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ABSTRACT

Named entity recognition (NER) is among SLU tasks that
usually extract semantic information from textual documents.
Until now, NER from speech is made through a pipeline
process that consists in processing first an automatic speech
recognition (ASR) on the audio and then processing a NER
on the ASR outputs. Such approach has some disadvantages
(error propagation, metric to tune ASR systems sub-optimal
in regards to the final task, reduced space search at the ASR
output level,...) and it is known that more integrated ap-
proaches outperform sequential ones, when they can be ap-
plied. In this paper, we explore an end-to-end approach that
directly extracts named entities from speech, though a unique
neural architecture. On a such way, a joint optimization is
possible for both ASR and NER. Experiments are carried on
French data easily accessible, composed of data distributed
in several evaluation campaigns. The results are promising
since this end-to-end approach provides similar results (F-
measure=0.66 on test data) than a classical pipeline approach
to detect named entity categories (F-measure=0.64). Last, we
also explore this approach applied to semantic concept extrac-
tion, through a slot filling task known as a spoken language
understanding problem.

Index Terms— End-to-end approach, Named entity
recognition, Spoken language understanding, Automatic
speech recognition, Deep learning.

1. INTRODUCTION

Named entities are sequences of words that bring basic pre-
defined semantic information that usually refers to locations,
persons, organization. . . that can be denoted by proper nouns
or that are unique in the real world, and they usually include
numeric and temporal values. Named entities often consti-
tute the first semantic bricks to extract in order to construct a
structured semantic representation of a document content.

Named entity recognition (NER) is among SLU tasks that
usually extract semantic information from textual documents.

This work was supported by the French ANR Agency through the
CHIST-ERA M2CR project, under the contract number ANR-15-CHR2-
0006-01, and by the RFI Atlanstic2020 RAPACE project.

Until now, NER from speech is made through a pipeline
process that consists in processing first an automatic speech
recognition (ASR) on the audio and then processing a NER
on the ASR outputs. Such approach has some disadvantages.

For instance, ASR errors have a negative impact on the
NER performances, introducing noise within the text to be
processed [1]. Rule-based NER systems are usually built to
process written language and are not robust to ASR errors.
Machine learning based systems do not have good perfor-
mance when they are trained on perfect transcriptions and de-
ployed to process ASR ones, even if that can be partially com-
pensated by simulating ASR errors in textual training data [2].
Additionally, ASR systems are generally tuned in order to get
the lowest word error rate on a validation corpus, but this met-
ric is not optimal to the NER task. For instance, this met-
ric does not distinguish between errors on verbs or proper
nouns while such errors do not have the same impact for NER.
To compensate this problem, some dedicated metrics to tune
ASR systems for better NER performances have been pro-
posed, such as in [3]. Another inconvenience is that usually
no information about named entities are used in the ASR pro-
cess, while such information could help to better choose the
partial recognition hypotheses that are dropped away during
the decoding process. As a consequence, even when confu-
sion networks or word lattices are used to go beyond the 1-
best ASR hypothesis for a better robustness to ASR errors [4],
such search space have been pruned without taking into ac-
count knowledge on named entity.

In the past, an integrated approach built on a high cou-
pling of ASR and NER modules has been proposed [5], based
on the finite-state machine (FSM) paradigm (i.e. transducer
composition), showing that such integration can offer signif-
icant improvements in terms of NER quality. The main limit
of this approach concerns the FSM paradigm itself, that is not
able to natively model long distant constraint without combi-
natory explosion and that, by nature, can only express depen-
dencies through a regular grammar. Another proposition to
inject information about named entities in the ASR consists
in directly adding some expressions of named entities into the
ASR vocabulary [6], and to estimate a language model for
speech recognition that take into account these named entity
expressions. The main default of a such approach is that it



cannot allow to detect named entity that were not injected in
the ASR vocabulary.

All of these issues motivate our research work on neural
end-to-end approach to extract named entities from speech.
On a such way, a joint optimization is able for both ASR
and NER in a NER task perspective, the architecture is more
compact than the ones used in usual pipeline, and we expect
to take benefit of the deep neural architecture capacities to
capture long distant constraint at the sentence level. Very re-
cently, a similar approach has been proposed by Facebook
on a paper posted on the arXiv.org website [7]. This end-to-
end approach is dedicated to domain and intent classification
tasks, and experiments were carried on internal data close to
the spirit of the ATIS corpus, as expressed by the authors. As
an extension of our study on named entity recognition, we
also applied the proposed approach to semantic concept ex-
traction.

