation coefficient qY1Y2 = -0.477

Uncertain parameter Y1 = Vr Y2 = ar

Mean lY_1 = 6.42 m/s lY_2 = 35.39�

Coefficient of variation CvY_1 = 0.25 CvY_2 = 0.18
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The different sets of loading conditions used in the

following are summarized in Table 2.

A 5-point procedure (N = 5, section 3.2) was used to

analyse fence failure probability. This means that consid-

ering only one random variable, five impact simulations are

required to estimate the failure probability. If two random

variables are considered, a 5-point procedure requires

performing impact simulations for all possible pairs of

random variables using five different values of both ran-

dom variables, corresponding to 25 impact simulations. For

the sake of clarity, the choice of collocation points is

illustrated for the case of one uncertain parameter in

Appendix 1.

The simulations corresponding to the different sets of

loading conditions were defined according to the principle

defined in Table 2 and considering the values presented in

Table 3 for the impact velocity and the impact angle. The

results were analysed considering first the impact velocity

Vr as the only random variable. The fence failure was

analysed under this assumption for the different values of

the impact angle ar (Table 2, Simulation sets 1–5).

Second, the fence efficiency was analysed considering

both parameters as non-correlated random variables

(Table 2, Simulation set 6) and correlated random variables

(Table 2, Simulation set 7). The impact velocity and

impact angle corresponding to simulation sets 6 and 7 are

compared in Fig. 8.

5 Probabilistic Analysis of Fence Efficiency

5.1 Influence of Velocity

Impact simulations for the five different values of the

velocity Vr presented in Table 3 and for an impact angle

set at ar = 34.8� (simulation set 3, Table 2), corre-

sponding to the mean impact angle in the rockfall simu-

lations, are first analysed. The values of the performance

function G obtained for these simulations are presented in

Table 2 Sets of loading conditions used. Sets 1 to 5 correspond to loading conditions where only 1 random variable (r.v.) is considered

Set number Number of simulations Type Vr ar xr Impact point Block mass

1 5 1 r.v. Lognormal distribution 20.72� 12.24 rad/s Centred 476 kg

2 5 27.22�

3 5 34.81�

4 5 44.53�

5 5 58.49�

6 25 2 r.v. Lognormal distribution Lognormal distribution

7 25 2 r.v. Correlated lognormal distribution

Sets 6 and 7 are associated with loading conditions considering 2 r.v., either non-correlated or correlated

Table 3 Values of the impact velocity Vr,i = Y1,i and the impact

angle ar, j = Y2,j used in the simulation sets 1–6

Vr, i (m/s) 3.10 4.47 6.23 8.69 12.55

ar, j (�) 20.72 27.22 34.81 44.53 58.49

Table 4 Results of selected rockfall simulations for five different

values of the velocity Vr and for an impact angle set at ar = 34.8�

Vr,i (m/s) 3.10 4.47 6.23 8.69 12.55

G (Vr,i) –0.495 –0.516 –0.438 –0.258 0.529

Fig. 8 Couples (Vr,i, ar,j) used

for the generation of the

simulation sets 6 and 7

composed of 25 impact

simulations considering non-

correlated (a) or correlated

(b) random variables. Each

circle corresponds to a specific

couple (Vr,i, ar,j) used for one

impact simulation
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Table 4. The fence does not fulfill its protection function

and the block is not stopped when the velocity is 12.55

m/s (G[ 0). The cumulative distribution of the perfor-

mance function G considering only Vr as a random var-

iable is given in Fig. 9. It clearly shows that the

probability for having G[ 0 is 1.7 %.

In addition, the relationship between G and Vr

(Fig. 10) is characterized by interpolating the values

G(Vr,i) (Table 4) using Eq. 1. The maximum velocity

leading to fence efficiency, i.e., the velocity associated

with G(Vr) = 0, is estimated from this relationship. This

value is approximately Vr,max
est.
&10.4 m/s (Fig. 10) and

corresponds to a maximum translational impact energy

Ec,max
est.

= 1/2mrock (Vr,max
est. )2&26 kJ.

Additional impact simulations are done to assess the

relevance of the approach, and in particular of the esti-

mation of the maximum velocity leading to fence effi-

ciency. These simulations allow directly characterizing

the relationship between G and Vr. For these additional

simulations, the loading conditions were the same as for

the simulation set 3, except that the impact velocity Vr

was set at different values ranging from 5 to 12 m/s.

Although it is out of the scope of this paper to discuss

in detail the mechanical response of the structure, one

can note that the relationship between G and Vr char-

acterized from impact simulations exhibits a strong non-

linearity in the vicinity of G(Vr) = 0. In addition, the

relationship obtained from these simulations exhibits

significant differences with the relationship obtained

from Eq. 1 in the vicinity of G(Vr) = 0 (Fig. 10). The

maximum velocity leading to fence efficiency directly

estimated from the impact simulations is approximately

Vr,max
dir.

