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Abstract

Establishing identity links across RDF datasets is a central and challenging task on the way to realising the Data Web project. It

is well-known that data supplied by different sources can be highly heterogeneous—two entities referring to the same real world

object are often described, structured and valued differently, or in a complementary fashion. In this paper, we explore the origins

and the multiplicity of data heterogeneity problems, proposing a novel classification that allows to isolate challenges and to position

our and future work. Many state-of-the-art data linking approaches rely on sets of discriminative properties, provided by the user

or by specialised tools, which, in the lack of knowledge of the nature of the data, do not allow to account automatically for a large

number of structural heterogeneities. In addition, similarity measures and thresholds need to be selected and tuned manually or

learned by specialized algorithms. We propose a solution covering an important number of heterogeneities, attempting to reduce

the user configuration effort, based on: (i) Property filtering, or automatic data cleaning of “problematic” attributes; (ii) Instance

profiling allowing to represent each resource by a sub-graph considered relevant for the comparison task; and (iii) Instance vector

representation allowing to compare resources. To reduce the false positives rate, we apply a (iv) Post-processing step based on

hierarchical clustering and key ranking techniques aiming to disambiguate highly similar, though not identical instances. This

pipeline is implemented in Legato—a data linking tool, showing to outperform or to perform as well as state-of-the-art tools on

highly heterogeneous and diverse benchmark datasets, yet keeping the user configuration effort low.

Keywords: RDF Data Linking, Knowledge Graphs, Linked Open Data, Data Heterogeneities

1. Introduction

Linked data and its underlying technologies have been gain-

ing popularity over the past years, due to the means they offer

for data reuse and federation, increased visibility and data shar-

ing on the web and facilitated exchange of metadata. The web5

of data, and particularly the Linked Open Data (LOD) project,1

has been growing in size over the past years, with hundreds of

datasets published following the semantic web principles. To

fully unlock the potential of the open data project, related re-

sources across datasets need to be linked together—a process10

˚Correspodning author
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1http://linkeddata.org

that cannot be handled manually at the web scale. Data linking

is the semantic web research field that has taken the challenge

of proposing methods and providing tools for the automatic de-

tection of relations between cross-dataset resources. A plethora

of data linking approaches and systems has been proposed in15

the past years, surveyed in [1, 2, 3]. The majority of these ap-

proaches attempt to solve the problem of discovering identity

relations (often of arity 1:1), declared as owl:sameAs state-

ments, between similarly-typed resources of two RDF datasets.

Preparing the datasets prior to linking and configuring the20

linking tools are challenging problems that often require in-

depth knowledge of the data. Several state-of-the-art tools [4, 5]
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require link specification files where one has to indicate prop-

erty names, select and tune similarity measures. This process

is handled either manually, or by specialised tools [6, 7]. Mak-25

ing a linking tool self-dependent in that respect is among the

challenging issues that the community faces.

On the instance matching level, a data linking system has

to be able to deal with a large variety of data heterogeneities,

taking into account mismatches in the descriptions on value,30

ontological and logical level, as well as differences in the qual-

ity of the input datasets. While heterogeneities on literals are

rather well-handled by similarity measures and data unification

techniques, ontological discrepancies (regarding structure and

properties) appear to be more challenging.35

Finally, as we show in our experiments, most current ap-

proaches fail to handle correctly datasets containing blocks of

highly similar in their descriptions, but yet distinct resources.

Datasets with such characteristics are prone to the generation of

false positives in the linking process (for example, two datasets40

containing all piano sonatas of Beethoven, where two works

differ very little in their descriptions).

