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Abstract

The incompressible Navier-Stokes equations in R
3 are shown to admit a unique axisym-

metric solution without swirl if the initial vorticity is a circular vortex filament with arbi-
trarily large circulation Reynolds number. The emphasis is on uniqueness, as existence has
already been established in [10]. The main difficulty which has to be overcome is that the
nonlinear regime for such flows is outside of applicability of standard perturbation theory,
even for short times. The solutions we consider are archetypal examples of viscous vortex
rings, and can be thought of as axisymmetric analogues of the self-similar Lamb-Oseen vor-
tices in two-dimensional flows. Our method provides the leading term in a fixed-viscosity
short-time asymptotic expansion of the solution, and may in principle be extended so as to
give a rigorous justification, in the axisymmetric situation, of higher-order formal asymptotic
expansions that can be found in the literature [7].

1 Introduction

In three-dimensional ideal fluids, a vortex ring is an axisymmetric flow with the property that
the vorticity is entirely concentrated in a solid torus, which moves with constant speed along
the symmetry axis. The vortex lines form large circles that fill the torus, whereas fluid particles
spin around the vortex core within perpendicular cross sections. If r̄, r denote the major and
minor radii of the torus, respectively, and if Γ is the flux of the vorticity vector through any cross
section, the “local induction approximation” gives the following expression for the translation
speed along the axis

V =
Γ

4πr̄

(

log
1

ǫ
+O(1)

)

, (1.1)

which is valid in the asymptotic regime where the aspect ratio ǫ = r/r̄ is small. For the three-
dimensional Euler equations, existence of large families of uniformly translating vortex ring
solutions has been obtained using fixed point methods [12] or variational techniques [2, 13, 14],
and formula (1.1) has been rigorously justified when ǫ ≪ 1 [12, 14]. In addition, for general
initial data that are close enough to a vortex ring with small aspect ratio, it is known that the
solution evolves in such a way that the vorticity remains sharply concentrated, for a relatively
long time, near a vortex ring whose speed is given by (1.1), see [4].
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The situation is quite different for viscous fluids, in which uniformly translating vortex rings
cannot exist because all localized structures are eventually spread out by diffusion. In that case,
however, it is quite natural to consider the initial value problem with a vortex filament as initial
data, namely a vortex ring with infinitesimal cross section and yet nonzero circulation Γ, so that
the initial vorticity is a measure supported by a circle of radius r̄. It is then expected that the
solution at time t > 0 will be close to a vortex ring with Gaussian vorticity profile and minor
radius r =

√
νt, where ν is the kinematic viscosity. Moreover, this vortex will move along its

symmetry axis at a speed given by (1.1), as long as the time-dependent aspect ratio ǫ =
√
νt/r̄

is sufficiently small.

Justifying these heuristic considerations requires some work. For singular initial data such
as vortex filaments, the best available results on the Cauchy problem for the three-dimensional
Navier-Stokes equations provide existence of a (unique and global) solution only if the circulation
parameter Γ is small enough compared to viscosity, see [21, 25]. For larger values of Γ/ν,
existence of a (global) axisymmetric solution without swirl has been recently obtained by H. Feng
and the second author [10], using approximation techniques that do not give any information
about uniqueness, even within the axisymmetric class. In this paper, our main purpose is to fill
this gap and to prove that, if one starts from a circular vortex filament with arbitrary strength Γ,
the Navier-Stokes equations have a unique axisymmetric solution without swirl, which is global
and smooth for positive times. This axisymmetric solution is the archetype of a viscous vortex
ring, just as the two-dimensional Lamb-Oseen solution is the archetype of a viscous columnar
vortex [19]. Our approach is constructive and allows us to determine the leading term in the
short-time asymptotic expansion of the vortex ring for a fixed viscosity. In principle, performing
the calculations to higher orders in the spirit of Callegari and Ting’s paper [7], one should be able
to obtain more precise approximations of the solution that remain valid as long as the aspect
ratio ǫ =

√
νt/r̄ is small enough. In particular, computing the next order after the leading term,

we should recover the asymptotic formula (1.1) for the translation speed if |Γ|/ν ≫ 1. We leave
this extension for future work.

To state our results in a more precise way, we start from the Navier-Stokes equations

∂tu+ (u · ∇)u = ν∆u− 1

ρ
∇p , div u = 0 , (1.2)

in the whole space R
3, where u = u(x, t) ∈ R

3 denotes the velocity field and p = p(x, t) ∈ R

is the internal pressure. Both the kinematic viscosity ν > 0 and the fluid density ρ > 0 are
assumed to be constant. We restrict ourselves to axisymmetric solutions without swirl for which
the velocity field u and the vorticity ω = curlu have the particular form:

u(x, t) = ur(r, z, t)er + uz(r, z, t)ez , ω(r, z, t) = ωθ(r, z, t)eθ . (1.3)

Here (r, θ, z) are the usual cylindrical coordinates in R
3, such that x = (r cos θ, r sin θ, z) for

any x ∈ R
3, and er, eθ, ez denote the unit vectors in the radial, toroidal, and vertical directions,

respectively. The axisymmetric vorticity ωθ = ∂zur − ∂ruz satisfies the evolution equation

∂tωθ + u · ∇ωθ −
ur
r
ωθ = ν

(

∆ωθ −
ωθ

r2

)

, (1.4)

where u · ∇ = ur∂r + uz∂z and ∆ = ∂2r + 1
r∂r + ∂2z is the axisymmetric Laplace operator in

cylindrical coordinates. The velocity u can be expressed in terms of the axisymmetric vorticity
ωθ by solving the linear elliptic system

∂rur +
1

r
ur + ∂zuz = 0 , ∂zur − ∂ruz = ωθ , (1.5)
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in the half-plane Ω = {(r, z) ∈ R
2 | r > 0 , z ∈ R}. Boundary conditions for the quantities ur,

uz, and ωθ are prescribed by requiring that the vectorial functions u, ω in (1.3) be smooth across
the symmetry axis r = 0. One finds that the radial velocity ur and the axisymmetric vorticity
ωθ should satisfy the homogeneous Dirichlet condition on ∂Ω, whereas the vertical velocity uz
satisfies the homogeneous Neumann condition.

Since the pioneering work of Ukhovskii and Yudovitch [32], and of Ladyzhenskaya [26], it
is well known that the axisymmetric Navier-Stokes equations without swirl are globally well-
posed for velocities in (appropriate subspaces of) the energy class, see also [1, 27] for further
results in this direction. In the recent work [17], the Cauchy problem for the vorticity equation
(1.4) is studied using scale invariant function spaces which emphasize the analogy with the
two-dimensional vorticity equation. Following [17], we equip the half-plane Ω with the two-
dimensional measure dr dz, as opposed to the three-dimensional measure r dr dz which appears
more naturally in cylindrical coordinates. In particular, for any p ∈ [1,∞), we denote by Lp(Ω)
the space of measurable functions ωθ : Ω → R such that

‖ωθ‖Lp(Ω) :=

(
∫

Ω
|ωθ(r, z)|p dr dz

)1/p

< ∞ .

As usual, the limiting space L∞(Ω) is equipped with the essential supremum norm. We also
denote by M(Ω) the set of all real-valued finite regular measures on Ω, equipped with the total
variation norm

‖µ‖tv = sup

{∫

Ω
φdµ

∣

∣

∣
φ ∈ C0(Ω) , ‖φ‖L∞(Ω) ≤ 1

}

,

where C0(Ω) denotes the set of all real-valued continuous functions on Ω that vanish at infinity
and on the boundary ∂Ω. Clearly L1(Ω) is a closed subspace of M(Ω), and ‖µ‖tv = ‖ωθ‖L1(Ω)

if µ = ωθ dr dz for some ωθ ∈ L1(Ω).

As is proved in [17, Theorem 1.3], the Cauchy problem for the axisymmetric vorticity equa-
tion (1.4) is globally well-posed if the initial vorticity µ ∈ M(Ω) is a finite measure whose
atomic part µpp satisfies ‖µpp‖tv ≤ C0ν, where C0 > 0 is a universal constant. We are especially
interested here in the particular situation where µ = Γ δ(r̄,z̄), which corresponds to a circular
vortex filament of strength Γ ∈ R and radius r̄ > 0, centered at the origin in the affine plane
x3 = z̄ ∈ R. In that case, we have ‖µpp‖tv = ‖µ‖tv = |Γ|, so that the results of [17] assert
the existence of a unique global solution if |Γ| ≤ C0ν. On the other hand, for arbitrary values
of the circulation parameter Γ, existence of a global solution to (1.4) was recently obtained by
H. Feng and the second author [10], using approximation techniques which however do not give
any information about uniqueness.

With this perspective in mind, our main result can now be stated as follows:

Theorem 1.1. Fix Γ ∈ R, r̄ > 0, z̄ ∈ R, and ν > 0. Then the axisymmetric vorticity
equation (1.4) has a unique global mild solution ωθ ∈ C0((0,∞), L1(Ω) ∩ L∞(Ω)) such that

sup
t>0

‖ωθ(t)‖L1(Ω) < ∞ , and ωθ(t) dr dz ⇀ Γ δ(r̄,z̄) as t→ 0 . (1.6)

In addition, there exists a constant C1 > 0, depending only on the ratio |Γ|/ν, such that the
following estimate holds:

∫

Ω

∣

∣

∣ωθ(r, z, t) −
Γ

4πνt
e−

(r−r̄)2+(z−z̄)2

4νt

∣

∣

∣ dr dz ≤ C1 |Γ|
√
νt

r̄
log

r̄√
νt
, (1.7)

as long as
√
νt ≤ r̄/2.
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We recall that a mild solution to (1.4) is a solution of the associated integral equation, see
Definition 2.1 below. To clarify the scope of our result, a few comments are in order.

1. Theorem 1.1 can be seen as the axisymmetric counterpart of Proposition 1.3 in [19],
which characterizes the Lamb-Oseen vortices among all viscous planar flows. However, unlike
in the two-dimensional case, the vortex rings defined by (1.7) do not play any special role in the
long-time dynamics of the vorticity equation (1.4).

2. As was already mentioned, existence of a global mild solution to (1.4) satisfying (1.6)
was established in [10]. Uniqueness is thus the main new assertion in Theorem 1.1, together
with the small time asymptotic expansion (1.7). It should be mentioned, however, that the
techniques developed in Section 4, when properly adapted, can provide existence of a solution
to (1.4) satisfying (1.6), using a standard fixed point argument which also gives uniqueness in a
restricted class.

3. Assumptions (1.6) are the weakest ones under which the conclusions of Theorem 1.1 are
expected to hold. Indeed, we recall that the L1 norm of any solution to (1.4) is a nonincreasing
function of time, see [17, Lemma 5.1], and it follows from (1.7) that ‖ωθ(t)‖L1(Ω) → |Γ| as t→ 0,
hence the first condition in (1.6) is clearly necessary. The second hypothesis states that ωθ(t)
converges to Γ δ(r̄,z̄) as t → 0 in the weak-star topology of M(Ω), which is usually referred
to as the “weak convergence of measures”. But since ωθ(t) is uniformly bounded in L1(Ω), it
is equivalent to suppose that convergence holds in the sense of distributions on Ω, and this is
arguably the weakest way to specify the initial data.

4. The short time estimate (1.7) is sharp in the sense that the right-hand side cannot be
replaced by C1|Γ|ǫ, where ǫ =

√
νt/r̄ is the aspect ratio at time t. This is because, in (1.7), we

compare the solution ωθ(t) to a viscous vortex ring located at a fixed point (r̄, z̄) in cylindrical
coordinates, whereas we know that any vortex ring should move in the vertical direction at a
speed given approximately by (1.1). In fact, it is possible to show that, if we replace in (1.7)
the fixed vertical coordinate z̄ by

z̄(t) = z̄ +
Γt

4πr̄
log

r̄√
νt
,

then estimate (1.7) holds without the logarithmic term in the right-hand side. More generally,
the Gaussian vorticity profile in (1.7) is only the first term in an asymptotic expansion of the
solution ωθ(t) which, in principle, can be computed to arbitrary order in ǫ, see also the next
comment below.

5. In estimate (1.7) convergence is expressed in the L1 norm for simplicity, but in the proof
we use a weighted L2 norm in self-similar variables, which is considerably stronger and also
implies approximation results for the velocity field associated with ωθ(t). On the other hand, we
emphasize that (1.7) is a short time result at fixed viscosity, which cannot be used to describe
the solution at fixed time t > 0 in the vanishing viscosity limit ν → 0, because the constant C1

in the right-hand side strongly depends on the ratio |Γ|/ν. Controlling the weakly viscous vortex
ring over a fixed time interval is a different problem, which requires in particular constructing
a much more precise approximation of the solution ωθ(t). We hope to address this interesting
question in a future work.

6. It is worth emphasizing that the uniqueness statement is proved only withing the class
of axisymmetric solutions. A natural question is whether uniqueness remains true among all
(reasonable) solutions of (1.2) that approach the initial vortex filament in a suitable sense as
t → 0. For instance, one may assume that the velocity field u(x, t) is smooth in R

3 × (0,∞),
and satisfies the scale-invariant estimates listed in (2.14) below. As for the associated vorticity
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ω(x, t), one may suppose (motivated by [21], see also Remark 5.2 below) that a natural quantity
such as

sup
x∈R3

sup
R>0

1

R

∫

Bx,R

|ω(y, t)|dy (1.8)

is uniformly bounded for t > 0, and that ω(t) approaches the vortex filament in the sense of
distributions as t→ 0. But even under these strong assumptions, it seems to be a difficult open
problem to decide whether u(x, t) has to be axisymmetric. It is conceivable that the symmetry
of the initial data can be broken and, in addition to the axisymmetric solution, there is another
solution which is not axisymmetric. In fact, the same question already arises for rectilinear
vortices: the uniqueness problem when the initial vorticity is a (vertical) straight vortex filament,
considered within the class of x3-independent velocity fields of the form (u1, u2, 0), is the same
as the 2d uniqueness and has been solved in [15, 16], but uniqueness among reasonable classes
of 3d vector fields remains open.

The difficulties arise because the initial data do not belong to functions spaces where pertur-
bation theory gives existence and uniqueness of local-in-time solutions for large data. Typical
examples of function spaces (for the velocity field) where large data can be handled, locally in

time, are the Lebesgue space L3(R3) or the Besov space Ḃ
−1+3/p
p,q (R3) for p ∈ (3,∞) and q <∞.

For the solutions we consider here the initial velocity field u0 in R
3 corresponding to the vortex

ring given by µ = Γδ(r̄,z̄) does not belong to spaces where local-in-time well-posedness can be
established by existing perturbation results, unless Γ is small. It is easy to see that u0 belongs
to the Besov space B−1

∞,∞, which is invariant under the Navier-Stokes scaling u0(x) → λu0(λx).
However, this is not a good space for perturbation theory, even for small data, as shown in [6, 20].
With slightly more work one can see that u0 ∈ BMO−1. We show in Section 5.2 that, in fact,
u0 ∈ (L∞)−1. Therefore for small Γ one can obtain global existence and uniqueness (in suitable
classes of functions) by applying the well-known results of [25]. One can also use [21], where the
authors work with a Morrey-type space M3/2(R3) for the vorticity curlu0 (which gives BMO−1

for u0, see Remark 5.2).

The case of large Γ is not covered by such considerations, as the perturbation theory in
BMO−1 and similar spaces requires smallness of the initial data u0, even for the local-in-time
results. It is conjectured that this is not just due to some technical issues of the method, and that
the Navier-Stokes equations are in fact not well-posed locally in time for general u0 ∈ BMO−1.
In [23, 22] some evidence is given that local-in-time well-posedness, and, indeed, uniqueness,
may fail already for initial data u0 that are compactly supported, smooth away from the origin,
and (−1)-homogeneous near the origin. Hence the uniqueness question (with respect to the 3d
perturbations) can be raised a fortiori for vortex filaments, where the singularity of the initial
data is not located at a single point but is spread over a whole curve.

Although the proof of Theorem 1.1 is the main purpose of this paper, we establish on
the way several auxiliary results that have their own interest. As the existence part of the
theorem is already settled in [10], we concentrate on uniqueness and short time asymptotics.
Our presentation is structured as follows. In Section 2, we assume that we are given a mild
solution ωθ ∈ C0((0, T ), L1(Ω) ∩ L∞(Ω)) of (1.4) which is uniformly bounded in the space
L1(Ω). We recall some a priori estimates that were obtained in [17], and we show that ωθ(t)
converges weakly, as t→ 0, to some (uniquely defined) Radon measure µ ∈ M(Ω). Next, using
recent results on linear parabolic equations with singular divergence-free drifts [30], we prove
that the solutions of the adjoint equation to (1.4) are continuous all the way to the initial time
t = 0, even at the symmetry axis r = 0. This nontrivial result allows us to deduce that the
family of measures ωθ(t) dr dz remains tight as t→ 0, so that no mass can escape to infinity nor
concentrate on the symmetry axis.
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In Section 3 we focus on the particular case where µ = Γ δ(r̄,z̄) for some (r̄, z̄) ∈ Ω, assuming
without loss of generality that Γ > 0. We prove that the solution ωθ(t) is strictly positive and
satisfies, for any η ∈ (0, 1), the Gaussian bound

ωθ(r, z, t) ≤ C
Γ

νt
exp

(

−1− η

4νt

(

(r − r̄)2 + (z − z̄)2
)

)

, (1.9)

where C > 0 depends only on η and on the ratio Γ/ν. In the two-dimensional case, estimates of
the form (1.9) were obtained by Osada [28], see also [8]. Reproducing them in the axisymmetric
case is not straightforward, because the left-hand side of (1.4) contains the zero order term
urωθ/r which is harmless only if one can prove that ‖ur(t)/r‖L∞(Ω) is integrable in time. That
property does not follow from the scale invariant a priori estimates on the solution, but we can
show that it holds as soon as the support of the initial measure µ is bounded away from the
symmetry axis, which is of course the case in our problem. Thus a minor modification of the
method presented in [9] allows us to establish the Aronson type estimate (1.9).