In this paper, we present a first study of an end-to-end ap-
proach to extract named entities. Our neural architecture is
very similar to the Deep Speech 2 neural ASR system pro-
posed by Baidu in [8]. To use it for named entity recognition,
we apply a multi-task training and modify the sequence of
characters to be recognized from speech. Experiments were
carried on French data easily accessible, and so reproducible,
that were distributed in the framework on evaluation cam-
paigns and are still available. They constitute all the available
data of speech with manual annotations on named entity for
French.

In the last past part of this paper, we explore the use of
the proposed approach to process a slot filling task, that is
very close to the named entity recognition task. This SLU
task consists in detecting and extracting semantic concepts in
speech, in the framework of a human/machine spoken dialog
dedicated to hotel booking.

This paper is structured as follows. Section 2 describes
the neural ASR architecture we used. Section 3 explains how
we propose to exploit a such neural architecture for named
entity extraction from speech. Section 4 presents some propo-
sitions to optimize the system and also compensate the lack
of manually annotated audio data. Section 5 presents our ex-
perimental results on NER, and last section 6 present some
preliminary results on the slot filling task before the conclu-
sion.

2. MODEL ARCHITECTURE

The RNN architecture used in this study is similar to the
Deep Speech 2 neural ASR system proposed by Baidu
in [8]. This architecture is composed of nc convolution layers
(CNN), followed by nr uni or bidirectional recurrent layers,
a lookahead convolution layer [9], and one fully connected
layer just before the softmax layer, as shown in Figure 1.

The system is trained end-to-end using the CTC loss func-
tion [10], in order to predict a sequence of characters from the
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Fig. 1. Deep RNN architecture used to extract named entities
from French speech.

input audio. In our experiments we used two CNN layers and
six bidirectional recurrent layers with batch normalization as
mentioned in [8].

Given an utterance xi and label yi sampled from a training
set X = (x1, y1), (x2, y2), ..., the RNN architecture has to
train to convert an input sequence xi into a final transcription
yis. For notational convenience, we drop the superscripts and
use x to denote a chosen utterance and y the corresponding
label.

The RNN takes as input an utterance x represented by
a sequence of log-spectrograms of power normalized audio
clips, calculated on 20ms windows. As output, all the char-
acters l of a language alphabet may be emitted, in addition to
the space character used to segment character sequences into
word sequences (space denotes word boundaries).

The RNN makes a prediction p(lt|x) at each output time
step t.

At test time, the CTC model is coupled with a language
model trained on a big textual corpus. A specialized beam
search CTC decoder [11] is used to find the transcription y
that maximizes:

Q(y) = log(p(lt|x)) + αlog(pLM(y)) + βwc(y) (1)

where wc(y) is the number of words in the transcription y.
The weight α controls the relative contributions of the lan-
guage model and the CTC network. The weight β controls
the number of words in the transcription.

3. NAMED ENTITY EXTRACTION PROCESS

In the literature, many studies focus on named entity recog-
nition from text. State-of-the-art systems are based on neural
networks architectures. Some of them rely heavily on hand-
crafted features and domain-specific knowledge [12, 13].



Recent approaches [14, 15] takes benefits from both word
and/or character-level embeddings learned automatically, by
using combination of bidirectional LSTM, CNN and CRF.
However, named entities recognition from automatic tran-
scriptions is less studied. This task is made through a pipeline
process that consists in processing first an automatic speech
recognition (ASR) on the audio and then processing a NER
on the ASR outputs [16]. Usually, the named entity recog-
nition task is to assign a named entity tag to every word in
a sentence. A single named entity could concern several
words within a sentence. For this reason, the word-level la-
bels begin-inside-outside (BIO) encoding [17] is very often
adopted.

In this preliminary study, we focus on named entity ex-
traction from speech using the network described above, with-
out changing the neural architecture. We would like to evalu-
ate if this neural architecture is able to capture high level se-
mantic information that allow it to recognize named entities.
For that, we propose to modify the character sequence that
the neural network has to produce: information about named
entities are added in the initial character sequence. Instead of
applying a BIO approach, we propose to add some tag charac-
ters in this sequence to delimit named entities boundaries, but
also their category. We are interested to eight NE categories
that are: person, function, organization, location, production,
amount, time and event.

In our experiments, the system will attribute a starting tag
or an ending one only before and after the named entities, the
other words are not concerned. To distinguish the named en-
tity category, we consider a starting tag for each NE category.
Only one ending tag is used for all the NE categories, consid-
ering that since there is no overlap between named entities in
a such representation, this information is sufficient to delimit
the end of a named entity.