In this paper, we attempt to address the challenges given

above. We aim at reducing the difficulty of manual configura-

tion when it comes to data-related parameters, such as proper-45

ties to compare. With respect to similarity measures or thresh-

old settings, we rely on an empirical approach which shows sat-

isfactory results on our tests, although we make no assumptions

on its generalisation properties. We propose a system, called

Legato, which, contrarily to property-based instance matchers,50

applies indexing techniques that allow to project each instance

in a vector space defined by an appropriately chosen set of

literals that describe that instance, derived from the Concise

Bounded Descriptions (CBD) of the resources.2 In addition

to avoiding the selection of properties, this representation ad-55

dresses in its mechanism a number of data heterogeneities with-

out requiring user input. An automatic property filtering mod-

ule allows to decrease noise prior to instance matching. We

pay particular attention to discriminating highly similar, yet dis-

2https://www.w3.org/Submission/CBD/

tinct resources, implementing an unsupervised learning post-60

processing strategy combined with a key selection and ranking

algorithm [8] that reduces the number of false positives and in-

creases precision.

Legato has been conceived in the framework of the DORE-

MUS project,3 which develops methods to describe, publish,65

connect and contextualize music catalogs from major cultural

institutions4 on the web of data [9]. The data collected and

handled in this project has served as a main motivation for

the development of this system, which aimed to respond to

the difficulties of linking these highly heterogeneous datasets,70

while remaining as generic as possible. We evaluate Legato on

benchmarks from the Ontology Alignment Evaluation Initiative

(OAEI)5 instance matching tracks form 2015, 2016 and 2017.

Note that two of the benchmarks of these campaigns released

in 2016 and 2017 are real-world music-metadata datasets is-75

sued from the DOREMUS project. Legato has participated to

the 2017 edition of OAEI. The experimental results show that

our system performs as good as the state-of-the-art link dis-

covery tools and it outperforms them particularly on heteroge-

neous real-world data and in the presence of difficult to disam-80

biguate cross-graph instances. In addition, we show that Legato

achieves better results in terms of F-measure than established

matching tools that implement an automatic link specification

learning strategy. Among the drawbacks of the system, we un-

derline certain scaling issues encountered on several datasets.85

Legato is an open source, freely available system.6 For the sake

of reproducibility of our experiments, all datasets and configu-

ration files (where applicable) used in the evaluation are made

available (links and references are provided in the evaluation

section).90

To wrap up, the contributions of this paper are as follows:

‚ A classification of the different data heterogeneity types

based on a large number of examples from real-world and syn-

thetic datasets.

3http://www.doremus.org/
4The French National Library, Philharmonie de Paris and Radio France
5http://oaei.ontologymatching.org
6https://github.com/DOREMUS-ANR/legato

2

https://www.w3.org/Submission/CBD/
http://www.doremus.org/
http://oaei.ontologymatching.org
https://github.com/DOREMUS-ANR/legato


‚ A new CBD-based instance profiling framework allowing95

to represent and compare resources at the matching phase.

‚ A novel preprocessing strategy aiming at the automatic

identification and removal of “problematic” properties across

two datasets.

‚ A new post-processing mechanism to select and repair100

erroneous links generated in the matching step.

‚A multi-facet reproducible empirical evaluation on a large

variety of openly available benchmarks.

‚ An open source implementation of our system with a sim-

ple user interface.105

The rest of the paper is structured as follows. In Section 2,

we present our account on RDF web data heterogeneity types,

while in Section 3, we focus on challenges related to the prob-

lem of reducing the user effort in the data linking tool config-

uration process. These two sections are intended to be read as110

an account of different challenging issues that allow to struc-

ture the related work proposed to deal with these challenges

and to identify open issues and problems. On these bases, Sec-

tion 4 introduces the approach and workflow of Legato, which

is discussed and positioned with respect to the related work in115

Section 5. We report on our experiments in Section 6 before

we conclude and draw further directions of work and discuss

lessons learned in Section 7.