Section 4 is devoted to the actual proof of Theorem 1.1. To study the behavior of the solution
near the location (r̄, z̄) of the initial vortex filament, we introduce self-similar variables via the
transformation

ωθ(r, z, t) =
Γ

νt
f
(r − r̄√

νt
,
z − z̄√
νt

, t
)

. (1.10)

The rescaled vorticity f(R,Z, t) defined by (1.10) is positive and, in view of (1.9), bounded
from above by a Gaussian function. Using a compactness argument and a Liouville theorem
established in [19], we show that f(t) converges as t→ 0 to the Gaussian G defined by

G(R,Z) =
1

4π
e−(R2+Z2)/4 , (R,Z) ∈ R

2 . (1.11)

Convergence holds in the weighted space X = L2(R2, G−1 dRdZ) which is continuously embed-
ded in L1(R2), hence returning to the original variables we deduce that the left-hand side of
(1.7) vanishes as t → 0. We next use energy estimates to show that the difference ‖f(t)−G‖X
is O(ǫ| log ǫ|), where ǫ =

√
νt/r̄, and this concludes the proof of (1.7). Finally, repeating the

energy estimates for the difference of two solutions satisfying the assumptions of Theorem 1.1,
we prove that ‖f1(t) − f2(t)‖X = 0 for sufficiently small times, and invoking a well-posedness
result from [17] we conclude that the solutions coincide for all times, which gives uniqueness.

The final Section 5 is an appendix were the proofs of a few auxiliary results are collected for
easy reference in the text.

Acknowledgements. This project started during visits of the first named author to the
University of Minnesota, whose hospitality is gratefully acknowledged. Our research was sup-
ported in part by grants DMS 1362467 and DMS 1159376 from the National Science Foundation
(V.S.), and by grant “Dyficolti” ANR-13-BS01-0003-01 from the French Ministry of Research
(Th.G.). The authors warmly thank the three anonymous referees for their careful reading of
the manuscript and their numerous constructive remarks.

2 General properties of L1-bounded solutions

In this section, we establish some preliminary results concerning mild solutions of (1.4) that
are uniformly bounded in L1(Ω). The class of solutions we consider is thus larger than what is
necessary to prove Theorem 1.1, but the results presented here have their own interest, and are
most naturally stated in this general framework. We first recall a few notations and estimates
from the earlier works [10, 17].
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2.1 The linear semigroup and the axisymmetric Biot-Savart law

As in [17], we denote by (S(t))t≥0 the evolution semigroup defined by the linearized equation (1.4)
with unit viscosity:

∂tωθ =
(

∂2r + ∂2z +
1

r
∂r −

1

r2

)

ωθ , (2.1)

which is considered in the half-plane Ω = {(r, z) ∈ R
2 | r > 0 , z ∈ R} with homogeneous

Dirichlet boundary condition on ∂Ω. Using the explicit representation formula given in [17,
Section 3], one can show that the semigroup (S(t))t≥0 is strongly continuous in Lp(Ω) for all
p ∈ [1,∞), and satisfies the same Lp −Lq estimates as the heat semigroup in R

2. In particular,
if ω0 ∈ Lp(Ω) for some p ∈ [1,∞], then S(t)ω0 ∈ Lq(Ω) for all t > 0 and all q ∈ [p,∞], and there
exists a constant C2 > 0 such that

‖S(t)ω0‖Lq(Ω) ≤ C2

t
1
p
− 1

q

‖ω0‖Lp(Ω) , t > 0 , (2.2)

see [17, Proposition 3.4]. Similarly, if w = (wr, wz) ∈ Lp(Ω)2, we have

‖S(t) div∗ w‖Lq(Ω) ≤ C2

t
1
p
− 1

q
+ 1

2

‖w0‖Lp(Ω) , t > 0 , (2.3)

where div∗w = ∂rwr + ∂zwz denotes the two-dimensional divergence of the vector field w. Note
that, when 1 ≤ p < 2, estimate (2.3) gives a better decay rate for large times than what is
known for the heat semigroup in the same domain Ω with Dirichlet boundary condition. This
illustrates the fact that the symmetry axis r = 0 is not a material boundary in our problem,
but an artificial boundary resulting from a particular choice of coordinates. Also, to see the
optimal decay rates, it is often useful to revert to the 3d picture and use that in our situation
∫

R3 ω(x, 0) dx = 0, which gives some additional cancellation which may not be immediatelly
transparent in the 2d picture.

On the other hand, if ωθ ∈ L1(Ω) ∩ L∞(Ω), it is shown in [10, 17] that the linear elliptic
system (1.5), with homogeneous Dirichlet boundary condition for ur and homogeneous Neumann
condition for uz, has a unique solution u = (ur, uz) ∈ C0(Ω)2 vanishing at infinity. Moreover
u ∈ Lq(Ω) for all q > 2, and there exists a constant C3 > 0 such that

‖u‖L∞(Ω) ≤ C3‖ωθ‖1/2L1(Ω)
‖ωθ‖1/2L∞(Ω) , (2.4)

see [17, Proposition 2.3]. We call the map ωθ 7→ u the axisymmetric Biot-Savart law, and we
occasionally denote u = BS[ωθ]. Explicit formulas for u in terms of ωθ can be found in Section 2
of both references [10, 17]. We also recall the following useful estimate: if ωθ ∈ L1(Ω) and
ωθ/r ∈ L∞(Ω), then ur/r ∈ L∞(Ω) and

∥

∥

∥

ur
r

∥

∥

∥

L∞(Ω)
≤ C3‖ωθ‖1/3L1(Ω)

‖ωθ/r‖2/3L∞(Ω) , (2.5)

see [17, Proposition 2.6]. Needless to say, both inequalities (2.4), (2.5) are scale invariant.

Finally, it is important to note that, due to the divergence-free condition in (1.5), the evo-
lution equation (1.4) can be written in the equivalent “conservation form”

∂tωθ + div∗(uωθ) = ν
(

∂2rωθ + ∂2zωθ + ∂r
ωθ

r

)

, (2.6)

where again div∗(uωθ) = ∂r(urωθ)+ ∂z(uzωθ). We can thus define mild solutions of (1.4) in the
following way:

7



Definition 2.1. Given T > 0 and ν > 0, we say that ωθ ∈ C0((0, T ), L1(Ω)∩L∞(Ω)) is a mild
solution of (1.4) on (0, T ) if the integral equation

ωθ(t) = S(ν(t− t0))ωθ(t0)−
∫ t

t0

S(ν(t− s)) div∗(u(s)ωθ(s)) ds (2.7)

is satisfied whenever 0 < t0 < t < T . Here u(s) = BS[ωθ(s)] for all s ∈ (0, T ).

In view of estimates (2.2), (2.3) and (2.4), it is clear that the integrand in (2.7) is an integrable
function of s ∈ [t0, t] with values in L1(Ω)∩L∞(Ω), and it follows that both sides of (2.7) belong
to C0

(

(t0, T ), L
1(Ω) ∩ L∞(Ω)

)

for any t0 ∈ (0, T ).

2.2 A priori estimates

From now on, we always assume that ωθ ∈ C0((0, T ), L1(Ω)∩L∞(Ω)) is a mild solution of (1.4)
on (0, T ) in the sense of Definition 2.1. We know from [17, Lemma 5.1] that the norm ‖ωθ(t)‖L1(Ω)

is a nonincreasing function of time, and is even strictly decreasing unless ωθ vanishes identically.
We make the crucial assumption that ωθ is uniformly bounded in L1(Ω), so that we can define

M =
1

ν
lim
t→0

‖ωθ(t)‖L1(Ω) < ∞ . (2.8)

We thus have ‖ωθ(t)‖L1(Ω) ≤ Mν for all t ∈ (0, T ). Under this hypothesis, we can state the
following a priori estimates, which exploit the particular structure of Eq. (1.4) and are only valid
for axisymmetric flows without swirl.

Lemma 2.2. For any mild solution of (1.4) on (0, T ) satisfying (2.8), we have for all t ∈ (0, T ):

∥

∥

∥

ωθ(t)

r

∥

∥

∥

L∞(Ω)
≤ C4M

t
√
νt
, and ‖ωθ(t)‖L∞(Ω) ≤ C5(M)M

t
, (2.9)

where C4 > 0 is a universal constant and C5 > 0 depends on M .

Remark 2.3. Here and in what follows we denote by Ck(M) various quantities that are increas-
ing functions of M satisfying Ck(0) > 0 and Ck(M) ≤ C(1 +M)σ for some universal constants
C > 0 and σ > 0. The precise value of the exponent σ does not play any role in our arguments.

Proof. It is sufficient to prove (2.9) when ν = 1, because the general case then follows by a
simple rescaling argument. Due to parabolic smoothing, if ωθ ∈ C0((0, T ), L1(Ω) ∩ L∞(Ω)) is a
mild solution of (1.4), then ωθ is smooth on Ω× (0, T ) and satisfies (1.4) in the classical sense.
Applying Nash’s method to the evolution equation satisfied by the quantity ωθ/r, one obtains
the following estimate:

∥

∥

∥

ωθ(t)

r

∥

∥

∥

L∞(Ω)
≤ C4

(t− t0)3/2
‖ωθ(t0)‖L1(Ω) ≤ C4M

(t− t0)3/2
, (2.10)

for all t ∈ (0, T ) and all t0 ∈ (0, t), see [10, Lemma 3.8]. Thus taking the limit t0 → 0 we arrive
at the first inequality in (2.9). Similarly, it follows from [17, Proposition 5.3] that

‖ωθ(t)‖L∞(Ω) ≤
C5(‖ωθ(t0)‖L1(Ω))

t− t0
‖ωθ(t0)‖L1(Ω) ≤ C5(M)M

t− t0
, (2.11)

for some function C5 > 0 as specified in Remark 2.3. Taking again the limit t0 → 0 yields the
second inequality in (2.9).
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Combining Lemma 2.2 with estimates (2.4), (2.5), we easily obtain:

Corollary 2.4. Under the assumptions of Lemma 2.2, we have for all t ∈ (0, T ):

∥

∥

∥

ur(t)

r

∥

∥

∥

L∞(Ω)
≤ C6M

t
, and ‖u(t)‖L∞(Ω) ≤ C7(M)M

√

ν

t
, (2.12)

where C6 = C3C
2/3
4 and C7(M) = C3C5(M)1/2.

We also have scale-invariant estimates on the derivatives of the vorticity or the velocity. For
instance, Proposition 5.5 in [17] asserts that

‖∇ωθ(t)‖L∞(Ω) ≤ C8(M)M

t
√
νt

, 0 < t < T . (2.13)

More generally, the velocity u = urer + uzez (considered as a function of x ∈ R
3) satisfies, for

all k, ℓ ∈ N,

‖∂kt ∇ℓ
xu(t)‖L∞(R3) ≤ Ckℓ(M)M

tk(νt)ℓ/2

√

ν

t
, 0 < t < T . (2.14)

This bound can be deduced from the second estimate in (2.12) using general regularity results
for the three-dimensional Navier-Stokes equations, as in the proof of [17, Proposition 5.5].

2.3 The trace of the solution at initial time

Using the a priori estimates established in the previous section, we now prove that any mild
solution satisfying (2.8) converges as t→ 0 to some finite measure µ ∈ M(Ω).

Proposition 2.5. If ωθ ∈ C0((0, T ), L1(Ω) ∩ L∞(Ω)) is a mild solution of (1.4) on (0, T )
satisfying (2.8), there exists a unique measure µ ∈ M(Ω) such that ωθ(t) dr dz ⇀ µ as t→ 0.

Proof. We assume without loss of generality that ν = 1. We first show that ωθ(t) has a limit
as t → 0 in D′(Ω), the space of all distributions on Ω. Let φ ∈ C2

c (Ω) be a C2 function with
compact support in Ω. Using (2.6) we find

d

dt

∫

Ω
φωθ dr dz =

∫

Ω

(

u · ∇φ+ ∂2rφ+ ∂2zφ− 1

r
∂rφ

)

ωθ dr dz ,

for all t ∈ (0, T ). As ‖ωθ(t)‖L1(Ω) ≤M we have

∣

∣

∣

∫

Ω

(

∂2rφ+ ∂2zφ− 1

r
∂rφ

)

ωθ dr dz
∣

∣

∣ ≤ CM‖∇2φ‖L∞(Ω) ,

for some universal constant C > 0, and using estimate (2.12) we also obtain

∣

∣

∣

∫

Ω
u · ∇φdr dz

∣

∣

∣
≤ C7(M)M

t1/2
‖∇φ‖L∞(Ω) .

This shows that the quantity
∫

Ω φ(r, z)ωθ(r, z, t) dr dz has a limit as t → 0 for any φ ∈ C2
c (Ω),

hence ωθ(t) converges in D
′(Ω) to some limit which we denote by µ.

On the other hand, since ωθ(t) is uniformly bounded in L1(Ω) by assumption, the Banach-
Alaoglu theorem asserts that, for any sequence tm → 0, there exists a subsequence t′m → 0 and
a measure µ̄ ∈ M(Ω) such that ωθ(t

′
m) dr dz ⇀ µ̄ as m → ∞. But weak-star convergence in

M(Ω) implies convergence in D′(Ω), so we necessarily have µ̄ = µ, hence µ ∈ M(Ω). Moreover,
this shows that the weak-star limit is independent of the choice of the subsequence t′m → 0, so
that in fact ωθ(tm) dr dz ⇀ µ as m → ∞. Since the sequence tm → 0 was arbitrary, this is the
desired result.
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Corollary 2.6. Under the assumptions of Proposition 2.5, one has

ωθ(t) = S(νt)µ−
∫ t

0
S(ν(t− s)) div∗(u(s)ωθ(s)) ds , 0 < t < T . (2.15)

Proof. We again assume that ν = 1. For any fixed t ∈ (0, T ), our goal is to take the limit t0 → 0
in the integral representation (2.7), where both sides are considered as elements of L1(Ω). The
integral term is easily controlled using estimates (2.3), (2.4), and (2.12). We find

∫ t

t0

‖S(t− s) div∗(u(s)ωθ(s))‖L1(Ω) ds ≤
∫ t

t0

C2

(t− s)1/2
‖u(s)‖L∞(Ω)‖ωθ(s)‖L1(Ω) ds

≤
∫ t

0

C2M

(t− s)1/2
C7(M)M

s1/2
ds = πC2C7(M)M2 < ∞ ,

hence the integral term in (2.7) has a limit in L1(Ω) as t0 → 0. To treat the other term, we
decompose

S(t− t0)ωθ(t0) =
(

S(t− t0)− S(t)
)

ωθ(t0) + S(t)ωθ(t0) .

Using the explicit representation formula for the semigroup S(t) given in [17, Section 3], it is
quite straightforward to verify that

‖(S(t − t0)− S(t))ωθ(t0)‖L1(Ω) ≤ C
t0
t
‖ωθ(t0)‖L1(Ω) −−−−→

t0→0
0 .

Moreover, it follows from Proposition 2.5 that
(

S(t)ωθ(t0)
)

(r, z) −−−→
t0→0

(S(t)µ)(r, z) , for all (r, z) ∈ Ω ,

and since the left-hand side of (2.7) does not depend on t0 we deduce that convergence holds in
L1(Ω) too. So taking the limit t0 → 0 in (2.7) we obtain (2.15).

Remark 2.7. In view of Proposition 2.5, a natural question is whether a mild solution of (1.4)
on (0, T ) satisfying (2.8) is uniquely determined by its “trace at initial time”, namely by the
measure µ. Using the results established in [17], one can show that the answer is positive if the
atomic part of µ is small enough compared to viscosity. In the present paper, we focus on the
particular case where µ is a single Dirac mass. The general case is still open.

2.4 The adjoint equation

The aim of the section is to establish some important relations between a mild solution of
(1.4) satisfying (2.8) and its initial trace given by Proposition 2.5. To do that, the idea is to
consider Eq. (1.4) or (2.6) as a linear evolution equation for the axisymmetric vorticity ωθ with
a given advection field u, and to take the adjoint equation with respect to the scalar product in
L2(Ω, dr dz), namely

∂tφ+ u · ∇φ+ ν
(

∆φ− 2

r
∂rφ

)

= 0 . (2.16)

We recall that ∆ = ∂2r + 1
r∂r + ∂2z is the axisymmetric Laplace operator. Eq. (2.16) is again

considered as a linear equation, where the velocity field u is given and satisfies the bounds (2.12).

It is important to realize that the adjoint equation (2.16) can be solved backwards in time,
imposing simultaneously Dirichlet and Neumann boundary conditions on ∂Ω, and one has

d

dt

∫

Ω
ωθ(r, z, t)φ(r, z, t) dr dz = 0 , (2.17)
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so that the solutions of (2.16) can be used as convenient test functions. If one thinks of the
equation for ωθ as a Kolmogorov-type equation for some stochastic process, then the adjoint
equation (2.16) is the corresponding backward Kolmogorov equation.

A natural way to introduce the adjoint equation is to start from the three-dimensional
vorticity equation

∂tω + [u, ω]− ν∆ω = 0 , x ∈ R
3 , (2.18)

where we use the Lie bracket notation [u, ω] = (u · ∇)ω − (ω · ∇)u, and consider it as a linear
equation for (general) vector fields ω, with u given. If we take the adjoint equation to (2.18)
for (general) vector fields Φ, given by the requirement that

∫

R3 ω(x, t) ·Φ(x, t) dx be constant in
time, we obtain

∂tΦ+ LuΦ+ ν∆Φ = 0 , x ∈ R
3 , (2.19)

where LuΦ is the Lie derivative of Φ along the vector field u when Φ is considered as a 1-form.
In coordinates we have (LuΦ)i = uj∂jΦi +Φj∂iuj, where we sum over repeated indices.

Due to estimates (2.14) we see from the standard linear parabolic theory that Eq. (2.19)
can be solved backwards in time, for any bounded divergence-free “terminal data” Φ1 at time
t1 ∈ (0, T ), and the solution Φ will be smooth in the open set R3×(0, t1). When u is axisymmetric
with no swirl, then the fields ω of the form ω = ωθ(r, z, t)eθ are preserved by (2.18) (considered
as a linear equation for ω), and the same is true for (2.19) if Φ = Φθ(r, z, t) eθ . For ω and Φ of
this form we have

∫

R3

ω(x, t) · Φ(x, t) dx =

∫

Ω
ωθ(r, z, t)Φθ(r, z, t)2πr dr dz ,

and therefore in (2.16) we should take

φ = 2πrΦθ . (2.20)

For the solutions we consider here, equation (2.16) is the same as (2.19) after the change of
variables (2.20). Now, as Φ is smooth in R

3 × (0, t1), we must have Φθ = rg for some smooth
function g = g(r, z, t) that is bounded on Ω̄ for any t ∈ (0, t1), and we conclude that the natural
boundary condition for φ at r = 0 is that both φ and ∂rφ vanish.