& 9.7 m/s which corresponds to a maximum

translational impact energy of Ec,max
dir.

= 1/2mrock (Vr,max
dir. )2

& 23 kJ. The difference between the method proposed

and a direct assessment of the fence efficiency from

impact simulations is approximately 7 % (resp. 13 %) in

terms of maximum admissible impact velocity (resp.

translational energy). The method proposed seems thus

to be a compromise between the accuracy of the fence

efficiency estimation and the computational effort,

especially if a larger number of loading random variables

has to be accounted for.

Fig. 9 Cumulative distribution

of the performance function

G ¼ Vz;out

Vz;in
under loading

conditions for which Vr is the

only random variable

Fig. 10 Relationship between G and Vr either estimated from Eq. 1

or directly obtained from impact simulations. The values G(Vr,i) used

for the estimation of G(Vr) from Eq. 1 are associated with triangular

symbols
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5.2 Influence of the Two Variables, Considered

as Non-Correlated

The results from the simulation sets 1 to 5 (Table 2) were

analyzed considering the impact velocity as a random

variable and the impact angle as a deterministic parameter,

but for different impact angles. This analysis determined

the cumulative distribution of the performance function

G for different impact angles. This cumulative distribution

function is strongly influenced by the impact angle

(Fig. 11). The most critical cases, leading to larger prob-

abilities for positive values of G, result from impacts ori-

ented downwards and with shallow incidence with respect

to the wire mesh plane.

For each value of the impact angle considered, the

relationship between G and Vr is estimated from Eq. 1. The

maximum admissible impact velocity and the correspond-

ing translational impact energy were deduced following the

same principle as illustrated above for an impact angle set

at ar = 34.8� (Figs. 9, 10). The estimated maximum

admissible impact energy is shown to significantly depend

on the impact angle considered (Table 5). In particular, the

maximum admissible energy drastically decreases for

shallow impacts.

Indeed, for the failure mode A, the net is loaded until

tensile stresses develop along the surface of the wire mesh.

Breakage occurs when these tensile stresses in the wire

mesh are larger than the maximum admissible tensile stress

of the mesh. The maximum admissible tensile stress is

reached for larger block penetration into the net for normal

impacts than for inclined ones, considering a centred

impact point in both cases. Indeed, for normal impacts, the

mesh surface able to strain before tensile stresses develop

along the mesh surface is the same in the upper and lower

parts of the net relative to the block location. For inclined

impacts, the mesh surface able to strain before tensile

stresses develop along the mesh surface is smaller either in

the upper or in the lower part of the net relative to the

block. Consequently, tensile stresses develop for smaller

block penetrations for inclined impacts than for normal

ones. As a result, the maximum admissible tensile stress of

the mesh is reached for smaller block penetrations, corre-

sponding to smaller boulder kinetic energy decreases, for

inclined impacts.

5.3 Influence of the Two Variables, Considering

the Correlation

The simulation set 7 (Table 2) characterized the cumula-

tive distribution function of G considering the linear cor-

relation between the two variables.

The fence failure probability in this case is calculated

from the cumulative distribution functions of G (Fig. 12).

The comparison with the case where the variables are

considered non-correlated (simulation set 6, Table 2),

plotted in the same figure, shows that not considering the

correlation results in a smaller fence failure probability

(P(G[ 0) = 4.2 % without correlation and P(G[ 0)

= 7.6 % with correlation). Not considering the correlation

between the two variables thus lead to optimistic results

concerning the fence efficiency. The comparison with

Fig. 9 shows that considering the only velocity as a random

variable also leads to optimistic results with a fence failure

probability of 1.7 % only.

Fig. 11 Cumulative distribution function of the performance func-

tion G under loading conditions for which Vr is the only random

variable and for different impact angles ar

Table 5 Estimated maximum energy Ec, max
est. for different impact

angles ar

ar (�) 20.7 27.1 34.8 44.5 58.5

Ec,max
est. (kJ) 7 18 26 27 30

Fig. 12 Cumulative distribution function of the performance func-

tion G under loading conditions for which Vr and ar are the only

random variables
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6 Conclusion

In this paper, an approach aimed at improving the design

of rockfall protection fences has been proposed. The

design aspect concerned here is the ability of the fence

to stop the block, provided the fence height has been

appropriately determined. Traditionally, these structures

are designed considering the energy of the block to be

intercepted disregarding other parameters associated with

block kinematics, mainly because it demands long

computation times. On the contrary, the approach pro-

posed herein aims at reducing the number of simulations

to be performed while providing statistically relevant

data with respect to fence efficiency, thus making more

exhaustive studies affordable.