2. RDF Datasets Heterogeneity Types

Understanding data heterogeneity in its multiple forms al-120

lows to identify and analyse the origins of the data linking prob-

lem and hence propose better solutions. In the context of web

data linking, we will refer to data heterogeneity as any differ-

ence in the expression of a given piece of information across

two graphs, observed in terms of schema (classes, properties),125

values, or general data structure. Ferrara et al. [10] consider

three major levels of data heterogeneity (or requirements, as

given in the paper): value, structural and logical levels. We

base ourselves on this classification and extend it in an attempt

to provide a comprehensive inventory of data heterogeneity types.130

Our classification emerges as a result of observations and tests

on two types of data: (1) highly heterogeneous real-world data

about classical music,7 (2) a number of synthetic benchmark

datasets released between 2015 and 2017 by the Instance Match-

ing track of OAEI (IM@OAEI). Two different methodologies135

have been followed in the two cases. In case (1), we have

worked tightly with librarian experts and archivists from the

BnF, Radio France and the Philharmonie de Paris (partners on

the DOREMUS project). They have identified collaboratively

and listed a set of possible heterogeneities, given their expert140

knowledge of the data.8 (As a matter of fact, this work is the

basis of the creation of the DOREMUS benchmarks at OAEI

2016 and 2017, as discussed below.) Regarding (2), we have

considered the respective benchmark generation strategies (e.g.,

altering string values or value types) as a basis and completed145

with these the list of heterogeneities identified in (1). Finally,

the resulting list has been expanded by additional cases that we

have observed through our work with the data. In order to form

the taxonomical skeleton of our classification, we have used and

extended the three axes identified by [10].150

The resulting classification reflects the authors consensus

and does not claim universality. For illustration purposes, we

will use a fictional example, given in Figure 1, showing the

descriptions of a real-world entity (the composer Ludwig van

Beethoven) in two different graphs. For readability reasons, the155

example outlines only several of the heterogeneity types given

below.

2.1. Value Dimension

Datatype properties are an ample source of heterogeneities,

both when it comes to string or numerical attributes.160

Terminological heterogeneity. We refer to differences be-

tween the lexical labels used to denote the same information

across graphs. This comprises well-known issues related to

7https://github.com/DOREMUS-ANR/knowledge-base/tree/

master/data
8Throughout the working process, these heterogeneities have been out-

lined together with concrete examples in a table that can be found here

(in French): https://docs.google.com/spreadsheets/d/19dLjabt_

fggTVNuM7XW9CUZkuB1JgoH9xKWQgLZv_Y4/edit#gid=1271677916

3
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Figure 1: Open web data heterogeneity types: several examples (in blue-lined boxes).

synonymy, polysemy or variations in spelling (typos, acronyms,

abbreviations, etc.). The problems of synonymy and polysemy165

have been largely addressed in the literature by term disam-

biguation techniques assisted by lexico-semantic resources [11].

A long tradition of research in the field of string similarity mea-

sures, at the core of the instance comparison modules of state-

of-the-art systems [4, 12, 13], has allowed to handle the case of170

orthographical variations among labels [14, 15]. Several works

propose solutions allowing to find the full form of an acronym

or an abbreviation [16, 17].

Lingual heterogeneity. Multilingualism has been outlined

as a major challenge to the open data community, already sev-175

eral years ago [18]. Looking at the datasets about music openly

published as RDF graphs by the BNF (French National Li-

brary) [19] and Freebase [20] in French and English, respec-

tively, one notices that very few string literals are directly com-

parable across these graphs. Several studies propose solutions180

based on machine translation [21, 22] or, alternatively, relying

on a lexico-semantic resource such as BabelNet [11] as a medi-

ator to bridge the language gap, as proposed in [23] (in a similar

spirit as an earlier ontology matching method [24]). The latter

approach anchors the resources as vectors of BabelNet identi-185

fiers where each of them represents a sense of a term allow-

ing to compute vector distances as a proxy for instance similar-

ity. Combining machine translation with concept embeddings,

[25] translates each resource description to English and then a

Wikipedia-based representation (a set of concepts) is generated190

for the resources in order to compare them.