Alternatively, it is easy to verify that Eq. (2.16) is well-posed (backwards in time) under the
Neumann boundary condition ∂rφ(0, z, t) = 0, and that the boundary data a(z, t) = φ(0, z, t)
satisfy the equation

∂ta(z, t) + uz(0, z, t)∂za(z, t) + ν∂2za(z, t) = 0 , z ∈ R , t ∈ (0, T ) .

In particular, if φ vanishes on the boundary ∂Ω at terminal time t1, the same property holds
for all t ∈ (0, t1), and as demonstrated above this is the natural condition under which (2.16)
can be considered as the adjoint equation to (1.4) in Ω.

From now on, given 0 < t1 < T and φ1 ∈ C0(Ω), we denote by φ(r, z, t), for (r, z) ∈ Ω and
t ∈ (0, t1), the unique solution of (2.16) with “terminal condition” φ(·, ·, t1) = φ1. The main
result of this subsection is:

Proposition 2.8. Assume u is the velocity field associated with a mild solution ωθ of (1.4)
satisfying (2.8). Given t1 ∈ (0, T ) and φ1 ∈ C0(Ω), the unique solution φ of the (linear) adjoint
equation (2.16) with terminal condition φ(·, ·, t1) = φ1 can be extended to a continuous function
on Ω̄ × [0, t1] satisfying φ(0, z, 0) = 0 for all z ∈ R. Moreover one has φ(·, ·, t) ∈ C0(Ω) for all
t ∈ [0, t1], and

sup
(r,z)∈Ω

|φ(r, z, t) − φ(r, z, 0)| −−→
t→0

0 . (2.21)
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Proof. We can assume that ν = 1 without loss of generality. As we have seen above, the
standard parabolic theory applied to the form (2.19) of (2.16), together with estimates (2.14)
for u, give the smoothness of φ for t ∈ (0, t1). The only issue is the possible deterioration of the
estimates as t → 0. We will use optimal regularity theory for linear parabolic equations with
rough coefficients to overcome the difficulty.

To explain our strategy, consider the linear equation

∂th+ b(x, t) · ∇h+∆h = 0 , (2.22)

in Q = B × (0, 1), where B ⊂ R
n is a unit ball and b is a drift term. Assume that

|∂kt ∇ℓ
x b| ≤ Ck,ℓ t

−k− ℓ
2
− 1

2 in Q , for k, ℓ = 0, 1, 2, . . . (2.23)

This is a critical case for the regularity theory: if we could increase the exponent on the right-
hand side by any positive number, no matter how small, the classical linear theory would imply
that any bounded solution h is uniformly Hölder continuous in Qr = Br × (0, r2) for any
r < 1 (with estimates depending on r). On the other hand, without additional assumptions the
condition (2.23) by itself may not be enough to arrive at that conclusion.

Luckily, the velocity field u in (2.16) has additional properties. First, it is divergence-free.
Second, it is bounded in the space L∞

t BMO−1
x . It turns out that these two properties are

sufficient to ensure the Hölder-continuity estimates we need. This is one of the main results
in [30], see also [11]. Strictly speaking, the claim in [30, Theorem 1.1] is the parabolic Harnack
inequality, but it is well-known that Hölder continuity is one of the easy consequences of the
Harnack inequality. In fact, in the present situation, one can even prove that u is bounded in
the space L∞

t (L∞
x )−1, namely that u = divΨ for some matrix-valued function Ψ that is bounded

in space and time. More precisely, we have the following result, whose proof is postponed to
Section 5.2.

Lemma 2.9. Let ω = ωθeθ with ωθ ∈ L1(Ω), and let u be the velocity field obtained from ω via
the three-dimensional Biot-Savart law. Then there exists c > 0 such that

‖u‖(L∞)−1(R3) ≤ c‖ωθ‖L1(Ω) . (2.24)

Estimate (2.24) is more than we need if we use the sharp results of [30], but it has its own
interest and it shows that the more classical results of Osada [28] also apply to our situation.

In what follows we denote

O =
{

(x1, x2, x3) ∈ R
3
∣

∣ x21 + x22 > 0
}

, (2.25)

namely O is obtained from R
3 be removing the symmetry axis x1 = x2 = 0. We observe that

the vector field 1
r er is divergence-free and smooth in O. Together with (2.24) this implies that

in any parabolic ball Bx,ρ × (0, ρ2) ⊂ O × (0, t1) with ρ < (x21 + x22)
1/2 the adjoint equation

(2.16) is of the form (2.22) with b ∈ L∞
t BMO−1(Bx,ρ) and div b = 0, so that Theorem 1.1 in [30]

can be applied.1 This remark will be used freely in the proof below. Here and what follows, we
consider φ and φ1 as functions on R

3 × (0, t1) and R
3, respectively.

From the above considerations we see that our solution φ satisfies the maximum principle:

|φ(x, t)| ≤ max
y∈R3

|φ1(y)| , x ∈ R
3 , t ∈ (0, t1] , (2.26)

1Theorem 1.1 in [30] is purely local, even though in the introduction of [30] a global condition b ∈ L∞
t BMO−1

x

is mentioned. In the proof one only needs the local condition. Also, when we are interested in the solution only in
Bx,ρ × (0, ρ2), we can change the field 1

r
er outside Bx,ρ to a smooth div-free vector field in R

3, so that the global
condition will in fact be satisfied (even though it is not needed).
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and can be extended to a continuous function on (O × [0, t1]) ∪ (R3 × (0, t1]). The main point
now is to prove its continuity at any point (x, 0) with x ∈ R

3 \ O. For any sufficiently small
ρ > 0, we define

A(ρ) = sup
{

φ(x, t)
∣

∣ x ∈ Cρ , 0 < t < ρ2} ,
where Cρ =

{

x ∈ R
3
∣

∣ x21 + x22 ≤ ρ2} is the cylinder of radius ρ centered on the x3–axis. Clearly
A is an increasing function, so that we can consider the limit

a = lim
ρ→0

A(ρ) ≥ 0 .

We need to show that a = 0. (Once we have this, we can repeat the same argument for −φ, and
we conclude that φ can be extended to a continuous function on R

3× [0, t1] satisfying φ(x, 0) = 0
for all x ∈ R

3 \ O.) As in many other critical problems, it is natural to argue by contradiction
using the scaling invariance, see for example [24] for a situation where related issues arise in the
context of the Navier-Stokes equations.

Assume thus that a > 0 and choose a sequence of points (x(m), t(m)) such that x(m) ap-
proaches the x3–axis, t

(m) ց 0, and

lim
m→∞

φ(x(m), t(m)) = a .

For m ∈ N we denote

λm =

√

(

x
(m)
1

)2
+
(

x
(m)
2

)2
+ t(m) ,

and we define, for y ∈ R
3 and 0 < s < λ−2

m t1,

u(m)(y, s) = λmu(λmy1, λmy2, λmy3 + x
(m)
3 , λ2ms) , (2.27)

φ(m)(y, s) = φ(λmy1, λmy2, λmy3 + x
(m)
3 , λ2ms) . (2.28)

Note that x
(m)
3 may not converge as m→ ∞, but this is unimportant for what follows. Setting

y(m) =
(

λ−1
m x

(m)
1 , λ−1

m x
(m)
2 , 0

)

, s(m) = λ−2
m t(m) ,

we have |y(m)|2+s(m) = 1 for allm, and we can therefore assume (after extracting a subsequence,
if necessary) that

(y(m), s(m)) −−−−→
m→∞

(ȳ, s̄) , where |ȳ|2 + s̄ = 1 .

Note that the operator D := 2
r∂r in (2.16) has the same scaling as the Laplacian, and is also

invariant under translations along the x3–axis. Using this observation, it is straightforward to
verify that the functions u(m), φ(m) defined in (2.27), (2.28) satisfy the equation

∂sφ
(m) + u(m) · ∇yφ

(m) + (∆y −Dy)φ
(m) = 0 , (2.29)

in the region R
3 × (0, λ−2

m t1). Moreover, in view of (2.14) and (2.27), we have the a priori
estimates

‖∂ks∇ℓ
y u

(m)(s)‖L∞(R3) ≤ Ckℓ(M)M s−k−ℓ/2−1/2 , 0 < s < λ−2
m t1 , (2.30)

which are similar to (2.23) and hold uniformly in m. Finally, uniform bounds on φ(m) and
its derivatives are easily obtained by applying standard linear parabolic theory to Eq. (2.29),
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taking into account (2.26) and (2.30). Thus we can assume (again after choosing subsequences,
if necessary) that

u(m) −−−−→
m→∞

ū , φ(m) −−−−→
m→∞

φ̄ , (2.31)

for suitable functions ū, φ̄, where the convergence is uniform, with all derivatives, on compact
subsets of R3×(0,∞). (Note that u(m), φ(m) are well defined on any such set oncem is sufficiently
large.) By construction, the functions ū, φ̄ satisfy ∂sφ̄+ ū · ∇φ̄+ (∆−D)φ̄ = 0 in R

3 × (0,∞).
Due to (2.24) and scale-invariance of the relevant norms we also have the uniform bound

‖u(m)‖L∞
t BMO−1

x
≤ c‖ωθ‖L∞(0,T ;L1(Ω)) ≤ cM ,

which means, as we have seen above, that the functions φ(m) are in fact uniformly continuous
up to t = 0 on any compact set B× [0, t2] as long as B̄ ⊂ O. Hence the function φ̄ is continuous
on (O × [0, t1]) ∪ (R3 × (0, t1]), and it is clear from the definitions that φ̄ ≤ a in that domain.
At the same time, we know that

φ̄(ȳ, s̄) = lim
m→∞

φ(m)(y(m), s(m)) = lim
m→∞

φ(x(m), t(m)) = a .

Finally, we have φ̄(y, s) = limm→∞ φ(m)(y, s) = 0 when y ∈ R
3 \ O and s > 0.

Since we assumed that a > 0, these observations immediately lead to a contradiction with
the strong maximum principle when s̄ > 0. It thus remains to deal with the case where s̄ = 0
and |ȳ| = 1. In that situation, the Harnack inequality from [30, Theorem 1.1] applied to the
parabolic ball Q = Bȳ,1/2 × [0, 1/4) shows that φ̄ = a in a neighborhood of (ȳ, 0) in Q, and we
again obtain a contradiction with the strong maximum principle, as in the case s̄ > 0. This
concludes the proof of the assertion that φ(x, t) extends to a continuous function on R

3 × [0, t1]
satisfying φ(0, 0) = 0.

To conclude the proof of Proposition 2.8, it remains to verify that φ(x, t) vanishes as |x| → ∞
uniformly for all t ∈ (0, t1], which implies in particular (2.21) in view of the previous results.
Since φ1 ∈ C0(Ω), this property is intuitively obvious because the drift term in Eq. (2.16) satisfies
∫ t1
0 ‖u(·, t)‖L∞ dt < ∞, and therefore can move “diffusion particles” over finite distances only,
during the time interval (0, t1). This heuristic argument can easily be made rigorous if one
proceeds as in [17, Proposition 6.1], see also Proposition 3.3 below. Alternatively, it is possible
to reach the same conclusion using the parabolic Harnack inequality and the conservation of the
mass

∫

R3 φ(x, t) dx, which can be checked by a direct calculation. We leave the details to the
reader.

In the rest of this section, we derive a few important consequences of Proposition 2.8. In
view of (2.17), if φ is as in the statement, we have

∫

Ω
ωθ(r, z, t)φ(r, z, t) dr dz =

∫

Ω
ωθ(r, z, t0)φ(r, z, t0) dr dz , 0 < t0 ≤ t ≤ t1 .

To take the limit t0 → 0, we decompose the right-hand side as
∫

Ω
ωθ(r, z, t0)

(

φ(r, z, t0)− φ(r, z, 0)
)

dr dz +

∫

Ω
ωθ(r, z, t0)φ(r, z, 0) dr dz ,

and we observe that the first term tends to zero in view of (2.8), (2.21) while the second one
converges to

∫

Ω φ(·, ·, 0) dµ by Proposition 2.5. We thus have

∫

Ω
ωθ(r, z, t)φ(r, z, t) dr dz =

∫

Ω
φ(·, ·, 0) dµ , 0 < t ≤ t1 . (2.32)
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Corollary 2.10. If ωθ ∈ C0((0, T ), L1(Ω) ∩ L∞(Ω)) is a mild solution of (1.4) on (0, T ) sat-
isfying (2.8), then ‖ωθ(t)‖L1(Ω) ≤ ‖µ‖tv for all t ∈ (0, T ), where µ ∈ M(Ω) is the measure
introduced in Proposition 2.5. In particular, one has M = ‖µ‖tv/ν if M is defined by (2.8).

Proof. Fix t1 ∈ (0, T ), and take φ1 ∈ C0(Ω) such that ‖φ1‖L∞(Ω) ≤ 1. Let φ : Ω × [0, t1] → R

be the solution of the adjoint equation (2.16) with terminal condition φ(·, ·, t1) = φ1 given by
Proposition 2.8. By the parabolic maximum principle, we know that |φ(r, z, t)| ≤ 1 for all
(r, z) ∈ Ω and all t ∈ [0, t1]. It thus follows from (2.32) with t = t1 that

∣

∣

∣

∫

Ω
ωθ(r, z, t1)φ1(r, z) dr dz

∣

∣

∣
=

∣

∣

∣

∫

Ω
φ(·, ·, 0) dµ

∣

∣

∣
≤ ‖µ‖tv ,

and taking the supremum over all φ1 ∈ C0(Ω) satisfying the bound ‖φ1‖L∞(Ω) ≤ 1 we con-
clude that ‖ωθ(t1)‖L1(Ω) ≤ ‖µ‖tv. Thus Mν = limt→0 ‖ωθ(t)‖L1(Ω) ≤ ‖µ‖tv, and the converse
inequality directly follows from Proposition 2.5.

Corollary 2.11. If the measure µ given by Proposition 2.5 is positive, then the solution ωθ of
(1.4) satisfies ωθ(r, z, t) ≥ 0 for all (r, z) ∈ Ω and all t ∈ (0, T ).

Proof. Assume on the contrary that ωθ(r1, z1, t1) < 0 for some (r1, z1) ∈ Ω and some t1 ∈ (0, T ).
Take a nonnegative function φ1 ∈ C0(Ω) such that φ1(r1, z1, t1) = 1 and φ1 is supported in a
small neighborhood of (r1, z1) where ω(·, ·, t1) takes negative values only. If φ denotes the solution
of the adjoint equation (2.16) with terminal condition φ(·, ·, t1) = φ1, we obtain a contradiction
from Eq. (2.32) with t = t1 because the left-hand side is strictly negative by construction,
whereas the right-hand side is nonnegative since φ ≥ 0 and µ is a positive measure.

Corollary 2.12. The family of signed measures (ωθ(·, ·, t) dr dz)t∈(0,T ) is tight under the as-
sumptions of Proposition 2.5. In particular, the convergence

∫

Ω
φ(r, z)ωθ(r, z, t) dr dz −−→

t→0

∫

Ω
φdµ (2.33)

holds for any bounded and continuous function φ on Ω, and not just for any φ ∈ C0(Ω).

Proof. We use here some notions from measure theory that are recalled in Section 5.1, for the
reader’s convenience. The family of measures (ωθ(·, ·, t) dr dz)t∈(0,T ) converges weakly to some
measure µ ∈ M(Ω) by Proposition 2.5, and Corollary 2.11 implies that ‖ωθ(t)‖L1(Ω) → ‖µ‖tv as
t→ 0. Applying Proposition 5.1, we thus obtain the desired result.

3 Gaussian estimates

As in the previous section, we assume that ωθ ∈ C0((0, T ), L1(Ω) ∩ L∞(Ω)) is a mild solution
of the axiymmetric vorticity equation (1.4) on the time interval (0, T ) satisfying (2.8), and we
denote by µ ∈ M(Ω) the initial measure defined by Proposition 2.5. Our goal here is to give
accurate estimates on the axisymmetric vorticity ωθ and the associated velocity field u = (ur, uz)
under the additional hypotheses that µ is a positive measure whose support is bounded away
from the symmetry axis r = 0 and localized in the radial direction. Of course, the application
we have in mind is the case where µ is a Dirac mass located at some point (r̄, z̄) ∈ Ω, which is
the situation considered in Theorem 1.1.
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3.1 L
1 estimates near the symmetry axis

The goal of this section is to show that the L1norm of the axisymmetric vorticity ωθ is extremely
small near the symmetry axis for short times, if the initial measure µ is positive and supported
away from the axis. The precise statement is:

Proposition 3.1. Assume that µ ∈ M(Ω) is a positive measure whose support is contained in
the set [2ρ,∞)× R ⊂ Ω for some ρ > 0. Then the solution ωθ of (1.4) satisfies

0 ≤
∫ ρ

0

{∫

R

ωθ(r, z, t) dz

}

dr ≤ C9(M)‖µ‖tv e−
ρ2

16νt , t ∈ (0, T ) , (3.1)

for some positive constant C9 depending only on M = ‖µ‖tv/ν.

Proof. Without loss of generality we suppose that ν = 1. Since µ is a positive measure,
Corollary 2.11 asserts that the solution of (1.4) satisfies ωθ(r, z, t) ≥ 0 for all (r, z) ∈ Ω and all
t ∈ (0, T ). As in [17, Section 6.1], we define

f(R, t) =

∫ ∞

R

{∫

R

ωθ(r, z, t) dz

}

dr , R > 0 , t ∈ (0, T ) . (3.2)

Then f(R, t) is a nonincreasing function of R which converges to ‖ωθ(t)‖L1(Ω) as R→ 0 and to
zero as R→ ∞. Moreover f satisfies the evolution equation

∂tf(R, t) = ∂2Rf(R, t) +
1

R
∂Rf(R, t) +

∫

R

ur(R, z, t)ωθ(R, z, t) dz , (3.3)

which follows easily from (2.6). Our goal is to obtain a lower bound on f(ρ, t) under the
assumption that the initial measure µ is supported in the set [2ρ,∞) × R. This hypothesis
already implies that f(R, t) → M = ‖µ‖tv as t → 0 for any R < 2ρ, because if φ : Ω → [0, 1] is
a continuous function equal to zero for r ≤ R and to 1 for r ≥ 2ρ, we have

M ≥ f(R, t) ≥
∫

Ω
φ(r, z)ωθ(r, z, t) dr dz −−→

t→0

∫

Ω
φdµ = M ,

where the convergence follows from Corollary 2.12.