According to the eight named entity categories targeted
by the task, nine NE tags has to be added to the character
list emitted by the neural network: “< pers”, “< func”,
“< org”, “< loc”, “< prod”, “< amount”, “< time”,
“< event”, and “ >′′. As such neural model predicts a char-
acter at each time step: in our experiments, each NE tag is
considered as one single special character. With this way, the
NE tags are included in the prediction process, and are taken
into account by the CTC loss function during the training pro-
cess.

4. MULTI-TASK TRAINING, DATA
AUGMENTATION, AND STARRED MODE

Audio recordings with both manual transcriptions and manual
annotations of named entities are relatively rare, while neu-
ral end-to-end approaches are known to need large amount of
data to become competitive.

To compensate this lack of data, we first propose to apply
a multi-task learning approach to train the neural network.

This consists in starting to train it only for the ASR task,
without emitting character used to represent named entities,
on all the audio recordings available with their manual tran-
scriptions. At the end, the softmax layer is reinitialized to
take into consideration the named entity tag markers, and a
new training process is realized, on the named entity recogni-
tion task, with only training data with manual annotations of
named entities.

A second proposition consists in artificially increasing the
training data for the named entity recognition task. For this
purpose, we propose to apply a named entity recognition sys-
tem dedicated to text data in order to tag the manual transcrip-
tions used to train the ASR neural network. Then, these man-
ual transcriptions automatically annotated with named enti-
ties can be injected in the training data used to train the neural
network to extract named entities from speech.

In addition, since we want the system to focus on named
entities, and since the CTC loss gives the same importance to
each character, we propose to modify the character sequence
that the neural network must emit to give more importance to
named entities. This proposition is interesting to better under-
stand how the CTC loss behaves on this case, and consists in
replacing by a star ”*” all character subsequences that do not
contain a named entity. For instance, the character sequence
presented in Figure 2 becomes: * < pers césar > * < time
hier > * < loc paris > * < amount soixante dix sept ans >.
We call this approach the starred mode, and we expect that it
can make the neural model more sensitive to named entities.

5. EXPERIMENTS

5.1. Experimental setups

Experiments have been carried out on four different French
corpora, including ESTER 1&2, ETAPE and Quaero. These
corpora are composed of data recorded from francophone ra-
dio and TV stations, and are annotated with named entities.
They are all the publicly available data of speech with manual
annotations on named entities for French language.

The ESTER corpora were divided into three parts: train-
ing, development and evaluation. ESTER 1 [18] training (73
hours) and development (17 hours) corpora are composed
of data recorded from four radio stations in French. ES-
TER 1 test corpus is composed of 10 hours coming from the
same four radio stations plus two other stations, all of which
recorded 15 month after the development data.

ESTER 2 [19] training corpus was not annotated with
named entities and was not used in this study. The develop-
ment (17 hours) and test set (10 hours) is composed of manual
transcriptions of speech recorded from six radio stations (two
of those radio stations were already used in ESTER 1).

The ETAPE [20] data consists of manual transcriptions
and annotations of TV and radio shows. It contains 36 hours
of speech, recorded between 2010 and 2011, divided into



le sculpteur césar est mort hier à paris à l' âge de soixante dix sept ans 

le sculpteur <pers césar > est mort <time hier > à <loc paris > à l' âge de 
<amount soixante dix sept ans >

word sequence

word sequence 
with EN tags

* <pers césar > * <time hier > * <loc paris > * <amount soixante dix sept ans >
starred mode: 
only EN tags, EN 
values, and stars 

Fig. 2. Example of mapping the real NE tags to character sequence. This sentence means, in English and case sensitive: ”the
sculptor Caesar died yesterday in Paris at the age of seventy-seven years”

three parts: training (22 hours), development (7 hours) and
test (7h).

QUAERO (ELRA-S0349) data is composed of 12 hours
of manual transcriptions of TV and radio shows coming from
6 different sources recorded in 2010.

Our experimental corpus is the combination of those four
corpora. The training corpus is composed of the training sets
of ESTER 1, ETAPE and QUAERO, while the development
and test sets are composed respectively of the development
and test sets of ESTER 1&2, and ETAPE. It contains almost
160 hours of speech (training 107 hours, test 24 hours, de-
velopment 30 hours). The distribution of named entities by
categories in the corpus is summarized in Table 1.