Datatype properties vs. object properties. A piece of infor-

mation (e.g., the genre of a music work) can be given by a string

literal via a datatype property, or by a URI, that is used to iden-

tify the same element in a controlled vocabulary (e.g., a SKOS195

vocabulary of music genres9). Since the two objects are not di-

rectly comparable, a linking tool needs to access the string label

associated to the URI in the respective vocabulary before pro-

ceeding to the comparison. In the same line of thought, com-

paring object property values (different URI’s identifying the200

same object) can potentially lead to a similar type of difficulty.

2.2. Ontological Dimension

We discuss schema-related differences across RDF graphs.

Vocabulary heterogeneity. A recurrent discrepancy across

data providers is the use of different ontologies. This is a chal-205

lenging problem in the context of the open web of data, where

we have an abundance of models and vocabularies/ontologies

with different degrees of explicit rigour of their semantics, lead-

ing to different interpretations and usages.10 Ontology match-

ing techniques have been adopted by certain data linking sys-210

tems [26], but can also be applied independently.

Structural heterogeneity. The description of an entity can

be done at different levels of granularity, as is the case of the

birth date of Beethoven in Fig. 1, given in a single informa-

tion field or distributed over multiple properties—a challenge215

for property-based instance matchers. To the best of our knowl-

edge, this heterogeneity type is only partially resolved by using

inverted indexes and Natural Language Processing (NLP) tech-

niques by several data linking approaches [12, 22, 23, 27, 28]

9Examples of such vocabularies: https://github.com/DOREMUS-ANR/

knowledge-base/blob/master/vocabularies/
10The Linked Open Vocabularies catalog http://lov.okfn.org/

dataset/lov/ (LOV) allows to browse over 600 vocabularies from the linked

open data cloud, but, although very useful, it is to date not exhaustive (certain

established graphs such as Yago, Freebase or MusicBrainz are not indexed).

4
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that propose to index each resource by the literals collected at220

a given distance n ě 1 in the RDF graph.11 Then, a vector

space model is used to represent each resource description and

select linking candidates on the basis of vectors proximity. By

doing so, the resources are compared with respect to their liter-

als without taking into account the properties describing them.225

The quality of the alignment depends strongly on the distance

parameter.

Property depth heterogeneity. The same piece of informa-

tion can be found at different distances to the resource in two

different graphs. In our example, we can observe this problem230

with regard to the name of the country of birth of Beethoven.

This problem can also be solved by indexing the scope of lit-

erals describing each resource. For each entity, the distance at

which the literals are collected can be fixed (e.g., [29] choose a

distance of 1). Again, the trade-off while setting this parameter235

is between too small a distance not allowing for a complete de-

scription and a too large distance, increasing the likelihood to

collect irrelevant information.

Descriptive heterogeneity. A resource can be described with

more information (a larger set of properties and types) in one240

dataset than in another, as we can see in our running example.

The lack of information narrows down the intersection of the re-

sources respective descriptions and hence the common ground

where to look for commonalities or differences.

Key heterogeneity. Key identification algorithms [6, 30, 31]245

aim to discover discriminative properties on two datasets inde-

pendently and thus identify potential candidates for link speci-

fications of property-based state-of-the-art tools [4, 12]. How-

ever, in certain cases, comparing the values of such properties

will lead to deciding negatively on the equality of two identical250

instances and to the generation of false negatives. We take two

examples: (1) a property that is valued by unstructured textual

information (e.g., a free-text description as the one given by the

-:hasDescription property in our example) and (2) a property

used to provide dataset-specific individual identifiers, e.g., the255

11A distance in an RDF graph is defined as the minimal number of edges

(properties) connecting two resources or a resource and a literal.

ID’s of bibliographical entries of two libraries. In both cases

the values of these key properties are not comparable across

datasets.

2.3. Logical Dimension

In a number of cases, the equivalence between two pieces of260

information across two datasets is implicit but can be inferred.

We outline two main heterogeneity problems in that group.

Class heterogeneity. This is the case of two resources be-

longing to different classes for which an explicit or an implicit

hierarchical relationship is defined (“Person” and “Composer”265

in Fig. 1). Moreover, two instances referring to the same object

can belong to two different subclasses of a given class.