Using the bound ‖ur(t)‖L∞(Ω) ≤ C7(M)Mt−1/2, which comes from Corollary 2.4, and ob-
serving that ∂Rf(R, t) = −

∫

R
ωθ(R, z, t) dz ≤ 0, we deduce from (3.3) that

∂tf(R, t) ≥ ∂2Rf(R, t) +
1

R
∂Rf(R, t) + C7(M)

M√
t
∂Rf(R, t) . (3.4)

To eliminate the drift terms in (3.4), we fix t1 ∈ (0, T ) and we define g(y, t) = f(y + a(t), t) for
y ≥ 0 and t ∈ (0, t1], where

a(t) = ρ+
t1−t
ρ

+ 2C7(M)M
(√
t1 −

√
t
)

, t ∈ [0, t1] . (3.5)

Note that a(t) ≥ ρ for t ∈ [0, t1] and a(t1) = ρ. Using (3.4) and (3.5), it is easy to verify that

∂tg(y, t) ≥ ∂2yg(y, t) , y ≥ 0 , t ∈ (0, t1] ,

and we obviously have ∂yg(0, t) = ∂Rf(a(t), t) ≤ 0 for t ∈ (0, t1]. In physical terms, the function
g(y, t) is a solution of the heat equation on the positive half-line with a nonnegative source
term in the bulk and a nonnegative influx through the boundary. By the parabolic maximum
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principle, given any t0 ∈ (0, t1), we thus have g(y, t) ≥ h(y, t) for all y ≥ 0 and all t ∈ [t0, t1],
where h is defined by







∂th(y, t) = ∂2yh(y, t) ,

∂yh(0, t) = 0 ,
h(y, t0) = g(y, t0) ≡ f(y + a(t0), t0) ,

y ≥ 0 , t ≥ t0 ,
t ≥ t0 ,
y ≥ 0 .

(3.6)

Solutions of (3.6) are easily computed by symmetrizing the initial data and solving the heat
equation on the whole real line. In particular, this gives the desired lower bound on the quantity
f(ρ, t1) = g(0, t1).

To be more explicit, we first assume that the observation time t1 is small enough so that

4t1 ≤ ρ2 , and 8C7(M)M
√
t1 ≤ ρ . (3.7)

In view of (3.5) we then have a(t0) ≤ a(0) ≤ 3ρ/2 for any t0 ∈ (0, t1), and this in turn implies
that h(y, t0) = f(y + a(t0), t0) ≥ f(y + 3ρ/2, t0) for all y ≥ 0. Using the representation formula

h(0, t1) =
1

√

π(t1−t0)

∫ ∞

0
e
− y2

4(t1−t0) h(y, t0) dy ,

and recalling that f(y + 3ρ/2, t0) →M as t0 → 0 for all y < ρ/2, we deduce that

f(ρ, t1) ≥ h(0, t1) ≥ M√
πt1

∫ ρ/2

0
e
− y2

4t1 dy ≥ M
(

1− e
− ρ2

16t1

)

. (3.8)

In the last inequality we used the elementary bound

erfc(x) =
2√
π

∫ ∞

x
e−y2 dy ≤ e−x2

, x ≥ 0 . (3.9)

Since ‖ωθ(t1)‖L1(Ω) ≤M = ‖µ‖tv, we conclude that

∫ ρ

0

{∫

R

ωθ(r, z, t1) dz

}

dr ≤ M − f(ρ, t1) ≤ M e
− ρ2

16t1 ,

which gives the desired bound (3.1) with t = t1 and ν = 1, provided (3.7) holds. If condition
(3.7) is not satisfied, one can take C9 = C9(M) ≥ eρ

2/(16t1), in which case estimate (3.1) is
obvious.

Corollary 3.2. Under the assumptions of Proposition 3.1 we have
∥

∥

∥

ur(t)

r

∥

∥

∥

L∞(Ω)
≤ C10(M)M

t

(νt

ρ2

)1/3
, t ∈ (0, T ) , (3.10)

where C10 is a positive constant depending only on M = ‖µ‖tv/ν.

Proof. Fix t ∈ (0, T ). We decompose ωθ(r, z, t) = ω−
θ (r, z, t) + ω+

θ (r, z, t), where

ω−
θ (r, z, t) = ωθ(r, z, t)1{r≤ρ} , ω+

θ (r, z, t) = ωθ(r, z, t)1{r>ρ} .

By linearity of the axisymmetric Biot-Savart law, there is a corresponding decomposition for
the velocity field u(r, z, t) = u−(r, z, t)+u+(r, z, t), where u± is the velocity associated with ω±

θ ,
respectively. Using estimate (2.5), Proposition 3.1, and the first inequality in (2.9), we find

∥

∥

∥

u−r (t)
r

∥

∥

∥

L∞(Ω)
≤ C3‖ω−

θ (t)‖
1/3
L1(Ω)

‖ω−
θ (t)/r‖

2/3
L∞(Ω)

≤ C3C
2/3
4 C9(M)1/3

M

t
e−

ρ2

48νt ≤ C(M)M

t

(νt

ρ2

)1/3
.
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Similarly, using the second inequality in (2.9), we obtain

∥

∥

∥

u+r (t)

r

∥

∥

∥

L∞(Ω)
≤ C3‖ω+

θ (t)‖
1/3
L1(Ω)

ρ−2/3 ‖ω+
θ (t)‖

2/3
L∞(Ω) ≤ C3C5(M)2/3

M

t

(νt

ρ2

)1/3
.

Combining both estimates we arrive at (3.10).

3.2 L
1 estimates away from the axis

We next consider the opposite case where the support of the initial measure µ is bounded in the
radial direction. The analogue of Proposition 3.1 is:

Proposition 3.3. Assume that µ ∈ M(Ω) is a positive measure whose support is contained in
the set (0, 2ρ] × R ⊂ Ω for some ρ > 0. Then the solution ωθ of (1.4) satisfies

0 ≤
∫ ∞

3ρ

{
∫

R

ωθ(r, z, t) dz

}

dr ≤ C11(M)‖µ‖tv e−
ρ2

16νt , t ∈ (0, T ) , (3.11)

for some positive constant C11 depending only on M = ‖µ‖tv/ν.

Proof. We proceed as in the proof of Proposition 3.1, assuming again that ν = 1. We observe
that the function f(R, t) defined in (3.2) satisfies the differential inequality

∂tf(R, t) ≤ ∂2Rf(R, t)−C7(M)
M√
t
∂Rf(R, t) , R > 0 , (3.12)

which is obtained in the same way as the lower bound (3.4). Arguing as in [17, Section 6.1], we
deduce from (3.12) that, for any t0 ∈ (0, T ),

f(R, t) ≤ g(R − 2C7(M)M
√
t, t) , R > 0 , t0 ≤ t < T ,

where g(y, t) is the solution of the heat equation ∂tg = ∂2yg on the real line R with initial data
satisfying g(y, t0) = f(y, t0) if y ≥ 0 and g(y, t0) = f(0, t0) if y < 0. Taking the limit t0 → 0 in
the representation formula

g(y, t) =
1

√

4π(t−t0)

(∫ 0

−∞
e
− (y−r)2

4(t−t0) f(0, t0) dr +

∫ ∞

0
e
− (y−r)2

4(t−t0) f(r, t0) dr

)

,

and using the bound f(R, t0) ≤M together with the fact that f(R, t0) → 0 as t0 → 0 if R > 2ρ,
which can be established by applying (2.33) to a continuous function φ : Ω → [0, 1] equal to 0
for r ≤ 2ρ and to 1 for r ≥ R, we deduce that

g(y, t) ≤ M√
4πt

∫ 2ρ

−∞
e−(y−r)2/(4t) dy , y ∈ R , t ∈ (0, T ) ,

hence

f(R, t) ≤ M√
4πt

∫ 2ρ

−∞
e−(R−2C7(M)M

√
t−r)2/(4t) dr , R > 0 , t ∈ (0, T ) . (3.13)

If t > 0 is small enough so that 2C7(M)M
√
t ≤ ρ/2, it follows from (3.13), (3.9) that

f(3ρ, t) ≤ M√
4πt

∫ 2ρ

−∞
e−(5ρ/2−r)2/(4t) dr ≤ M e−ρ2/(16t) ,

which is (3.11). If 2C7(M)M
√
t > ρ/2, then (3.11) follows from the trivial bound f(3ρ, t) ≤M ,

provided the constant C11 is chosen appropriately.
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Corollary 3.4. Under the assumptions of Proposition 3.3, the axisymmetric vorticity ωθ has a
finite impulse

I =

∫

Ω
r2ωθ(r, z, t) dr dz =

∫

Ω
r2 dµ(r, z) , t ∈ (0, T ) . (3.14)

In particular, the impulse I is a conserved quantity.

Proof. We assume that ν = 1. Let χ : [0,∞) → R be a smooth, nonincreasing function such
that χ(r) = 1 for r ∈ [0, 1] and χ(r) = 0 for r ≥ 2. Using definition (3.2) and integrating by
parts we obtain the identity

∫

Ω
r2χ(r/R)ωθ(r, z, t) dr dz =

∫ ∞

0
r
(

2χ(r/R) + (r/R)χ′(r/R)
)

f(r, t) dr , (3.15)

which holds for all R > 0 and all t ∈ (0, T ). For any fixed t ∈ (0, T ), we know from (3.13) that
f(R, t) decays rapidly to zero at infinity, thus taking the limit R→ ∞ in (3.15) we obtain

∫

Ω
r2ωθ(r, z, t) dr dz = 2

∫ ∞

0
rf(r, t) dr < ∞ , t ∈ (0, T ) . (3.16)

The left-hand side of (3.16) is the total impulse I of the axisymmetric vorticity ωθ, which is
known to be conserved under the evolution defined by (1.4), see e.g. [17, Lemma 6.4].

On the other hand, for any fixed R > 2ρ, the left-hand side of (3.15) converges as t → 0 to
the quantity

I0 =

∫

Ω
r2χ(r/R) dµ(r, z) ≡

∫

Ω
r2 dµ(r, z) .

Convergence holds by Corollary 2.12, and the limit does not depend on R > 2ρ since the measure
µ is supported in (0, 2ρ] × R. In fact I0 = I, because the convergence of (3.15) to (3.16) as
R → ∞ holds uniformly in time if t > 0 is sufficiently small. Indeed, if 2C7(M)M

√
t ≤ ρ, it

follows from (3.13), (3.9) that f(R, t) ≤ M e−(R−3ρ)2/(4t) for all R ≥ 3ρ, which in turns implies
that the quantity

∫∞
R rf(r, t) dr converges to zero uniformly in time as R→ ∞. This proves the

uniform convergence of the right-hand side of (3.15) to that of (3.16) as R→ ∞.

The next step is a general estimate for nonnegative solutions of (2.6) with finite impulse.

Proposition 3.5. Assume that ωθ ∈ C0((0, T ), L1(Ω) ∩ L∞(Ω)) is a nonnegative solution of
(2.6) which is uniformly bounded in L1(Ω) and has finite impulse I. Then

‖ωθ(t)‖L1(Ω) ≤ C12(M)I
νt

, for all t ∈ (0, T ) , (3.17)

where C12 is a positive constant depending only on the quantity M defined in (2.8).

Proof. The proof is essentially contained in [17, Section 6.2], although estimate (3.17) is not
explicitly stated there. For completeness we provide here the missing details, assuming as usual
that ν = 1. We first observe that it is sufficient to establish (3.17) for t ≥ T∗ = I/M , because
for smaller times we obviously have ‖ωθ(t)‖L1(Ω) ≤ M ≤ I/t. We start from the integral
equation (2.7) with t0 = t/2, namely

ωθ(t) = S(t/2)ωθ(t/2) −
∫ t

t/2
S(t− s) div∗(u(s)ωθ(s)) ds , t ≥ T∗ . (3.18)
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To bound the first term in the right-hand side, we use the linear estimate

‖S(t)ω0‖L1(Ω) ≤ C

t

∫

Ω
r2ω0(r, z) dr dz , t > 0 ,

which holds for all nonnegative ω0 ∈ L1(Ω) with finite impulse, and can be established using the
explicit formula for the linear semigroup S(t) given in [17, Section 3], see [17, Lemma 6.5] for a
similar calculation. We thus have ‖S(t/2)ωθ(t/2)‖L1(Ω) ≤ CI/t for some C > 0. On the other
hand, applying the weighted inequality given in [17, Proposition 3.5], which has no analogue in
the two-dimensional case, we find

‖S(t− s) div∗(u(s)ωθ(s))‖L1(Ω) ≤ C

(t− s)3/4
‖u(s)‖L∞(Ω)‖r1/2ωθ(s)‖L1(Ω) ,

for s ∈ (0, t). If we now interpolate ‖r1/2ωθ‖L1 ≤ ‖r2ωθ‖1/4L1(Ω)
‖ωθ‖3/4L1(Ω)

and use the estimate

‖u‖L∞(Ω) ≤ C‖r2ωθ‖1/4L1(Ω)
‖ωθ‖1/4L1(Ω)

‖ωθ/r‖1/2L∞(Ω) ,

which is established in [10, Section 2], we obtain

‖S(t− s) div∗(u(s)ωθ(s))‖L1(Ω) ≤ C

(t− s)3/4
‖r2ωθ(s)‖1/2L1(Ω)

‖ωθ(s)‖L1(Ω)‖ωθ(s)/r‖1/2L∞(Ω) .

As ‖r2ωθ(s)‖L1(Ω) = I and ‖ωθ(s)/r‖L∞(Ω) ≤ C4Ms−3/2 by Lemma 2.2, we deduce from (3.18)
that

‖ωθ(t)‖L1(Ω) ≤ CI
t

+ CM1/2I1/2

∫ t

t/2

‖ωθ(s)‖L1(Ω)

(t− s)3/4s3/4
ds , t ≥ T∗ . (3.19)

The end of the proof is a straightforward bootstrap argument. First, since ‖ωθ(t)‖L1(Ω) ≤ M ,

estimate (3.19) shows that ‖ωθ(t)‖L1(Ω) ≤ C(M)M1/2I1/2t−1/2 for t ≥ T∗, hence also for all
t > 0. Inserting this bound into the right-hand side of (3.19), we conclude that ‖ωθ(t)‖L1(Ω) ≤
C(M)I/t, which is the desired result.

Corollary 3.6. Under the assumptions of Proposition 3.3 we have
∥

∥

∥

ur(t)

r

∥

∥

∥

L∞(Ω)
≤ C13(M)M

t

(ρ2

νt

)1/3
, t ∈ (0, T ) , (3.20)

where C13 is a positive constant depending only on M = ‖µ‖tv/ν.

Proof. Since supp(µ) ⊂ (0, 2ρ] × R, Corollary 3.4 shows that I ≤ 4ρ2‖µ‖tv = 4ρ2Mν. Thus
estimate (3.20) immediately follows from (2.5), (3.17), and the first inequality in (2.9).

3.3 Gaussian estimates for the viscous vortex ring

Finally, we consider the particular case where the initial measure µ is a vortex filament located
at some point (r̄, z̄) ∈ Ω, namely µ = Γδ(r̄,z̄) for some Γ > 0. We of course have ‖µ‖tv = Γ, hence
M = Γ/ν, and I = Γr̄2. The goal of this section is to prove the following Gaussian estimate on
the axisymmetric vorticity:

Proposition 3.7. Assume that ωθ ∈ C0((0, T ), L1(Ω)∩L∞(Ω)) is a mild solution of (1.4) which
is uniformly bounded in L1(Ω), and such that ωθ(·, t) dr dz ⇀ Γδ(r̄,z̄) as t → 0 for some Γ > 0
and some (r̄, z̄) ∈ Ω. For any η ∈ (0, 1) we have the pointwise estimate

0 < ωθ(r, z, t) ≤ Kη(M)
Γ

νt
exp

(

−1− η

4νt

(

(r − r̄)2 + (z − z̄)2
)

)

, (3.21)

for all t ∈ (0, T ) and all (r, z) ∈ Ω, where the constant Kη(M) depends only on η and M = Γ/ν.
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As a first step in the proof of Proposition 3.7, we apply the results of Sections 3.1 and 3.2
with ρ = r̄/2 and obtain the following integral estimate:

Lemma 3.8. Under the assumptions of Proposition 3.7 we have

∫ T

0
‖ur(t)/r‖L∞(Ω) dt ≤ C14(M)M , (3.22)

where C14 is a positive constant depending only on M = Γ/ν.

Proof. Let T∗ = r̄2/ν = 4ρ2/ν. Using estimate (3.10) for t ∈ (0, T∗) and, if necessary, esti-
mate (3.20) for t ∈ (T∗, T ), we immediately obtain (3.22).

To derive estimate (3.21) it is convenient to abandon the cylindrical coordinates and to
return for a moment to the vector valued vorticity ω(x, t) = ωθ(r, z, t)eθ , which is considered
as a function of x = (r cos θ, r sin θ, z) ∈ R

3 and t ∈ (0, T ). The evolution equation (1.4) is
equivalent to

∂tω + (U · ∇)ω − V ω = ν∆ω , x ∈ R
3 , t ∈ (0, T ) , (3.23)

where U = urer + uzez is the velocity field associated with ω via the three-dimensional Biot-
Savart law, and V = ur/r. Since the pioneering work of Aronson [3], which relied itself on
previous results by Nash, De Giorgi, and Moser, it is well known that solutions of advection-
diffusion equations such as (3.23) can be represented in terms of a (uniquely defined) fundamental
solution Φ, which is Hölder continuous in space and time and satisfies Gaussian upper and lower
bounds. In our problem we only have limited information on the advection field U and the
potential V , and we need an upper bound on the fundamental solution with explicit dependence
on the data U , V , and ν. For that reason, we state here a particular case of Aronson’s estimates
which is tailored to our purposes.