This approach combines block propagation simulations

with numerical simulations of the fence impacted by the

block. The use of trajectory simulation results ensures that

the site-specific loadings are considered for the design of

the fence. In addition, since the loading parameters are

considered random variables, the variability of the loading

conditions on the site is also introduced in the calculation

for the fence design.

The feasibility of the approach was tested on a specific

study case. The probability of a block going over a pro-

tection fence was examined considering variable loading of

the fence related to two random variables: the impact

velocity and the impact angle of the block. The fence

failure probability was assessed considering successively

one random variable (velocity), then the two variables

considered non-correlated or linearly correlated.

The results obtained for the case study first show that the

approach can be applied to calculate the probability of

fence failure. The advantage for the designer also appears

clearly. Classically, conducting a statistically relevant

analysis considering two variables would require several

hundred impact simulations, while only 25 are necessary

with this approach.

The relevance of the method proposed has been evalu-

ated in the case of one random variable. The method pro-

posed constitutes a compromise in terms of computational

effort and accuracy compared to the design of the fence

directly from impact simulations. However, additional

research work has to be done to assess more in detail the

accuracy of the method, in particular for a larger number of

loading random variables.

Conclusions concerning the response of the fence and

its sensitivity to the variable considered can also be

drawn. With only one random variable, a maximum

allowable impact energy was estimated from the fence

failure probability. However, this maximum impact

energy strongly depends on the values of the determin-

istic loading parameters (most particularly, incidence

angle). This quantity is, therefore, not an absolute indi-

cator of fence capacity that can be generalized to dif-

ferent loading conditions, i.e., on another site.

The number of random variables strongly influences the

probability of fence failure. If one random variable is

considered, the probability of fence failure strongly

depends on the values of the deterministic loading

parameters. The impact angle has been shown to have a

significant influence on fence failure probability, with a

ratio of more than two over the impact angle range con-

sidered. This parameter should be considered when

designing fences, together with the block mass and

velocity.

This approach appears promising in terms of fence

design improvement because it allows investigating the

influence of many variables. It also improves the quan-

tification of the residual hazard on the site after installing

the structure. Neverthless, the influence of other param-

eters should be investigated, as for instance the impact

point location on the fence, the block shape, and the

orientation of the block with respect to the fence’s per-

pendicular axis.
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Appendix 1: Roots of Hermite Polynomials

The values of xi, corresponding to the roots of Nth-

degree Hermite polynomials, denoted HN, should be

computed numerically or found in tables (Press et al.

1994). For instance, Table 6 provides points xi for N = 3,

4, 5, where H3(x) = x3 - 3x, H4(x) = x4 - 6x2 ? 3,

H5(x) = x5 - 10x2 ? 15x. Such values are classically

deduced from quadrature formulas (see also Baroth et al.

2007).

Table 6 Points xi for N = 3, 4, 5

Points N = 3 N = 4 N = 5

x1 �
ffiffi

6
p

2 �
ffiffiffiffiffiffiffiffiffi

3þ
ffiffi

6
p

2

q

-2.0202

x2 0 �
ffiffiffiffiffiffiffiffiffi

3�
ffiffi

6
p

2

q

-0.9586

x3
ffiffi

6
p

2

ffiffiffiffiffiffiffiffiffi

3�
ffiffi

6
p

2

q

0

x4 –
ffiffiffiffiffiffiffiffiffi

3þ
ffiffi

6
p

2

q

0.9586

x5 – – 2.0202
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Appendix 2: Gaussian Standardization of Two

Correlated Log-Normal Random Variables

Let Y ¼ ðY1; Y2Þ be a 2D lognormal random variable with

given mean lY = (lY_1, lY_2) and standard deviation

rY = (rY_1, rY_2) and coefficient of correlation qY_1 Y_2. In

this case, the Gaussian standardization of Y is written

(Baroth et al. 2006):

Y ¼ TðXÞ ,
Y1 ¼

lY1
ffiffiffiffiffiffiffiffiffiffiffiffi

1þCv2Y1

p expfL11X1g

Y2 ¼
lY2
ffiffiffiffiffiffiffiffiffiffiffiffi

1þCv2Y2

p expfL21X1 þ L22X2g

8

>

<

>

:

; ð4Þ

with:

L11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnð1þ Cv2Y1Þ
q

; ð5Þ

L21 ¼
lnð1þ qY1Y2CvY1CvY2Þ

L11
; ð6Þ

L22 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnð1þ Cv2Y1Þ lnð1þ Cv2Y2Þ � ln2ð1þ qY1Y2CvY1CvY2Þ
L211

s

;

ð7Þ

where CvYi ¼
rYi
lYi

; i ¼ 1; 2 are the coefficients of variation

of Y1 and Y2.
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