Property heterogeneity. At this level, the equivalence be-

tween two values is deduced after performing a reasoning task

(cf. Fig. 1): ăă i2 ą,´ : composed, “Moonlight sonata2@en ą,270

ăă i4 ą,´ : composedBy,ă i1 ąą,ăă i4 ą,´ : title, “S onate

au clair de lune2 ą. The comparison process has to go beyond

the value and property levels by comparing explicitly and im-

plicitly specified values of the two entities.

2.4. Data Quality Dimension275

Quality related issues can be observed on any of the three

levels discussed above and can appear as a source of hetero-

geneity, therefore, we consider these aspects as a separate (transver-

sal) category. The topic of data quality has been of interest

for many years to the semantic web community [32, 33]. We280

will provide several examples of heterogeneities related to data

quality that can potentially hinder the instance matching task.

Transgression to best practices. Data representations can

differ depending on the degree to which the semantic web best

practices are respected in the data publishing process. The list285

of transgressions is long: a missing language tag, the introduc-

tion of inappropriate symbols such as ’7’ that are supposed to

replace missing information (while a good practice would be to

ignore what we do not know), the use of a string literal instead

of a URI to identify an object, and so forth.290

Value type heterogeneity. This heterogeneity type concerns

differences in encoding data, as for example, representing an

5



age-value as a string or as a number, or not representing the

date in a standard date format, but as a string. Multiple data

unification techniques can be applied to solve this problem. The295

benchmark data generators SPIMBENCH [34] and LANCE [35]

focus on these issues by applying value transformations.

Dataset currentness. The temporal evolution (or the lack

thereof) of data and its dynamicity [33] can lead to conceptual

issues across datasets. For example similar or identical classes300

in terms of semantics can be applicable to a given group of in-

stances only during defined periods of time (e.g., “Orchestra-

Conductor”).

In Section 5, we discuss the positioning of our approach

with regard to the heterogeneities and the methods for their res-305

olution presented here.

3. Doing Linked Open Data with Less User Effort

The data linking process commonly follows a pipeline con-

sisting of three main steps [1]: (1) preprocessing, where data

is prepared for linking and a number of system parameters are310

set, (2) matching, where instances are compared by the help of

an aggregation of similarity measures and (3) post-processing,

where erroneous links are removed and / or new links are in-

ferred. For extensive surveys of data linking approaches, we

refer the reader to [1, 2, 3]. Here, we focus in more detail on315

the phase that takes place before the actual instance compar-

ison. We argue that the preparation of data and the configu-

ration of the linking tool constitute a major part of the effort

with regard to the linking task. Moreover, this effort is often

required from the user, leading to a pressing need of automa-320

tion of this process. Therefore, we pay particular attention to

approaches that propose (semi-)automatic solutions to the pre-

processing and configuration tasks.

Several of the most commonly used linking tools [4, 5, 36]

require prior knowledge provided by either the user or another325

tool in order to proceed to the linking task. This knowledge is

expressed in the form of linking rules, describing under which

conditions two instances should be compared and linked. There

are two main configuration groups of elements to feed to the

linking tool: (1) types (classes) of instances to align as well330

as a set of properties across the two datasets whose values to

compare, and (2) a set of similarity measures, together with

thresholds and possibly an aggregation function. We discuss

these two groups in the following subsections.

