Grain Boundaries in Graphene on SiC(000(1)over-bar) Substrate - Archive ouverte HAL Access content directly
Journal Articles Nano Letters Year : 2014

Grain Boundaries in Graphene on SiC(000(1)over-bar) Substrate


Grain boundaries in epitaxial graphene on the SiC(000 (1) over bar) substrate are studied using scanning tunneling microscopy and spectroscopy. All investigated small-angle grain boundaries show pronounced out-of-plane buckling induced by the strain fields of constituent dislocations. The ensemble of observations determines the critical misorientation angle of buckling transition theta(c) = 19 +/- 2 degrees. Periodic structures are found among the flat large-angle grain boundaries. In particular, the observed theta = 33 +/- 2 degrees highly ordered grain boundary is assigned to the previously proposed lowest formation energy structural motif composed of a continuous chain of edge-sharing alternating pentagons and heptagons. This periodic grain boundary defect is predicted to exhibit strong valley filtering of charge carriers thus promising the practical realization of all-electric valleytronic devices.

Dates and versions

hal-01987555 , version 1 (21-01-2019)



Yann Tison, Jerome Lagoute, Vincent Repain, Cyril Chacon, Yann Girard, et al.. Grain Boundaries in Graphene on SiC(000(1)over-bar) Substrate. Nano Letters, 2014, 14 (11), pp.6382-6386. ⟨10.1021/nl502854w⟩. ⟨hal-01987555⟩
9 View
0 Download



Gmail Mastodon Facebook X LinkedIn More