Proposition 3.9. Assume that U : Rn × (0, T ) → R
n and V : Rn× (0, T ) → R

n are continuous
functions such that divU(·, t) = 0 for all t ∈ (0, T ) and

sup
0<t<T

( t

ν

)1/2
‖U(·, t)‖L∞(Rn) = K1 < ∞ ,

∫ T

0
‖V (·, t)‖L∞(Rn) dt = K2 < ∞ . (3.24)

Then the (regular) solutions of the advection-diffusion equation

∂tf + (U · ∇)f − V f = ν∆f , x ∈ R
n , t ∈ (0, T ) , (3.25)

can be represented in the following way:

f(x, t) =

∫

Rn

ΦU,V,ν(x, t; y, s)f(y, s) dy , x ∈ R
n , 0 < s < t < T ,

where the fundamental solution ΦU,V,ν(x, t; y, s) satisfies, for x, y ∈ R
n and 0 < s < t < T ,

0 < ΦU,V,ν(x, t; y, s) ≤ Cn

(ν(t−s))n/2 exp
(

− |x− y|2
4ν(t−s) +K1

|x− y|
√

ν(t−s)
+K2

)

. (3.26)

Here the constant Cn depends only on the space dimension n.
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For completeness, we give a short proof of Proposition 3.9 in Section 5.3 below, but our
purpose here is to apply it to the vorticity equation (3.23), for which n = 3. In view of
Corollary 2.4 and Lemma 3.8, both assumptions in (3.24) are satisfied, and the constants K1,
K2 depend only on M = Γ/ν. Solutions of (3.23) can thus be represented in the following way:

ω(x, t) =

∫

R3

Φ(x, t; y, s)ω(y, s) dy , x ∈ R
3 , 0 < s < t < T ,

and the fundamental solution Φ satisfies (3.26) with n = 3. As ω(x, t) = ωθ(r, z, t)eθ , we deduce
that the axisymmetric vorticity ωθ satisfies

ωθ(r, z, t) =

∫

Ω
Φ̃(r, z, t; r′, z′, s)ωθ(r

′, z′, s) dr′ dz′ , (3.27)

for (r, z) ∈ Ω and 0 < s < t < T , where

Φ̃(r, z, t; r′, z′, s) =

∫ π

−π
Φ([r, 0, z], t; [r′ cos θ, r′ sin θ, z′], s)r′ cos θ dθ . (3.28)

Here [r, 0, z] denotes the point x ∈ R
3 with coordinates x1 = r, x2 = 0, x3 = z, and similarly

[r′ cos θ, r′ sin θ, z′] denotes the point y ∈ R
3 such that y1 = r′ cos θ, y2 = r′ sin θ, y3 = z′.

Lemma 3.10. For any η ∈ (0, 1) there exists a positive constant Kη(M), depending only on η
and M , such that the fundamental solution Φ̃ defined in (3.28) satisfies

0 < Φ̃(r, z, t; r′, z′, s) ≤ Kη(M)

ν(t−s)
r′1/2

r1/2
H̃

(

ν(t−s)
(1−η)rr′

)

e
− 1−η

4ν(t−s)

(

(r−r′)2+(z−z′)2
)

, (3.29)

for (r, z), (r′, z′) ∈ Ω and 0 < s < t < T , where

H̃(τ) =
1√
πτ

∫ π/4

−π/4
e−

sin2 φ
τ cos(2φ) dφ , τ > 0 . (3.30)

Proof. The positivity of the fundamental solution Φ̃ of equation (1.4) is a consequence of the
strong maximum principle. To obtain the upper bound (3.29), we start from (3.28) and first
observe that

Φ̃(r, z, t; r′, z′, s) ≤
∫ π/2

−π/2
Φ([r, 0, z], t; [r′ cos θ, r′ sin θ, z′], s)r′ cos θ dθ , (3.31)

because cos θ ≤ 0 when π/2 ≤ |θ| ≤ π. Next, we estimate the integrand using (3.26) with n = 3.
Applying Young’s inequality we obtain, for any η ∈ (0, 1),

Φ(x, t; y, s) ≤ C

(ν(t−s))3/2 e
−(1−η) |x−y|2

4ν(t−s)
+

K2
1
η

+K2 =
Kη(M)

(ν(t−s))3/2 e
−(1−η) |x−y|2

4ν(t−s) .

Here we take x = [r, 0, z] and y = [r′ cos θ, r′ sin θ, z′], so that

|x− y|2 = |r − r′|2 + |z − z′|2 + 4rr′ sin2(θ/2) .

Thus we deduce from (3.31) that

Φ̃(r, z, t; r′, z′, s) ≤
∫ π/2

−π/2
Φ([r, 0, z], t; [r′ cos θ, r′ sin θ, z′], s)r′ cos θ dθ

≤ Kη(M)

(ν(t−s))3/2 e
− 1−η

4ν(t−s)

(

(r−r′)2+(z−z′)2
) ∫ π/2

−π/2
e
− (1−η)rr′

ν(t−s)
sin2(θ/2)

r′ cos θ dθ .

Setting θ = 2φ and using definition (3.30), we arrive at (3.29) with a modified constant Kη(M).
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Remark 3.11. The function H̃ in Lemma 3.10 is not the same as the function H defined in
[17, Section 3]. One can show that H̃ : (0,∞) → R is decreasing with H̃(τ) → 1 as τ → 0 and
H̃(τ) ∼ 1/

√
πτ as τ → ∞. Moreover H̃(τ) ≤ 1/

√
πτ for all τ > 0.

Proof of Proposition 3.7. Fix (r, z) ∈ Ω and t ∈ (0, T ). Using the representation (3.27) and
the bound (3.29), we obtain for all s ∈ (0, t):

ωθ(r, z, t) ≤ Kη(M)

ν(t−s)

∫

Ω

r′1/2

r1/2
H̃

(

ν(t−s)
(1−η)rr′

)

e
− 1−η

4ν(t−s)

(

(r−r′)2+(z−z′)2
)

ωθ(r
′, z′, s) dr′ dz′ .

If r′ ≤ 2r in the right-hand side, we bound the function H̃ by 1. If r′ ≥ 2r we use the fact that
H̃(τ) ≤ 1/

√
πτ , so that

r′1/2

r1/2
H̃

(

ν(t−s)
(1−η)rr′

)

≤ r′√
π

( 1− η

ν(t−s)
)1/2

≤ Cη e
η(1−η)
4ν(t−s)

(r−r′)2
,

because r′2 ≤ 4(r − r′)2 and x ≤ Cη e
ηx2/4 for any x ≥ 0. We thus obtain the simpler estimate

ωθ(r, z, t) ≤ Kη(M)

ν(t−s)

∫

Ω
e
− (1−η)2

4ν(t−s)

(

(r−r′)2+(z−z′)2
)

ωθ(r
′, z′, s) dr′ dz′

≤ Kη(M)

ν(t−s)

∫

Ω
e−

(1−η)2

4νt

(

(r−r′)2+(z−z′)2
)

ωθ(r
′, z′, s) dr′ dz′ ,

with possibly a different constant Kη(M). We now take the limit s→ 0 and use the assumption
that ωθ(·, ·, s) dr′ dz′ ⇀ Γδ(r̄,z̄), together with Corollary 2.12. We thus obtain an upper bound
of the form (3.21), where η is replaced by η̃ = 2η − η2. Finally, as was already observed, the
positivity of ωθ is a consequence of the strong maximum principle.

4 Self-similar variables and energy estimates

This section is devoted to the actual proof of Theorem 1.1. Using the existence result established
in [10], we can assume that ωθ ∈ C0((0, T ), L1(Ω) ∩ L∞(Ω)) is a mild solution of (1.4) which is
uniformly bounded in L1(Ω) and converges weakly to Γδ(r̄,z̄) as t→ 0, for some Γ > 0 and some
(r̄, z̄) ∈ Ω. If M is defined by (2.8), we recall that M = Γ/ν by Corollary 2.10. The Gaussian
estimate in Proposition 3.7 indicates that, for short times, the axisymmetric vorticity ωθ(r, z, t)
concentrates in a self-similar way around the initial position (r̄, z̄) of the vortex filament. A
natural idea is thus to introduce self-similar variables, in order to analyze more accurately the
short-time behavior of the solution.

4.1 Definitions and a priori estimates

Motivated by (3.21), we set

ωθ(r, z, t) =
Γ

νt
f
(r − r̄√

νt
,
z − z̄√
νt

, t
)

, (r, z) ∈ Ω , t ∈ (0, T ) . (4.1)

We also introduce the important notation

ǫ =

√
νt

r̄
, γ =

Γ

ν
, R =

r − r̄√
νt

, Z =
z − z̄√
νt

. (4.2)
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The dimensionless quantity ǫ is the ratio of the typical core thickness of the vortex ring at time t
to the radius of the initial vortex filament. We are interested in the regime where ǫ is small, and
most of our analysis actually deals with the limit as ǫ→ 0. The ratio γ of the vortex strength Γ to
the viscosity ν is sometimes called the “circulation Reynolds number” in the physical literature.
It is also dimensionless, and coincides in the present case with the quantity M defined in (2.8),
but we find it natural to keep both symbols γ,M in what follows because, conceptually, they
denote rather different quantities. Finally, the dimensionless variables (R,Z) are new coordinates
centered at the position of the vortex filament, where distances are measured in units of the core
thickness

√
νt. Note that the domain constraint r > 0 translates into 1 + ǫR > 0, which means

that the rescaled vorticity f(R,Z, t) given by (4.1) is actually defined in the time-dependent
domain Ωǫ = {(R,Z) ∈ R

2 | 1 + ǫR > 0}, which converges to R
2 as ǫ → 0. However, since the

function f(R,Z, t) satisfies the homogeneous Dirichlet condition at the boundary R = −1/ǫ,
we can extend it by zero outside that domain and thereby identify it with a function f̄(R,Z, t)
which is now defined on the whole plane R

2, for any t ∈ (0, T ).

In view of (3.21), given any η ∈ (0, 1), the rescaled vorticity f(R,Z, t) satisfies

0 < f(R,Z, t) ≤ Kη(M) e−
1−η
4

(R2+Z2) , (4.3)

for all (R,Z) ∈ Ωǫ and all t ∈ (0, T ). Moreover, it follows from (2.13) that the spatial derivatives
of f are uniformly bounded:

|∇f(R,Z, t)| ≤ C8(M) . (4.4)

Finally, using (2.8) and (4.1), we obtain

∫

Ωǫ

f(R,Z, t) dR dZ =
1

Γ

∫

Ω
ωθ(r, z, t) dr dz −−→

t→0

Mν

Γ
= 1 . (4.5)

It is also useful to express the velocity field u associated with ωθ in self-similar variables.
The correct ansatz is:

u(r, z, t) =
Γ√
νt
U ǫ

(r − r̄√
νt

,
z − z̄√
νt

, t
)

, (r, z) ∈ Ω , t ∈ (0, T ) , (4.6)

where U ǫ = U ǫ
rer + U ǫ

zez denotes the rescaled velocity field. We use here the superscript ǫ to
keep in mind that, in the new variables, the Biot-Savart law depends explicitly on time through
the parameter ǫ =

√
νt/r̄. Indeed, for any t ∈ (0, T ), the velocity U ǫ satisfies the elliptic system

∂ZU
ǫ
r − ∂RU

ǫ
z = f , ∂RU

ǫ
r +

ǫU ǫ
r

1 + ǫR
+ ∂ZU

ǫ
z = 0 , (4.7)

in the domain Ωǫ, together with the boundary conditions U ǫ
r = ∂RU

ǫ
z = 0 on ∂Ωǫ. In view

of (2.12), we have the following uniform a priori estimate

|U ǫ(R,Z, t)| ≤ C7(M) , (R,Z) ∈ Ωǫ , t ∈ (0, T ) . (4.8)

In fact, estimate (4.8) can be improved as follows.

Lemma 4.1. The rescaled velocity field defined in (4.6) satisfies

(1 + |R|+ |Z|) |U ǫ(R,Z, t)| ≤ C15(M) , (R,Z) ∈ Ωǫ , t ∈ (0, T ) , (4.9)

where C15 depends only on M .
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Proof. If u is the velocity field associated with the vorticity ωθ via the axisymmetric Biot-Savart
law, it is shown in [17, Proposition 2.3] that

|u(r, z)| ≤
∫

Ω

C
√

(r − r′)2 + (z − z′)2
|ωθ(r

′, z′)|dr′ dz′ , (r, z) ∈ Ω ,

where C > 0 is a universal constant. Using the change of variables (4.1) and (4.6), we deduce
that, for any ǫ > 0,

|U ǫ(R,Z)| ≤
∫

Ωǫ

C
√

(R−R′)2 + (Z − Z ′)2
|f(R′, Z ′)|dR′ dZ ′ , (R,Z) ∈ Ωǫ . (4.10)

In view of (4.10), estimate (4.9) follows easily from the Gaussian bound (4.3).

In Section 4.4 below we need accurate estimates on the difference U ǫ−U0, where U0 denotes
the velocity field obtained from f via the Biot-Savart law on R

2. To prove such bounds, we use
a rather explicit representation for the solution of (4.7), which we now derive.

4.2 The parametrized Biot-Savart law

We look for a solution of (4.7) in the form

U ǫ
r = − ∂Zφ

ǫ

1 + ǫR
, U ǫ

z =
∂Rφ

ǫ

1 + ǫR
, (4.11)

where φǫ : Ωǫ → R is the axisymmetric stream function, which satisfies the second-order elliptic
equation

− ∂2Rφ
ǫ

1 + ǫR
+

ǫ∂Rφ
ǫ

(1 + ǫR)2
− ∂2Zφ

ǫ

1 + ǫR
= f , (4.12)

in the domain Ωǫ, with both Dirichlet and Neumann conditions on the boundary ∂Ωǫ. The
solution of (4.12) can be computed as in [10, Section 2] and is found to be

φǫ(R,Z) =
1

2π

∫

Ωǫ

√

(1+ǫR)(1+ǫR′)F

(

ǫ2
(R−R′)2 + (Z−Z ′)2

(1+ǫR)(1+ǫR′)

)

f(R′, Z ′) dR′ dZ ′ , (4.13)

where F : (0,∞) → (0,∞) is defined by

F (s) =

∫ π/2

0

1− 2 sin2 ψ
√

sin2 ψ + s/4
dψ =

{

log 8√
s
− 2 +O(s log s) as s→ 0 ,

π
2s3/2

+O(s−5/2) as s→ ∞ .
(4.14)

Differentiating (4.13) with respect to R and Z, and using (4.11), we obtain

U ǫ
r (R,Z) =

1

2π

∫

Ωǫ

√

1+ǫR′

1+ǫR
F̃ (ξ2)

Z − Z ′

(R−R′)2 + (Z−Z ′)2
f(R′, Z ′) dR′ dZ ′ ,

U ǫ
z(R,Z) = − 1

2π

∫

Ωǫ

√

1+ǫR′

1+ǫR
F̃ (ξ2)

R−R′

(R−R′)2 + (Z−Z ′)2
f(R′, Z ′) dR′ dZ ′ (4.15)

+
ǫ

4π

∫

Ωǫ

√
1+ǫR′

(1 + ǫR)3/2

(

F (ξ2) + F̃ (ξ2)
)

f(R′, Z ′) dR′ dZ ′ ,

where ξ2 is a shorthand notation for the quantity

ξ2 = ǫ2
(R−R′)2 + (Z−Z ′)2

(1+ǫR)(1+ǫR′)
, (4.16)
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and F̃ : (0,∞) → (0,∞) is defined by

F̃ (s) = −2sF ′(s) =

{

1 +O(s log s) as s→ 0 ,
3π

2s3/2
+O(s−5/2) as s→ ∞ .

(4.17)

For simplicity we write U ǫ = BSǫ[f ] when (4.15) holds.

When ǫ → ∞, the domain Ωǫ shrinks to the half-plane Ω, and (4.15) coincides with the
axisymmetric Biot-Savart law, which is studied e.g. in [10, Section 2]. In contrast, as ǫ → 0,
the domain Ωǫ expands to the full plane R

2, and in this limit (4.15) reduces to the usual two-
dimensional Biot-Savart law:

U0(R,Z) =

(

U0
r (R,Z)

U0
z (R,Z)

)

=
1

2π

∫

R2

(

Z − Z ′

R′ −R

)

f(R′, Z ′)
(R−R′)2 + (Z−Z ′)2

dR′ dZ ′ , (4.18)

which we denote U0 = BS0[f ]. Thus the ǫ-dependent Biot-Savart law defined by (4.7) or (4.15)
nicely interpolates between the axisymmetric case and the two-dimensional case.

We now compare the velocity fields U ǫ and U0 obtained from the same vorticity distribution.

Lemma 4.2. Assume that f vanishes outside Ωǫ. If U ǫ = BSǫ[f ] and U0 = BS0[f ], we have,
for all (R,Z) ∈ Ωǫ,

|U ǫ(R,Z)− U0(R,Z)| ≤
∫

Ωǫ

Cǫ

1 + ǫR

(

1 + log+
1 + ǫR

ǫρ

)

|f(R′, Z ′)|dR′ dZ ′ , (4.19)

where ρ =
√

(R−R′)2 + (Z−Z ′)2 and log+(x) = max(log(x), 0).

Proof. Since f is supported in Ωǫ by assumption, the integrals in (4.15), (4.18) are taken over
the same domain. Thus, all we need is to subtract (4.18) from (4.15) and to estimate the various
terms in the difference, using the following elementary bounds

∣

∣

∣

√

1+ǫR′

1+ǫR
F̃ (ξ2)− 1

∣

∣

∣
≤

√

1+ǫR′

1+ǫR

∣

∣

∣
F̃ (ξ2)− 1

∣

∣

∣
+

∣

∣

∣

√

1+ǫR′

1+ǫR
− 1

∣

∣

∣
≤ C

ǫρ

1+ǫR
, (4.20)

ǫ
√
1+ǫR′

(1+ǫR)3/2

∣

∣

∣F (ξ2) + F̃ (ξ2)
∣

∣

∣ ≤ C
ǫ

1+ǫR

(

1 + log+
1+ǫR

ǫρ

)

. (4.21)

Estimate (4.20) easily follows from the bound |F̃ (ξ2)−1| ≤ C|ξ|, which is a direct consequence of
(4.17). The proof of (4.21) requires a little more work. In the region where 1+ ǫR′ ≤ 2(1+ ǫR),
we obtain (4.21) using the facts that F̃ (ξ2) is bounded and F (ξ2) ≤ C(1 + log+ξ

−1), see (4.14).
When 1 + ǫR′ ≥ 2(1 + ǫR), we observe that 2ǫρ ≥ 2ǫ(R′ −R) ≥ 1 + ǫR′, and using the bounds
F (ξ2) + F̃ (ξ2) ≤ Cξ−1 we obtain (4.21) (without the logarithmic term in that case).