3.1. Selecting Classes and Properties335

The choice of types of instances that defines the pool of

linking candidates is often left to the user (considering a dataset

as a set of resources belonging all to the same class), although

certain systems attempt to identify the equivalent classes auto-

matically by applying ontology matching techniques [26, 36].340

The properties to compare are selected manually or by the

help of key discovery tools—this choice is crucial for it prede-

termines the outcome of the linking task. Intuitively, instances

having common values for highly discriminant sets of prop-

erties (keys) are likely to be representing the same real-world345

objects. While many approaches to automatic key discovery

from RDF data exist [6, 30, 37, 38, 39, 40, 41], their use for

data linking is not always straightforward. Most of these tools

produce large numbers of keys valid on a single dataset with

no assessment given of their likelihood to discover links. For350

example, a property containing a record’s identifier in a bibli-

ographical database will be identified as a key in two datasets

containing the entries of musical works of two libraries inde-

pendently on one another, but it will be of no use for the linking

task, since the two libraries use different identifiers for the same355

work. An exception is [30], which considers keys valid on two

datasets. In addition, key discovery systems do not consider the

heterogeneity of the properties used to describe instances across

datasets, which compromises the usefulness of the keys for the

linking task. In an attempt to overcome this issue, the authors360

of [37] present measures of the quality of link keys, valid on

two datasets, in order to facilitate their selection. Two recent

studies [8, 42] propose approaches that attempt to close the gap

between key discovery and data linking tools, allowing to pro-

duce a list of keys, valid on two datasets simultaneously and365

ranked with respect to their usefulness for the particular data

6



linking task at hand.

3.2. Learning Link Specifications

Link specification is defined in [43] as (i) the setting of the

elements to compare from two knowledge bases, (ii) the setting370

of a complex similarity metric via the combination of several

atomic similarity measures, and (iii) the setting of thresholds

for these similarity measures. The (semi-)automatic link spec-

ification approaches of which we know have focused predom-

inantly on (ii) and (iii)—configuration parameters of type (2)375

that can either be set by the user or learned from data in a semi–

supervised or unsupervised manner. Two main categories of

semi-supervised learning methods emerge: active [44, 43, 45]

and batch [7, 46] approaches. Batch approaches require a large

amount of candidate links as input to learn the classifiers while380

active approaches proceed iteratively and for each iteration the

user is asked to label a set of generated links until the maximal

number of iterations is reached or the fitness value is greater

than a given threshold. Unsupervised learning methods attempt

to surpass the necessity of human labeled examples [47]. A385

method based on a refinement operator that only needs posi-

tif examples that are more often available than negative ones is

proposed in [48], while [49] propose an approach implemented

in KnoFuss [50], based on a genetic programming algorithm

learning iteratively the optimal similarity parameters. However,390

it is required from the user to set the fitness function and to spec-

ify the fitness measures, thresholds and the maximum number

of iterations. Certain releases of the well-known data linking

tool LIMES [4] include both EAGLE [44] and WOMBAT [48]

as link specification algorithms,12 while SILK [5] includes Ac-395

tiveGenLink [7].

We discuss how our approach positions with respect to end-

user configuration effort reduction in Section 5, right after pre-

senting it.

12E.g., limes-core-1.2.1.

Figure 2: Processing pipeline of Legato.

4. Data Linking with Legato400

We proceed to present the Legato framework, illustrated in

Figure 2. The system takes as an input two RDF graphs (partic-

ularly, instances of the same type). The datasets are automati-

cally preprocessed and prepared for comparison, and then a set

of links is generated, as a result of an instance matching, in-405

stance disambiguation and link selection (or link merging) pro-

cedures. Note that in its default release, the system takes one

parameter as input: a pair of types (classes) of instances and

optionally a global similarity threshold value. However, for the

data-aware user, a customisation of Legato is possible with re-410

gard to two additional parameters, giving rise to two version of

the tool - an automatic and a manual one (see below for details).

The approach and the results presented in this paper concern the

automatic default release of Legato.

Before we proceed, we introduce definitions and notation.415

In the context of this work, an RDF graph or an RDF dataset13

is defined in accordance to the dataset definition in the Vocab-

ulary of Interlinked Datasets (VoID):14 “A dataset is a set of

RDF triples that are published, maintained or aggregated by a

single provider”. An RDF triple is a set of elementsă s, p, o ą,420

where s is a subject (a URI or a blank node), o is an object (a

URI, a literal or a blank node) and p is a predicate (property,

relation) (identified by a URI). We use the terms “instance” or

13The two terms are used interchangeably. To improve readability, we use

the term “dataset” as a shortcut to “RDF dataset” and the term “graph” as a

shortcut to “RDF graph”.
14http://vocab.deri.ie/void
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“resource” to identify an entity of interest described in a graph

(e.g., a musical work or a composer).425

A key is a central notion to the functioning of our system.