Table 1. Distribution of named entities by categories in the
experimental corpus

category dev test train
pers 6719 4766 22115
func 1830 1425 6628
org 5133 3506 15804
loc 5195 3915 18159

prod 652 606 2317
time 3763 2769 12020

amount 1591 1450 5959
event 79 0 321
Sum 24962 18437 83323

The performance of our approach is evaluated in terms of
precision (P), recall(R) and F-measure for named entity de-
tection, the named entity/value detection and the accuracy of
the value detection when the named entities tags are correctly
detected. These evaluations are made with the help of the
sclite1 tool.

5.2. Multi-task training

For multi-task training, we first train the E2E architecture
only for ASR task, without emitting character used to repre-

1http://www.icsi.berkeley.edu/Speech/docs/sctk-1.2/sclite.htm

sent named entities. The system is trained on all the audio
recordings available with their manual transcriptions around
297.7 hours of training set, including the data described
above.

It composed of two convolution layers and six BLSTM
layers with batch normalization, the number of epochs was set
to 35. This system achieves 20.70% word error rate (WER)
and 8.01% character error rate (CER) on the development cor-
pus (30.2 hours) and 19.95% of WER and 7.68% of CER on
the test set (40.8 hours). These results were obtained by ap-
plying a CTC beam search decoding coupled with a trigram
language model. Once this system is trained, the softmax
layer is reinitialized to take into consideration the named en-
tity tag markers, and a new training process is realized, on the
named entity recognition task, with only training data with
manual annotations of named entities described in table 1.
In addition, for the training of both E2E and ASR systems,
each training audio samples is randomly perturbed in gain and
tempo for each iteration.

5.3. Experimental results

We present in this section some experimental results. Table 2
shows the performances of the end-to-end model (E2E) to de-
tect EN categories (among the eight ones). That means that
in this evaluation we do not take care of values associated to
the detected EN. The starred mode is also experimented and
is called (E2E*) in the table: this mode provides better results
in this task than the normal mode.

Table 2. Named entity category detection results for E2E and
E2E* (starred mode) systems

System Corpus Precision Recall F-measure
E2E dev 0.85 0.57 0.68
E2E test 0.83 0.52 0.64
E2E* dev 0.75 0.65 0.71
E2E* test 0.82 0.57 0.67

Table 3 evaluates the quality of the category/value pairs
that have been recognized. While precision and recall do not



have the same behavior between normal and starred mode,
both modes gets the same F-measure value.

Table 3. Named entity category+value pair detection results
for E2E and E2E* systems

System Corpus Precision Recall F-measure
E2E dev 0.64 0.45 0.53
E2E test 0.55 0.36 0.44
E2E* dev 0.57 0.47 0.52
E2E* test 0.47 0.38 0.42

Last, we would like to compare these results to the ones
obtained by a pipeline process, that consists in applying a text
named entity recognition on the automatic transcripts pro-
duced by the end-to-end ASR system trained on the first step
of the multi-task learning presented above.

The text named entity recognition system used for this ex-
periment is based on the combination of bi-directional LSTM
(BLSTM), CNN and CRF modules [15], and takes benefits
from both word and character-level embeddings learned auto-
matically during the training process. For this experiment, we
used the NeuroNLP2 implementation2. Convolutional neural
network encodes character-level information of a word into
its character-level embedding. Then the character-and word-
level embeddings are fed into the BLSTM to model context
information of each word. On top of BLSTM, the sequential
CRF is used to jointly decode labels for the whole sentence.
In addition, this system can be enriched with syntactic infor-
mation like part of speech tagging (POS). In our experiment,
NeuroNLP2 is used as a NER system and Deep Speech 2 as
the ASR system. Both are trained on the experimental corpus
described in section 5.1. Automatic transcriptions of devel-
opment and test data have been annotated with NER system.
To measure the impact of POS, we used the MACAON sys-
tem [21] to tag the experimental corpus on manual and auto-
matic transcriptions.

To feed NeuroNLP2, one-hot vectors represent POS in-
formation. Word embeddings, character representations and
one-hot concatenations feed the BLSTM layer. As we can see
in Tables 4, the pipeline process is a little bit less competitive
than the end-to-end model to recognize EN category, while it
is more efficient to extract EN values. Results also confirms
that linguistic information like POS is really important for the
NER task. Such observation will help for future work on the
continuity of this study.