4.3 Characterization of the α-limit set

The evolution equation satisfied by the rescaled vorticity f defined in (4.1) reads

t∂tf + γ∂R(U
ǫ
rf) + γ∂Z(U

ǫ
zf) = Lf + ∂R

( ǫf

1 + ǫR

)

, (4.22)

for (R,Z) ∈ Ωǫ and t ∈ (0, T ), where γ = Γ/ν and L is the differential operator defined by

Lf = (∂2R + ∂2Z)f +
1

2
(R∂Rf + Z∂Zf) + f . (4.23)
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The homogeneous Dirichlet boundary condition for f reads f(−1/ǫ, Z, t) = 0 for all Z ∈ R and
all t ∈ (0, T ). If we formally take the limit ǫ → 0 in (4.22), (4.7) and introduce the logarithmic
time τ = log(t/T ), so that ∂τ = t∂t, we arrive at the evolution equation

∂τf + γU · ∇f = Lf , (R,Z) ∈ R
2 , (4.24)

where ∂RUr + ∂ZUz = 0 and ∂ZUr − ∂RUz = f . In other words, we obtain in that limit the
two-dimensional vorticity equation in self-similar variables, which was thoroughly studied, for
instance, in [18, 19].

We now introduce the weighted L2 space X = {f ∈ L2(R2) | ‖f‖X <∞} where

‖f‖2X =

∫

R2

|f(R,Z)|2 e(R2+Z2)/4 dRdZ . (4.25)

For later use we also denote

w(R,Z) = e(R
2+Z2)/4 , G(R,Z) =

1

4π
e−(R2+Z2)/4 , (R,Z) ∈ R

2 . (4.26)

The aim of this section is to prove the following result:

Proposition 4.3. The solution of (4.22) defined by (4.1) satisfies ‖f̄(t) −G‖X → 0 as t → 0,
where f̄ denotes the extension of f by zero outside Ωǫ.

Proposition 4.3 means that the axisymmetric vorticity ωθ(r, z, t) is not only bounded from
above by a self-similar function with Gaussian profile, as asserted in (4.3), but actually ap-
proaches a uniquely determined self-similar solution of the 2d vorticity equation as t → 0.
Before giving a detailed proof, we make some preliminary remarks. Let X0 ⊂ X be the Banach
space defined by the norm

‖f‖X0 = sup
(R,Z)∈R2

|f(R,Z)| e 1−η
4

(R2+Z2) + sup
(R,Z)∈R2

|∇f(R,Z)| , (4.27)

where η ∈ (0, 1/2) is any fixed real number. We have the following elementary result:

Lemma 4.4. The space X0 is compactly embedded in X, and the unit ball in X0 is closed for
the topology induced by X.

According to (4.3) and (4.4) the trajectory (f̄(t))t∈(0,T ) is bounded in X0, hence relatively
compact in X. We can thus consider the α-limit set

A =
{

h ∈ X
∣

∣ there exists a sequence tm → 0 such that ‖f̄(tm)− h‖X → 0 as m→ ∞
}

,

which is of course nonempty. We know from Lemma 4.4 that A is bounded in X0, and in
view of (4.5) any h ∈ A satisfies

∫

hdR dZ = 1. Proposition 4.3 asserts that A is a singleton,
namely A = {G}. The intuition behind this result is that the α-limit set A is (positively
and negatively) invariant under the evolution defined on the whole plane R

2 by the limiting
equation (4.24), which is obtained by formally taking the limit ǫ→ 0 in (4.22). But it is proved
in [19] that the only solutions of (4.24) that are uniformly bounded in X for all negative times
τ are equilibria of the form f = αG, for some α ∈ R. Since we have the normalization condition
∫

hdR dZ = 1 for any h ∈ A, we conclude that A = {G}.
Making this argument rigorous requires a detailed comparison of the evolutions defined by

equations (4.22) and (4.24), which is rather delicate. We thus prefer using a different argument
to establish Proposition 4.3.
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Proof of Proposition 4.3. Let h∗ ∈ A, and let (tm) be a sequence in (0, T ) such that tm → 0
and ‖f̄(tm) − h∗‖X → 0 as m → ∞. Our goal is to show that h∗ = G. To prove that, it is
convenient to return to the three-dimensional formulation of the vorticity equation. As in (1.3),
we denote by u(x, t) and ω(x, t) the three-dimensional velocity and vorticity fields, respectively.
For any m ∈ N, any y ∈ R

3, and any s ∈ (0, T ǫ−2
m ), we define

{

u(m)(y, s) = ǫm u(x̄+ ǫmy , ǫ
2
ms) ,

ω(m)(y, s) = ǫ2m ω(x̄+ ǫmy , ǫ
2
ms) ,

(4.28)

where x̄ = (x̄1, x̄2, x̄3) = (r̄, 0, z̄) ∈ R
3 and, in agreement with (4.2),

ǫm =

√
νtm
r̄

, m ∈ N .

In other words, the vector fields u(m), ω(m) are defined by a self-similar blow-up of the original
quantities u, ω near the point x̄ ∈ R

3 and near the initial time t = 0.

It is clear that u(m), ω(m) satisfy the three-dimensional vorticity equation

∂sω
(m) + [u(m), ω(m)]− ν∆ω(m) = 0 , (4.29)

for y ∈ R
3 and 0 < s < Tǫ−2

m , together with the constraints div u(m) = 0 and curlu(m) = ω(m).
This is due to the scaling and translational symmetries of the equations. Note that, in (4.29)
and in the rest of the proof, all spatial derivatives act on the variable y ∈ R

3. In view of (2.14)
and (4.28), we have the a priori estimates

‖∂ks∇ℓ
yu

(m)(s)‖L∞(R3) ≤ Ckℓ(M)M

sk(νs)ℓ/2

√

ν

s
, 0 < s < Tǫ−2

m ,

which hold for all indices k, ℓ ∈ N, uniformly in m ∈ N. Up to extracting a subsequence, we can
therefore assume that

u(m) → ū , ω(m) → ω̄ , as m→ ∞ ,

with uniform convergence of both vector fields and all their derivatives on any compact subset
of R3 × (0,∞). The limiting fields ū, ω̄ are smooth on R

3 × (0,∞) and satisfy

∂sω̄ + [ū, ω̄]− ν∆ω̄ = 0 , (4.30)

together with div ū = 0 and curl ū = ω̄.

We now relate the limiting vorticity ω̄ to the α-limit points of the rescaled vorticity f . In
view of (4.1) and (4.28), we have, for all m ∈ N, all y ∈ R

3, and all s ∈ (0, T ǫ−2
m ),

ω(m)(y, s) =
Γ

νs
f

(

√

(r̄ + ǫmy1)2 + ǫ2my
2
2 − r̄

ǫm
√
νs

,
y3√
νs
, ǫ2ms

)

eθ(x̄+ ǫmy) . (4.31)

For any fixed s > 0, we can assume (up to extracting another subsequence) that f(·, ·, ǫ2ms)
converges in the topology of X to some hs ∈ A as m → ∞. Since f(·, ·, t) is bounded in X0,
the convergence also holds uniformly on any compact set of R3. Thus taking the limit m → ∞
in (4.31) and observing that eθ(x̄) = e2 = (0, 1, 0), we obtain

ω̄(y, s) =
Γ

νs
hs

( y1√
νs
,
y3√
νs

)

e2 =:
(

0, ω̄2(y1, y3, s), 0
)

. (4.32)
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We deduce in particular that

|ω̄2(y1, y3, s)| ≤ Kη(M)
Γ

νs
e−

1−η
4νs

(y21+y23) , and

∫

R2

ω̄2(y1, y3, s) dy1 dy3 = Γ . (4.33)

Similarly, in view of (4.6) and (4.28), we have the relation

u(m)(y, s) =
Γ√
νs
U ǫ̃m

(

√

(r̄ + ǫmy1)2 + ǫ2my
2
2 − r̄

ǫm
√
νs

,
y3√
νs
, ǫ2ms

)

,

where ǫ̃m = ǫm
√

νs/r̄. Taking the limit m → ∞, we infer as above that the limiting velocity ū
has the particular form

ū(y, s) = ū1(y1, y3, s)e1 + ū3(y1, y3, s)e3 =
(

ū1(y1, y3, s), 0, ū3(y1, y3, s)
)

, (4.34)

and using Lemma 4.1 we also obtain the pointwise estimate

|ū(y, s)| ≤ C15(M)Γ√
νs+ |y1|+ |y3|

, y ∈ R
3 , s > 0 . (4.35)

As div ū = 0 and curl ū = ω̄, we deduce from (4.32), (4.34) that ∂1ū1+∂3ū3 = 0 and ∂3ū1−∂1ū3 =
ω̄2. Since ū vanishes at infinity by (4.35), we conclude that (ū1, ū3) is the two-dimensional
velocity field obtained from the scalar vorticity ω̄2 via the Biot-Savart law in R

2.

Summarizing, we have shown that the limiting vorticity ω̄2, together with the associated
velocity (ū1, ū3), solves the Navier-Stokes equations in R

2 × (0,∞), and it follows from (4.33)
that ω̄2(·, s) is uniformly bounded in L1(R2) and converges weakly to the Dirac measure Γδ0 as
s→ 0. Invoking [19, Proposition 1.3], we deduce that, for any s > 0,

ω̄2(y1, y3, s) =
Γ

νs
G
( y1√

νs
,
y3√
νs

)

=
Γ

4πνs
e−(y21+y23)/(4νs) , (y1, y3) ∈ R

2 . (4.36)

In particular, setting s = s∗ = r̄2/ν, so that ǫ2ms = tm, and comparing (4.32) with (4.36), we
conclude that hs∗ ≡ h∗ = G, which is the desired result.

4.4 Short time asymptotics

The goal of this section is to establish the short time estimate (1.7). Let χ : [0,∞) → [0, 1] be
a smooth nonincreasing function such that χ(x) = 1 for x ∈ [0, 1/4] and χ(x) = 0 for x ≥ 1/2.
We define

f0(R,Z, t) = G(R,Z)χ(ǫ2(R2+Z2)) , (R,Z) ∈ R
2 , t ∈ (0, T ) , (4.37)

where ǫ =
√
νt/r̄ and G(R,Z) = (4π)−1e−(R2+Z2)/4, see (4.2), (4.26). Due to the localization

function χ, it is clear that f0(R,Z, t) vanishes when ǫR < −1/
√
2. In particular, f0 satisfies the

Dirichlet boundary condition in the time-dependent domain Ωǫ = {(R,Z) ∈ R
2 | 1 + ǫR > 0}.

Lemma 4.5. There exists C16 > 0 such that, for any t ∈ (0, T ), the velocity field U ǫ
0 = BSǫ[f0]

associated with f0 satisfies

‖U ǫ
0‖L∞(Ωǫ) ≤ C16 , ‖div∗ U ǫ

0‖L∞(Ωǫ) ≤ C16 (ǫ+ ǫ2) . (4.38)
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Proof. Since |f0| ≤ G, the first bound in (4.38) is a direct consequence of estimate (4.10) in
Lemma 4.1. In view of the identity

div∗ U
ǫ
0 = ∂RU

ǫ
0,r + ∂ZU

ǫ
0,z = −

ǫU ǫ
0,r

(1 + ǫR)
, (4.39)

it follows that |div∗ U ǫ
0 | ≤ Cǫ whenever the denominator 1 + ǫR is bounded away from zero.

The proof of (4.38) is completed using the improved estimate

|U ǫ
0,r(R,Z, t)| ≤ C(1 + ǫR)ǫ , (R,Z) ∈ Ω̃ǫ , t ∈ (0, T ) , (4.40)

which holds in the subdomain Ω̃ǫ = {(R,Z) ∈ R
2 | 0 < 1 + ǫR < 1/4}. To establish (4.40),

we start from the representation (4.15) for U ǫ
0,r, where f is replaced by f0. Using the bound

F̃ (ξ2) ≤ C|ξ|−3, which follows from (4.17), we easily obtain

|U ǫ
0,r(R,Z, t)|
1 + ǫR

≤ Cǫ

∫

Ωǫ

(1 + ǫR′)2

ǫ4ρ4
f0(R

′, Z ′, t) dR′ dZ ′ , (4.41)

for all (R,Z) ∈ Ωǫ and all t ∈ (0, T ), where ρ =
√

(R−R′)2 + (Z−Z ′)2. The integrand in (4.41)
is nonzero only in the region where ǫ2(R′2 + Z ′2) ≤ 1/2. Thus 1− 1/

√
2 ≤ 1 + ǫR′ ≤ 1 + 1/

√
2,

and if 1 + ǫR < 1/4 it follows that ǫρ ≥ ǫ(R′ −R) ≥ 3/4 − 1/
√
2 > 0. With these observations

in mind, estimate (4.40) is a direct consequence of (4.41).

If f is the solution of (4.22) given by (4.1), and if U ǫ is the associated velocity field, we
decompose

{

f(R,Z, t) = f0(R,Z, t) + f̃(R,Z, t) ,

U ǫ(R,Z, t) = U ǫ
0(R,Z, t) + Ũ ǫ(R,Z, t) ,

(R,Z) ∈ Ωǫ , t ∈ (0, T ) , (4.42)

where U ǫ
0 = BSǫ[f0] and Ũ

ǫ = BSǫ[f̃ ]. The equation satisfied by the perturbation f̃ is

t∂tf̃ + γ div∗
(

U ǫ
0 f̃ + Ũ ǫf0

)

+ γ div∗
(

Ũ ǫf̃
)

= Lf̃ + ∂R

( ǫf̃

1 + ǫR

)

+H , (4.43)

where H is a source term which quantifies by how much f0 fails to be an exact solution of (4.22).
Explicitly,

H = Lf0 + ∂R

( ǫf0
1 + ǫR

)

− t∂tf0 − γ div∗
(

U ǫ
0f0

)

. (4.44)

Here and in what follows, if V = (Vr, Vz) is a vector field on Ωǫ or on the whole plane R
2, we

denote div∗ V = ∂RVr+∂ZVz. Note that the perturbation f̃ still satisfies the Dirichlet boundary
condition on ∂Ωǫ.

It is clear from definition (4.37) that f0 belongs for all times to the space X introduced in
(4.25), and that ‖f0(t) −G‖X → 0 as t → 0. Thus the perturbation f̃ (implicitly extended by
zero outside Ωǫ) belongs to X for all t ∈ (0, T ), and Proposition 4.3 implies that ‖f̃(t)‖X → 0 as
t→ 0. In the rest of this section, using appropriate energy estimates, we prove that ‖f̃(t)‖X =
O(ǫ| log ǫ|) as t→ 0, and this implies (1.7) in view of the continuous injection X →֒ L1(R2).

For any t ∈ (0, T ), we define

E(t) =
1

2

∫

Ωǫ

f̃(R,Z, t)2w(R,Z) dR dZ , (4.45)
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where w(R,Z) = e(R
2+Z2)/4, see (4.26). Although the integral in (4.45) is taken over the time-

dependent domain Ωǫ, there is no contribution from the boundary when we differentiate with
respect to time, because f̃ satisfies the homogeneous Dirichlet condition on ∂Ωǫ. Using (4.43),
we thus obtain

tE′(t) =

∫

Ωǫ

f̃(R,Z, t)
(

t∂tf̃(R,Z, t)
)

w(R,Z) dR dZ

= D1(t) +D2(t) +H(t)− γ
(

A1(t) +A2(t) +N(t)
)

, (4.46)

where

D1(t) =

∫

Ωǫ

f̃ (Lf̃)w dRdZ , D2(t) =

∫

Ωǫ

f̃ ∂R

( ǫf̃

1 + ǫR

)

w dR dZ ,

A1(t) =

∫

Ωǫ

f̃ div∗
(

U ǫ
0 f̃

)

w dRdZ , A2(t) =

∫

Ωǫ

f̃ div∗
(

Ũ ǫf0
)

w dRdZ ,

H(t) =

∫

Ωǫ

f̃ Hw dRdZ , N(t) =

∫

Ωǫ

f̃ div∗
(

Ũ ǫf̃
)

w dRdZ .

The main result of this section is

Proposition 4.6. There exists δ > 0 and, for any γ > 0, there exist ǫ0 ∈ (0, 1/2) and κ > 0
such that, if t > 0 is small enough so that ǫ ≤ ǫ0, then

tE′(t) ≤ −2δE(t) + κǫ| log ǫ|E(t)1/2 + κE(t)1/2E(t) +R(t) , (4.47)

where R(t) ≤ e−1/(36ǫ2) and

E(t) =
1

2

∫

Ωǫ

(

|∇f̃ |2 + (1 +R2 + Z2)f̃2
)

w dR dZ ≥ E(t) . (4.48)

Proof. We proceed in six steps.

Step 1: Control of the mass. For any t ∈ (0, T ) we denote

m(t) =

∫

Ωǫ

f̃(R,Z, t) dR dZ =

∫

Ωǫ

(

f(R,Z, t)− f0(R,Z, t)
)

dR dZ . (4.49)

We shall show that m(t) is extremely small for short times. Indeed, since
∫

R2 GdR dZ = 1, it
follows from definition (4.37) that

0 ≤ 1−
∫

Ωǫ

f0(R,Z, t) dR dZ =

∫

R2

(

1− χ(ǫ2(R2+Z2))
)

GdR dZ ≤ e−1/(16ǫ2) , (4.50)

because, in the last integral, the integrand vanishes when R2 + Z2 ≤ 1/(4ǫ2). On the other
hand, estimate (3.8) (where one can take ρ = r̄/2) shows that

Γ ≥
∫ ∞

r̄/2

{
∫

R

ωθ(r, z, t) dz

}

dr ≥ Γ
(

1− e−r̄2/(64νt)
)

,

and in view of (4.1) this implies that

0 ≤ 1−
∫

Ωǫ

f(R,Z, t) dR dZ ≤ e−1/(64ǫ2) . (4.51)
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Combining (4.50) and (4.51), we deduce that

|m(t)| ≤ e−1/(64ǫ2) , where ǫ =

√
νt

r̄
. (4.52)

Step 2: The diffusive terms. After this preliminary step, we estimate separately the various
terms in the right-hand side of (4.46), starting with D1(t) and D2(t) which originate from the
diffusion operator in (4.43). Using the identity (Lf̃)w = div∗(w∇f̃) + wf̃ and integrating by
parts, we first obtain

D1 =

∫

f̃(Lf̃)w dRdZ =

∫

(

−|∇f̃ |2 + f̃2
)

w dRdZ . (4.53)

Here and in what follows, all integrals are taken over the domain Ωǫ, or over the whole plane
R
2 if one extends the integrands by zero outside Ωǫ (as we implicitly do when necessary). For

simplicity we also write f̃ instead of f̃(R,Z, t), and similarly for other quantities.

Estimate (4.53) is not sufficient for our purposes, because it is not clear if the right-hand
side is negative. To improve it, we observe that f̃(Lf̃)w = g̃(Lg̃) where g̃ = w1/2f̃ and L is the
linear operator defined by

Lg̃ = ∆g̃ − R2 + Z2

16
g̃ +

1

2
g̃ .

We thus have the alternative formula

D1 =

∫

g̃(Lg̃) dR dZ =

∫

(

−|∇g̃|2 − R2 + Z2

16
g̃2 +

1

2
g̃2
)

dRdZ . (4.54)

The operator L is related to the quantum harmonic oscillator in R
2. With the normalization

above, it is self-adjoint in L2(R2) with spectrum σ(L) = {−n/2 |n = 0, 1, 2 . . . }, see e.g. [18,
Appendix A], and this observation already implies that D1 ≤ 0. Moreover, the kernel of L is
one-dimensional and spanned by the function w1/2G. As a consequence, if f̃ has zero mean over
R
2, then g̃ = w1/2f̃ is orthogonal to w1/2G in L2(R2), hence belongs to the invariant subspace

where L ≤ −1/2. Thus

D1 =

∫

f̃(Lf̃)w dR dZ ≤ −1

2

∫

f̃2w dRdZ , if

∫

f̃ dR dZ = 0 . (4.55)

In the general case, we can decompose f̃ = m(t)G+ f̂ , so that f̂ has zero mean by construction.
As LG = 0, we have

∫

f̃(Lf̃)w dRdZ =
∫

f̂(Lf̂)w dRdZ and applying (4.55) to f̂ we obtain

D1 =

∫

f̂(Lf̂)w dRdZ ≤ −1

2

∫

f̂2w dRdZ = −1

2

∫

f̃2w dR dZ +
m(t)2

8π
. (4.56)

We now take a convex combination of estimates (4.53), (4.54), and (4.56), for instance with
coefficients 1/6, 1/6, and 2/3. This gives our improved bound

D1 ≤ −
∫

(1

6
|∇f̃ |2 + R2 + Z2

96
f̃2 +

1

12
f̃2

)

w dRdZ +
m(t)2

12π
≤ − E

48
+
m(t)2

12π
. (4.57)

Next, we consider the second diffusive term D2. Integrating by parts and using the fact that
∂Rw = Rw/2, we find

D2 = − ǫ
2

∫

( f̃

1 + ǫR

)2
∂R

(

(1+ǫR)w
)

dR dZ

= −ǫ
2

2

∫

( f̃

1 + ǫR

)2
w dR dZ − ǫ

4

∫

( f̃2

1 + ǫR

)

Rw dR dZ . (4.58)
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The last term in (4.58) has no sign, but is obviously harmless when 1 + ǫR ≥ 1/4. In the
subdomain Ω̃ǫ = {(R,Z) | 0 < 1 + ǫR < 1/4}, we can apply Young’s inequality to obtain

ǫ

4

∫

Ω̃ǫ

( f̃2

1 + ǫR

)

|R|w dRdZ ≤ ǫ2

2

∫

Ω̃ǫ

( f̃

1 + ǫR

)2
w dR dZ +

1

32

∫

Ω̃ǫ

f2R2w dR dZ , (4.59)

where we replaced f̃ by f in the last integrand because f0 vanishes identically in Ω̃ǫ. Using
the upper bound (4.3) with (for instance) η = 1/4, we see that the last integral in (4.59) is
transcendentally small. Summarizing, we have shown that

D2 ≤ ǫ

∫

f̃2|R|w dR dZ + C e−1/(16ǫ2) ≤ 2ǫE1/2E1/2 + C e−1/(16ǫ2) , (4.60)

where the constant C > 0 depends only on M = γ. Note that the first term in the right-hand
side of (4.60) is bounded by 2ǫE and can therefore be controlled by the negative terms in (4.57),
if ǫ is small enough.

Step 3: The source term. We turn our attention to the source term H defined in (4.44). We
claim that

‖H(t)‖X ≤ Cǫ+ Cγǫ| log ǫ| , (4.61)

whenever ǫ ≤ 1/2, where C > 0 is a universal constant. To prove (4.61) we consider separately
the various terms in (4.44). First, as ∂tG = LG = 0, it is straightforward to verify that both
quantities t∂tf0 and Lf0 are transcendentally small in X as ǫ→ 0. Next, since 1+ǫR is bounded
away from zero on the support of f0, it is clear that the second-term in the right-hand side of
(4.44) is O(ǫ) in X. So the main contribution comes from the last term γ div∗

(

U ǫ
0f0

)

, which
requires a more careful analysis. We observe that

div∗
(

U ǫ
0f0

)

= U ǫ
0 · ∇f0 + div∗(U

ǫ
0)f0 = (U ǫ

0 − U0
0 ) · ∇f0 + div∗(U

ǫ
0)f0 , (4.62)

where U0
0 = BS0[f0] denotes the velocity field obtained from f0 via the two-dimensional Biot-

Savart law (4.18). Note that U0
0 · ∇f0 = 0, because f0 is radially symmetric in R

2, but we
included that term in (4.62) so that the right-hand side contains the difference U ǫ

0 − U0
0 , which

can be estimated using inequality (4.19) (with f replaced by f0). We thus find

|U ǫ
0(R,Z, t) − U0

0 (R,Z, t)| ≤
Cǫ

1 + ǫR

(

1 + log+
1 + ǫR

ǫ

)

, (4.63)

and it follows easily that ‖(U ǫ
0 − U0

0 ) · ∇f0‖X ≤ Cǫ| log ǫ| if ǫ is small enough. Moreover, by
Lemma 4.5, the last term in (4.62) is O(ǫ) in X. This concludes the proof of (4.61), and we
deduce that

H =

∫

f̃ Hw dRdZ ≤ CE1/2
(

ǫ+ γǫ| log ǫ|
)

, (4.64)

whenever ǫ ≤ 1/2.

Step 4: The advection terms. We now consider the terms produced by the advection operator
f̃ 7→ div∗(U ǫ

0 f̃) and the nonlocal operator f̃ 7→ div∗(Ũ ǫf0) in (4.43). Integrating by parts, we
find

A1 =

∫

f̃ div∗
(

U ǫ
0 f̃

)

w dR dZ =
1

2

∫

f̃2(div∗ U
ǫ
0)w dR dZ − 1

2

∫

f̃2(U ǫ
0 · ∇w) dR dZ .

By Lemma 4.5, the first integral in the right-hand side is bounded by Cǫ‖f̃‖2X if ǫ is small. The
second integral is decomposed as A11 +A12, where

A11 =

∫

Ωǫ\Ω̃ǫ

f̃2
(

(U ǫ
0 − U0

0 ) · ∇w
)

dR dZ , A12 =

∫

Ω̃ǫ

f̃2(U ǫ
0 · ∇w) dR dZ . (4.65)
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We recall that Ω̃ǫ = {(R,Z) ∈ R
2 | 0 < 1+ ǫR < 1/4} and U0

0 = BS0[f0]. Note that U
0
0 ·∇w = 0,

because w is radially symmetric in R
2, but it is useful to make the difference U ǫ

0 −U0
0 appear in

the term A11. Using (4.63) and the obvious bound |∇w| ≤ C(|R|+ |Z|)w, we obtain

|A11| ≤
∫

Ωǫ\Ω̃ǫ

Cǫ

1 + ǫR

(

1 + log+
1 + ǫR

ǫ

)

f̃2(|R|+ |Z|)w dRdZ ≤ Cǫ| log ǫ|E1/2E1/2 .

In the subdomain Ω̃ǫ, we use the estimate |U ǫ
0(R,Z, t)| ≤ Cǫ, which is similar to (4.40) and can

be established by exactly the same argument. This gives

|A12| ≤ Cǫ

∫

Ω̃ǫ

f̃2(|R|+ |Z|)w dRdZ ≤ CǫE1/2E1/2 .

Altogether we have shown that

|A1| ≤ Cǫ| log ǫ|E1/2E1/2 . (4.66)

As for the nonlocal term A2, we observe that

A2 =

∫

f̃ div∗
(

[Ũ ǫ − Ũ0]f0
)

w dRdZ +

∫

f̃ (Ũ0 · ∇[f0 −G])w dR dZ , (4.67)

where Ũ0 = BS0[f̃ ] is the velocity field obtained from the vorticity f̃ via the two-dimensional
Biot-Savart law (4.18). In deriving (4.67) we used the nontrivial observation

∫

f̃
(

Ũ0 · ∇G
)

w dRdZ ≡
∫

R2

f̃
(

BS0[f̃ ] · ∇G
)

w dRdZ = 0 ,

which was first made in [19, Lemma 4.8]. Let A21 denote the first term in the right-hand side
of (4.67). Integrating by parts, we find

A21 = −
∫

f0
(

Ũ ǫ − Ũ0
)

· ∇(f̃w) dR dZ . (4.68)

Note once again that f0 is supported in the region where 1 + ǫR ≥ 1/4, and in that domain
we infer from (4.19) that |Ũ ǫ − Ũ0| ≤ Cǫ| log ǫ|‖f̃‖L1∩L2 . Using Hölder’s inequality and the
continuous injection X →֒ L1(R2) ∩ L2(R2), we deduce that

|A21| ≤ Cǫ| log ǫ|‖f̃‖X
∫

(

|∇f̃ |+ (|R|2 + |Z2|)1/2|f̃ |
)

dRdZ

≤ Cǫ| log ǫ|E1/2

{∫

(

|∇f̃ |2 + (|R|2 + |Z2|)|f̃ |2
)

w dRdZ

}1/2

≤ Cǫ| log ǫ|E1/2E1/2 . (4.69)

Again the right-hand side can be controlled by the negative terms in (4.57) if ǫ is sufficiently
small.

Finally, let A22 denote the last integral term in (4.67). Here the integral is taken over the
domain Ω̂ǫ = {(R,Z) | ǫ2(R2+Z2) ≥ 1/4}, because f0 = G on Ωǫ\Ω̂ǫ. Using Hölder’s inequality,
we obtain

[A22| ≤ C

∫

Ω̂ǫ

|Ũ0||f̃ |(R2+Z2)1/2 dRdZ ≤ C‖Ũ0‖L4

{∫

Ω̂ǫ

|f̃ |4/3(R2+Z2)2/3 dRdZ

}3/4

.
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As Ũ0 is the velocity field obtained from f̃ via the two-dimensional Biot-Savart law, the Hardy-
Littlewood-Sobolev inequality implies that ‖Ũ0‖L4 ≤ C‖f̃‖L4/3 ≤ C‖f̃‖X . On the other hand,
using Hölder’s inequality again, we find

∫

Ω̂ǫ

|f̃ |4/3(R2+Z2)2/3 dRdZ ≤
{∫

|f̃ |2w dR dZ

}2/3{∫

Ω̂ǫ

(R2+Z2)2
1

w2
dRdZ

}1/3

,

where the last integral can be explicitly computed and is found to be transcendentally small as
ǫ→ 0. Summarizing, we have shown that |A22| ≤ C e−1/(32ǫ2) ‖f̃‖2X , hence

|A2| ≤ |A21|+ |A22| ≤ Cǫ| log ǫ|E1/2E1/2 . (4.70)

Step 5: The nonlinear term. Finally we consider the nonlinear term N in (4.46). Integrating
by part, we find

N(t) = −
∫

f̃ Ũ ǫ ·
(

w∇f̃ + f̃∇w
)

dRdZ , (4.71)

so that

|N(t)| ≤ C

∫

|Ũ ǫ|
(

|f̃ |w1/2
)

(

(

|∇f̃ |+ (R2+Z2)1/2|f̃ |
)

w1/2
)

dR dZ .

We apply the trilinear Hölder inequality to the right-hand side, with exponents 4, 4, and 2.
Since Ũ ǫ = BSǫ[f̃ ], it follows from (4.10) (using again the Hardy-Littlewood-Sobolev inequality)
that ‖Ũ ǫ‖L4 ≤ C‖f̃‖L4/3 ≤ C‖f̃‖X . On the other hand, using Sobolev’s interpolation inequality,
we see that

‖f̃w1/2‖L4 ≤ C‖f̃w1/2‖1/2
L2 ‖∇(f̃w1/2)‖1/2

L2 ≤ CE1/4E1/4 .

Finally,
‖
(

|∇f̃ |+ (R2+Z2)1/2|f̃ |
)

w1/2‖L2 ≤ CE1/2 .

Altogether, we have shown that

|N | ≤ CE3/4E3/4 ≤ CE1/2E . (4.72)

Alternatively, one can apply the trilinear Hölder inequality with exponents ∞, 2, 2, and deduce

from (4.10) that ‖Ũ ǫ‖L∞ ≤ C‖f̃‖1/2
L4/3‖f̃‖

1/2
L4 ≤ CE1/4E1/4. This also leads to (4.72).

Step 6: Conclusion. Combining estimates (4.52), (4.57), (4.60), (4.64), (4.66), (4.70), and
(4.72), we obtain (4.47). Note that the negative term −2δE and the remainder R in (4.47)
are entirely produced by the diffusion terms D1 and D2, whereas the quantities κǫ| log ǫ|E1/2

and κE1/2E originate from the source term H and the cubic term N , respectively. As for the
advections terms A1 and A2, their contributions can be controlled by the negative term if ǫ is
small enough.

Proof of estimate (1.7) in Theorem 1.1. We know from Proposition 4.3 that f(t) converges
to G in X as t → 0, and so does f0(t) in view of definition (4.37). Thus E(t) → 0 as t → 0.
As long as t is small enough so that ǫ ≤ ǫ0 and κE(t)1/2 ≤ δ/2, where ǫ0, κ, δ are as in
Proposition 4.6, it follows from (4.47) and Young’s inequality that

tE′(t) ≤ −δE(t) +R1(t) ≤ −δE(t) +R1(t) , (4.73)

where R1 ≤ Cǫ2| log ǫ|2. Integrating that differential inequality, we obtain

E(t) ≤ t−δ

∫ t

0
sδ−1R1(s) ds =: R2(t) , (4.74)
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where again R2 ≤ Cǫ2| log ǫ|2. From that bound, we see that there exists ǫ1 ∈ (0, ǫ0) such that
our assumption κE1/2 ≤ δ/2 is satisfied whenever ǫ ≤ ǫ1. So, for ǫ ≤ ǫ1, we have

‖f(t)− f0(t)‖L1(Ωǫ) = ‖f̃(t)‖L1(Ωǫ) ≤ C‖f̃(t)‖X ≤ CE(t)1/2 ≤ Cǫ| log ǫ| ,

and since f0 is extremely close to G this proves exactly (1.7), after returning to the original
variables. When ǫ1 ≤ ǫ ≤ 1/2, estimate (1.7) obviously holds (for some appropriate constant
C1), because the left-hand side is trivially smaller than 2|Γ|.

4.5 Uniqueness

This final section is devoted to the uniqueness claim in Theorem 1.1. Assume for this purpose

that ω
(1)
θ , ω

(2)
θ ∈ C0((0, T ), L1(Ω) ∩ L∞(Ω)) are two mild solutions of equation (1.4) which are

uniformly bounded in L1(Ω) and converge weakly to Γ δ(r̄,z̄) as t → 0. Introducing self-similar
variables as in (4.1), we obtained two rescaled vorticities f1(R,Z, t), f2(R,Z, t) which can both
be decomposed as in (4.42):

f1(R,Z, t) = f0(R,Z, t) + f̃1(R,Z, t) , f2(R,Z, t) = f0(R,Z, t) + f̃2(R,Z, t) .

The associated velocity fields are decomposed in a similar way:

U ǫ
1(R,Z, t) = U ǫ

0(R,Z, t) + Ũ ǫ
1(R,Z, t) , U ǫ

2(R,Z, t) = U ǫ
0(R,Z, t) + Ũ ǫ

2(R,Z, t) .

We take the difference of both solutions and denote

f̃(R,Z, t) = f1(R,Z, t) − f2(R,Z, t) = f̃1(R,Z, t)− f̃2(R,Z, t) ,

Ũ ǫ(R,Z, t) = U ǫ
1(R,Z, t) − U ǫ

2(R,Z, t) = Ũ ǫ
1(R,Z, t) − Ũ ǫ

2(R,Z, t) .

The evolution equation for f̃ reads

t∂tf̃ + γ div∗
(

U ǫ
0 f̃ + Ũ ǫf0

)

+ γ div∗
(

Ũ ǫf̃1 + Ũ ǫ
2 f̃

)

= Lf̃ + ∂R

( ǫf̃

1 + ǫR

)

. (4.75)

This is basically the same equation as (4.43), except that the source term H has disappeared
when taking the difference of the equations for f̃1 and f̃2, and the nonlinear term has been
expanded as follows: Ũ ǫ

1 f̃1 − Ũ ǫ
2 f̃2 =

(

Ũ ǫ
1 − Ũ ǫ

2

)

f̃1 + Ũ ǫ
2

(

f̃1 − f̃2
)

. In analogy with (4.45) we
denote

E =
1

2

∫

f̃2w dRdZ , E1 =
1

2

∫

f̃21w dRdZ , E2 =
1

2

∫

f̃22w dRdZ ,

and as in (4.48) we also define

E =
1

2

(

|∇f̃ |2 + (1 +R2 + Z2)f̃2
)

w dRdZ .