As described in section 4, we applied NeuroNLP2 (the
version using POS tagging) on the manual transcriptions of
the ASR training data in order to augment the amount of
”NER from speech” training data. In this experiment, the nor-
mal and starred modes were used. Table 5 shows the improve-
ment got by the end-to-end system when training on these
imperfect augmented data using the normal (E2E+) and the

2https://github.com/XuezheMax/NeuroNLP2

Table 4. NER results for the pipeline approach (Pip) on the
test data. When POS are used to tag ASR outputs before NER
processing, the system is called Pip+POS

System Detection Precision Recall F-measure
Pip category 0.75 0.56 0.64
Pip+POS category 0.74 0.58 0.65
Pip cat+value 0.58 0.43 0.49
Pip+POS cat+value 0.57 0.45 0.50

starred (E2E+*) modes. As we can see, the use of the aug-
mented data was helpful for the starred mode.

Table 5. NER results on the test data for the E2E system
trained with imperfect augmented data (E2E+) in comparison
to the E2E system trained with imperfect augmented data and
the starred mode (E2E+*)

System Detection Precision Recall F-measure
E2E+ category 0.82 0.57 0.67
E2E+* category 0.76 0.63 0.69
E2E+ cat+value 0.55 0.40 0.46
E2E+* cat+value 0.49 0.41 0.47

6. EXTENSION TO SLOT FILLING TASKS

In order to deeper explore this end-to-end approach, we also
carried on some experiments on a SLU task. In this con-
text, semantic representation consists classically in the use
of frames describing general concepts and their specific in-
stances. A frame is composed by a data structure which rep-
resents a predefined concept by associating to the concept
name a set of roles: these roles are represented by slots. In
this framework, SLU corresponds to a slot filling task and,
classically, this task can be defined as a concept tagging pro-
cess, which is the extraction of a sequence of concepts out of
a given word sequence [22]. We consider this task very close
to the named entity recognition task explored above.

By applying the same end-to-end approaches presented in
the previous sections, we would like to check if the starred
mode is still interesting, and also explore the impact of multi-
task learning in a scenario on which we own training data
dedicated to two different applicative tasks.

6.1. Experimental corpora

For these experiments, we focus on two French corpora ded-
icated to semantic extraction from speech in a context of hu-
man/machine dialogues. The main target is the MEDIA cor-
pus, that is dedicated to hotel booking [23]. The other one
is the PORT-MEDIA corpus, dedicated to reservation of the-
ater tickets [24]. Both are composed of telephone conversa-



tions, and where collected through a wizard of Oz approach,
in which a human plays the role of the machine.

Since ...ASR

Table 6. Comparison of semantic concept detection results
for E2E systems on the MEDIA corpus according to the use
of not of the PORT-MEDIA (PM) corpus before fine-tuning
on the MEDIA training data. Results are evaluated with the
concept error rate (CER) metric.

System Corpus CER (%)
E2E without PM dev 33.7
E2E pretrained (SLU) with PM dev 30.4
E2E without PM test 29.3
E2E pretrained (SLU) with PM test 28.1

Table 7. Semantic concept detection results for E2E and
E2E* systems on the MEDIA corpus. In both condition, the
PORT-MEDIA corpus was used during the SLU pre-training

System Corpus CER (%)
E2E dev 30.4
E2E* dev 30.1
E2E test 28.1
E2E* test 27.0

Table 8. Comparison of semantic concept detection results
for E2E systems and a pipeline of neural system (ASR + SLU)
on the MEDIA corpus

System Corpus CER (%)
Pip-SLU dev 34.0
E2E without PM dev 33.7
E2E* pretrained (SLU) with PM dev 30.1
Pip-SLU test 32.0
E2E without PM test 29.3
E2E* pretrained (SLU) with PM test 27.0

7. CONCLUSION

This paper presents a first study about end-to-end named en-
tity extraction from speech. By integrating in the charac-
ter sequence emitted by a CTC end-to-end speech recogni-
tion system some special characters to delimit and categorize
named entities, we showed that such extraction is feasible. To
compensate the lack of training data, we propose a multi-task
learning approach (ASR + NER) in addition to an artificial
data augmentation of the training corpus with automatic an-
notation of named entities. A starred mode is also proposed
to make the neural network more focused on named enti-
ties. Experimental results show that this end-to-end ap-

proach in starred mode with training augmentation, pro-
vides better results (F-measure equals to 0.69 on test) than
a pipeline approach to detect named entity categories (F-
measure=0.64). On the other side, performances of this end-
to-end approach to extract named entity values are worse than
the ones got by the pipeline process.

As a conclusion, this study presents promising results in a
first attempt to experiment an end-to-end approach to extract
named entities, and constitutes an interesting start point for
future work that could start by combining starred mode with
training data augmentation, but also explore more different
ways, like injecting linguistic information in the end-to-end
neural architecture.
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