We claim that for ǫ < ǫ0 ≤ 1/2 we have

tE′(t) ≤ −2δE(t) + κ
(

E1(t)
1/2 + E2(t)

1/2
)

E(t) + R̃(t) , (4.76)

with the remainder R̃(t) satisfying R̃(t) ≤ e−1/(36ǫ2). This is obtained by repeating the proof of
Proposition 4.6, with only minor adjustments. No new estimates are needed, the only change
worth mentioning is that the expression (4.71) is replaced by

−
∫

(

Ũ ǫf̃1 + Ũ ǫ
2 f̃

)(

w∇f̃ + f̃∇w
)

dRdZ . (4.77)
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The integral (4.77) is bounded by the cubic term κ(E1(t)
1/2 + E2(t)

1/2)E(t) in (4.76). To see
this, we can control the term produced by U ǫf̃1 using the alternative approach mentioned at
the end of Step 5 above, while the second nonlinear term arising from Ũ ǫ

2 f̃ can be treated by
the original approach in Step 5. Of course inequality (4.76) does not include any term of the
form κǫ| log ǫ|E(t)1/2, because in (4.47) that term was produced by the source H which does
not appear in (4.75).

As long as t is small enough so that κ(E1(t)
1/2 + E2(t)

1/2) ≤ δ, it follows from (4.76) that
tE′(t) ≤ −δE(t) + R̃(t), hence

E(t) ≤ t−δ

∫ t

0
sδ−1R̃(s) ds = O

(

e−1/(36ǫ2)
)

. (4.78)

This already shows that E(t) converges extremely rapidly to zero as t→ 0, but our actual goal
is to prove that E(t) vanishes identically.

To do that, our strategy is to combine (4.78) with another estimate, which is less sophisticated
and simply shows that E(t) cannot grow faster than some (large) power of t. As long as ǫ ≤ 1/2,
we claim that

tE′(t) ≤ −δE(t) +KE(t) + κ
(

E1(t)
1/2 + E2(t)

1/2
)

E(t) , (4.79)

for some positive constants K and κ (depending on γ). Note that there is no remainder term R̃(t)
in (4.79), but this is obtained at the expense of including the positive termKE(t) with a (possibly
large) constant K. To obtain (4.79), the only modifications in the proof of Proposition 4.6
concern the diffusive terms D1 and D2. To bound D1 we forget about (4.56) and only take a
convex combination of (4.53), (4.54), with coefficients 1/3 and 2/3. The result is

D1 ≤ −
∫

(1

3
|∇f̃ |2 + R2+Z2

24
f̃2 +

1

3
f̃2

)

w dRdZ +

∫

f̃2w dRdZ . (4.80)

As for D2, we use estimate (4.59) on the whole domain Ωǫ and add it to (4.58), which gives

D2 ≤ 1

32

∫

f̃2R2w dR dZ . (4.81)

When taking the sum D1+D2, we observe that the right-hand side of (4.81) is entirely absorbed
in the negative terms that appear in (4.80). In particular, no remainder term is produced.

Now, whenever t is small enough so that κ(E1(t)
1/2 + E2(t)

1/2) ≤ δ, it follows from (4.79)
that tE′(t) ≤ KE(t), hence

E(t) ≤
( t

t0

)K
E(t0) , 0 < t0 < t . (4.82)

In view of (4.78), the right-hand side of (4.82) converges to 0 as t0 → 0. Thus E(t) = 0, and
we deduce that f1(t) = f2(t) for all sufficiently small times. Returning to the original variables,
we conclude that

ω
(1)
θ (r, z, t) = ω

(2)
θ (r, z, t) ,

for sufficiently small times, hence for all t ∈ (0, T ) in view of the well-posedness result established
in [17, Theorem 1.1]. The proof of Theorem 1.1 is now complete. �

5 Appendix

5.1 Convergence of signed measures

For easy reference, we collect here a few remarks on weak convergence of signed measures. The
content of this section is probably standard, although most of the classical literature is devoted
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to the particular case of probability measures. We state the results in a general framework, but
in the rest of the paper all measures are defined on the half-plane Ω ⊂ R

2. We first recall a few
definitions.

1. Given a locally compact metric space X, we denote by C0(X) the space of all continuous
functions f : X → R that vanish at infinity in the following sense: for any ǫ > 0, there exists a
compact set K ⊂ X such that |f(x)| ≤ ǫ for all x ∈ Kc := X \K. Equipped with the supremum
norm, C0(X) is a real Banach space.

2. Let M(X) be the set of all finite, signed, regular Borel measures on X. If µ ∈ X, we denote
by |µ| the total variation of µ [29], which is a nonnegative finite Borel measure on X. The total
variation norm of µ is the real number ‖µ‖ = |µ|(X) ≥ 0. Equipped with the total variation
norm, the space M(X) becomes a real Banach space.

3. By the Riesz-Markov theorem [29], if Φ : C0(X) → R is any continuous linear functional,
there exists a unique measure µ ∈ M(X) such that

Φ(f) =

∫

X
f dµ , for all f ∈ C0(X) . (5.1)

Moreover the total variation norm ‖µ‖ is precisely the norm of the linear functional Φ. The
space M(X) can thus be identified via (5.1) to the topological dual C0(X)′.

4. If (µn) is a sequence in M(X), we say that µn converges weakly to µ ∈ M(X) if

lim
n→∞

∫

X
f dµn =

∫

X
f dµ , for all f ∈ C0(X) . (5.2)

We write µn ⇀ µ as n → ∞. This notion coincides with the weak-∗ convergence in M(X) ≃
C0(X)′. We always have

‖µ‖ ≤ lim inf
n→∞

‖µn‖ .

5. A family of measures F ⊂ M(X) is tight if, for any ǫ > 0, there exists a compact set K ⊂ X
such that |µ|(Kc) ≤ ǫ for all µ ∈ F . Any singleton {µ} is necessarily tight, because the measure
µ ∈ M(X) is inner regular. If (µn) is a tight sequence in M(X) that converges weakly to
µ ∈ M(X), the convergence in (5.2) holds for all bounded and continuous functions f : X → R,
and not only for all f ∈ C0(X). This is the case, for instance, if (µn) is a sequence of probability
measures that converges to a probability measure µ.

The main purpose of this section is to state the following basic result:

Proposition 5.1. Let (µn) be a sequence in M(X), and let µ ∈ M(X). We assume that

µn ⇀ µ and ‖µn‖ → ‖µ‖ , as n→ ∞ .

Then |µn|⇀ |µ| as n→ ∞, and the sequence (|µn|) is tight.

Proof. The result is obvious if µ = 0, so we assume henceforth that µ 6= 0. Then µn 6= 0 for all
sufficiently large n ∈ N, and we can thus define the normalized measures

µ̃n =
µn

‖µn‖
, and µ̃ =

µ

‖µ‖ .

By construction |µ̃n| and |µ̃| are now probability measures on X, and µ̃n ⇀ µ̃ as n→ ∞.
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Let U be an open subset of X, and take f ∈ C0(U) such that |f(x)| ≤ 1 for all x ∈ U . We
denote by f̄ : X → R the extension of f by zero outside U . One verifies that f̄ ∈ C0(X), so that

∣

∣

∣

∫

U
f dµ̃

∣

∣

∣
=

∣

∣

∣

∫

X
f̄ dµ̃

∣

∣

∣
= lim

n→∞

∣

∣

∣

∫

X
f̄ dµ̃n

∣

∣

∣
≤ lim inf

n→∞
|µ̃n|(U) ,

because |f̄ | ≤ 1U (the indicator function of U). It follows that

|µ̃|(U) = sup

{

∣

∣

∣

∫

U
f dµ̃

∣

∣

∣
; f ∈ C0(U) , ‖f‖∞ ≤ 1

}

≤ lim inf
n→∞

|µ̃n|(U) . (3)

Since (3) holds for any open set U ⊂ X, the celebrated Portmanteau theorem [5] implies that
|µ̃n|⇀ |µ̃| as n→ ∞, hence also |µn|⇀ |µ| as n→ ∞.

As (|µ̃n|) is a sequence of probability measures that converges weakly to the probability
measure |µ̃| ∈ M(X), the sequence (|µ̃n|) is tight (see the discussion above), and so is the
sequence (|µn|).

5.2 Velocity bounds in L
∞(R3)−1

This section is devoted to the proof of Lemma 2.9. We first note that it is enough to show that
‖u‖(L∞)−1 ≤ c when ωθ = δ(r̄,z̄) for some (r̄, z̄) ∈ Ω, as the general situation can be thought of as
a continuous superposition of these special cases. Moreover, due to the scaling invariance and
the translational symmetry along the z–axis, it is enough to consider the particular case where
r̄ = 1, z̄ = 0.

The proof can be motivated by the following observation, which is as a variant of formula
(1.11) in [28]:

∂i log |x| = div (xi∇ log |x|) in R
2 (i = 1, 2) . (5.3)

This shows that, in dimension two, the vector field ∇ log |x| belongs to (L∞)−1, and not only
to BMO−1. We now consider a three-dimensional analogue of (5.3), which is adapted to our
purposes. Let

G(x) =
1

4π|x| , x ∈ R
3 \ {0} ,

be the fundamental solution of the Laplacian in R
3, and consider the matrix-valued function

P =





−∂3G 0 ∂1G
0 −∂3G ∂2G
∂1G ∂2G ∂3G



 .

Note that div P = 0 in R
3 \ {0}, where (as usual) div P is the vector given in coordinates by

(div P )i = ∂jPij . In the sense of distributions, we have

∇G = div (x3P ) , in D′(R3) . (5.4)

Let us parametrize the vortex filament supported by the circle C = {(x1, x2, 0) |x21 +x22 = 1}
using γ(s) = (cos s, sin s, 0) for s ∈ (−π, π]. The associated velocity field U is

U(x) = curl

∫ π

−π
G(x− γ(s))γ′(s) ds =

∫ π

−π
∇G(x− γ(s)) ∧ γ′(s) ds . (5.5)

Using (5.4) together with the fact that |γ′(s)| = 1, we see that to prove our claim, it is enough
to establish a uniform bound for the quantity

∫ π

−π
|(x− γ(s))3P (x− γ(s))|ds = |x3|

∫ π

−π
|P (x− γ(s))|ds .
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As |P (x)| ≤ c|x|−2, we only need to bound the expression

I(x) =

∫ π

−π

|x3|
|x− γ(s)|2 ds =

2π|x3|
√

(1 + |x|2)2 − 4(x21 + x22)
.

But (1 + |x|2)2 − 4(x21 + x22) = (1− x21 − x22)
2 + 2(1 + x21 + x22)x

2
3 + x43 ≥ 2x23, hence I(x) ≤

√
2π.

The proof is thus complete. �

Remark 5.2. If we only wish to prove a BMO−1 bound for u, which is sufficient to apply the
results of [30], we see from (5.5) that it is enough to estimate the vector field

A(x) =

∫ π

−π
G(x− γ(s))γ′(s) ds

in the space BMO. This can be done in a number of ways. For example, we note that ∇A ∈
Lp(R3) for any p ∈ (1, 2), and near the circle C we have |∇A(x)| . dist(x, C)−1. This easily
gives a uniform bound on R−3+p

∫

Bx,R
|∇A(y)|p dy, which implies that A ∈ BMO.

If one is willing to use deeper results in harmonic analysis, one can apply for example Theo-
rem 3 on page 159 of Stein’s book [31] and some elementary estimates to see that, for the BMO
bound of A = ∆−1ω, it is enough to control

sup
x∈R3

sup
R>0

1

R

∫

Bx,R

|ω(y)|dy .

That quantity is in turn bounded by c‖ωθ‖L1(Ω), as is easily verified.

5.3 Bounds on the fundamental solution

This section is devoted to the proof of Proposition 3.9. Since the existence of a (unique) fun-
damental solution Φ is known from the work of Aronson, we concentrate on the derivation of
the upper bound (3.26), and for that purpose we adapt to our particular situation the efficient
approach of Fabes and Stroock [9]. Without loss of generality, we take ν = 1, we assume that
the functions U, V are smooth and bounded on R

n × [0, T ], and we prove estimate (3.26) for
s = 0.

Let f be a smooth solution to (3.25) on R
n× [0, T ], with (for instance) compactly supported

initial data. Given any fixed vector α ∈ R
n, we define g(x, t) = e−α·xf(x, t) for x ∈ R

n and
t ∈ [0, T ]. The evolution equation satisfied by g is

∂tg + U · ∇g + (U · α+ V )g = ∆g + 2α · ∇g + α2g . (5.6)

The proof of the upper bound on the fundamental solution of (3.25) involves four steps:

Step 1: L1 estimate. Assuming first that g is a nonnegative solution of (5.6), and using the
assumption that divU = 0, we compute

d

dt

∫

g dx = α2

∫

g dx−
∫

(U · α+ V )g dx

≤
(

α2 + |α|‖U(t)‖L∞ + ‖V (t)‖L∞

)

∫

g dx .

Here and in what follows all integrals are taken over the whole Euclidean space R
n, and for

simplicity we write ‖U(t)‖L∞ instead of ‖U(·, t)‖L∞(Rn). Applying Gronwall’s lemma, we obtain
the estimate

∫

|g(x, t)|dx ≤
(
∫

|g(x, 0)|dx
)

exp
(

α2t+

∫ t

0

(

|α|‖U(s)‖L∞ + ‖V (s)‖L∞

)

ds
)

, (5.7)
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for t ∈ [0, T ]. Note that (5.7) remains valid in the general case where g changes its sign.

Step 2: L1–L2 estimate. By a similar calculation, we find

1

2

d

dt

∫

g2 dx =

∫

g
(

∆g + 2α · ∇g + α2g − U · ∇g − (U · α+ V )g
)

dx

= −
∫

|∇g|2 dx+
(

α2 + |α|‖U(t)‖L∞ + ‖V (t)‖L∞

)

∫

g2 dx .

To estimate the right-hand side we apply Nash’s inequality

(
∫

g2 dx

)1+2/n

≤ Cn

(
∫

|g|dx
)4/n ∫

|∇g|2 dx ,

which holds for any g ∈ L1(Rn) ∩H1(Rn) with a constant Cn > 0 depending only on the space
dimension n. We thus obtain the estimate

1

2

d

dt

∫

g2 dx ≤ −

(

∫

g2 dx
)1+2/n

Cn

(

∫

|g|dx
)4/n

+
(

α2 + |α|‖U(t)‖L∞ + ‖V (t)‖L∞

)

∫

g2 dx , (5.8)

which is a differential inequality for the L2 norm of the solutions of (5.6). To solve (5.8), we
temporarily denote

Λ(t) = α2t+

∫ t

0

(

|α|‖U(s)‖L∞ + ‖V (s)‖L∞

)

ds ,

A(t) = exp(−Λ(t))

∫

|g(x, t)|dx ≤ A(0) ,

B(t) = exp(−2Λ(t))

∫

g(x, t)2 dx , t ∈ [0, T ] .

Here the bound A(t) ≤ A(0) is a reformulation of (5.7). Using (5.8), we find

B′(t) ≤ − 2

Cn

(

∫

g2 dx
)1+2/n

(

∫

|g|dx
)4/n

e−2Λ(t) ≤ − 2

Cn

(

B(t) e2Λ(t)
)1+2/n

(

A(0) eΛ(t)
)4/n

e−2Λ(t)

= − 2

Cn

B(t)1+2/n

A(0)4/n
, 0 < t ≤ T .

Integrating this simple differential inequality we obtain B(t) ≤ (C ′
nA(0))

2t−n/2 for t ∈ (0, T ],
where C ′

n = (nCn/4)
n/4. In other words, we have proved the L1–L2 estimate

‖g(t)‖L2 ≤ C ′
n

tn/4
‖g(0)‖L1 exp

(

α2t+

∫ t

0

(

|α|‖U(s)‖L∞ + ‖V (s)‖L∞

)

ds
)

, (5.9)

for all t ∈ (0, T ].

Step 3: L1–L∞ estimate. We consider the adjoint equation

∂tg̃ − U · ∇g̃ + (U · α+ V )g̃ = ∆g̃ − 2α · ∇g̃ + α2g̃ , (5.10)
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which has exactly the same structure as (5.6). In particular, the L1–L2 bound (5.9) holds for
the solutions of (5.10), and using a standard duality argument this implies the following L2–L∞

estimate for the solutions of (5.6):

‖g(t)‖L∞ ≤ C ′
n

tn/4
‖g(0)‖L2 exp

(

α2t+

∫ t

0

(

|α|‖U(s)‖L∞ + ‖V (s)‖L∞

)

ds
)

, (5.11)

for all t ∈ (0, T ]. To obtain the L1–L∞ bound we estimate ‖g(t/2)‖L2 in terms of ‖g(0)‖L1

using (5.9), and then ‖g(t)‖L∞ in terms of ‖g(t/2)‖L2 using the analogue of (5.11). Denoting
C ′′
n = 2n/2C ′2

n , this gives

‖g(t)‖L∞ ≤ C ′′
n

tn/2
‖g(0)‖L1 exp

(

α2t+

∫ t

0

(

|α|‖U(s)‖L∞ + ‖V (s)‖L∞

)

ds
)

≤ C ′′
n

tn/2
‖g(0)‖L1 exp

(

α2t+ 2K1|α|
√
t+K2

)

, (5.12)

for all t ∈ (0, T ], where in the second inequality we used definitions (3.24).

Step 4: conclusion. By construction the solutions of (5.6) can be represented as

g(x, t) =

∫

eα·(y−x)Φ(x, t; y)g(y, 0) dy , x ∈ R
n , 0 < t ≤ T ,

where Φ(x, t; y) = ΦU,V,1(x, t; y, 0) is the fundamental solution of equation (3.25) with ν = 1.
Estimate (5.12), which holds for all smooth and compactly supported initial data g(x, 0), is thus
equivalent to the pointwise upper bound

Φ(x, t; y) ≤ C ′′
n

tn/2
eα·(x−y) exp

(

α2t+ 2K1|α|
√
t+K2

)

, x, y ∈ R
n , 0 < t ≤ T . (5.13)

The vector α ∈ R
n was arbitrary, and the dependence upon α is fully explicit in (5.13). Given

x, y ∈ R
n and t > 0, we can thus choose α = −(x− y)/(2t), in which case (5.13) becomes

Φ(x, t; y) ≤ C ′′
n

tn/2
exp

(

−|x− y|2
4t

+K1
|x− y|√

t
+K2

)

. (5.14)

This proves (3.26) for ν = 1 and s = 0, and the general case easily follows. �
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