We comply to the open world assumption-compatible definition

of a key used in [6].

Definition 4.1 (RDF Dataset Key). Let G be an RDF graph, let

sub jpGq be the set of resources in G and let predpGq be the set430

of properties in G. We define a key denoted by K as the set K =

tP : P Ď predpGq and Es1, s2 P sub jpGq such as pps1q “ pps2q

@p P Pu, where pps1q and pps2q are the values of the property

p for the resources s1 and s2, respectively. A set of properties

P is considered as a minimal key if it is a key and there is no435

subset of P, which is a key.

A CBD, for Concise Bounded Description, allows to rep-

resent a given resource r by a subgraph such that all triples of

this subgraph have as a subject r or a blank node connected to

r or are reifications of statements of that subgraph. We cite the440

definition given by w3c.15

Definition 4.2 (Concise Bounded Description). The Concise

Bounded Description CBD of a resource r in an RDF graph G

is a subgraph of G denoted by CBDprq identified as follows:

• Include in CBDprq all statements in G where the subject445

of the statement is r;

• Recursively, for all statements identified in CBDprq thus

far having a blank node object, include in CBDprq all

statements in G where the subject of the statement is

the blank node in question and which are not already in-450

cluded in CBDprq.

• Recursively, for all statements included in CBDprq thus

far, for all reifications of each statement in the source

graph, include the CBD(rdf:Statement) of each reifica-

tion.455

Definition 4.3 (Data Linking). Given two graphs G and G1 con-

taining two equivalent classes C and C1, respectively, the data

15https://www.w3.org/Submission/CBD/

linking problem consists in discovering all relations of identity

across the instances of these classes. The outcome of this task

is a set of links declared by owl:sameAs statements on a subset460

of the cartesian product of the elements of C and C1. We refer

to G and G1 as a source and target dataset, respectively, while

the resources of C and C1 are referred to as source and target

resources, respectively.

Note that the given definition restricts the linking task to465

identity relations only, which are in the scope of this study. Re-

lations of arbitrary types can be of interest in the general case.

In that, Definition 4.3 serves the purposes of this paper which

deals with the special data linking problem of deduplication,

and therefore provides a particular case of a larger problem.470

With these definitions at hand, we proceed to describe the

framework of Legato.

Property Filtering. As we have seen in Section 2, key

heterogeneities hinder the resources comparison, mainly be-

cause properties concerned with this heterogeneity type are er-475

roneously likely to be considered as linking rules parameters, as

discussed in Section 3.1 (certain OAEI datasets from 2016 and

2017 are rich with such examples16). If a linking tool uses these

keys to compare instances, it will fail to find a correspondence.

A way of going around this problem is to remove properties480

with such values, that we will call problematic properties, be-

fore proceeding to data comparison. We propose to identify au-

tomatically these properties by discovering all mono-property

keys that are valid over both datasets to be linked (in that we

consider the union of the two input datasets as a single dataset),485

i.e., each object for such a property has at most one subject in

both graphs.

Note that the property filtering module can be seen as a pre-

processing step. We analyse its impact on the global linking

quality in our experiments (Section 6).490

Main Matching Module. The main matching module con-

sists of the following components.

CBD-based Instance Profiling. A core feature of our ap-

16http://islab.di.unimi.it/content/im_oaei/2016
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Figure 3: Constructing an instance profile by using the CBD of a resource and the CBDs of its successors and predecessors in the graph.

proach is the representation of instances as text documents and

their projection to a vector space. Particularly, each resource495

is represented by a set of literals considered as relevant to its

description, based on a choice of CBD subgraphs (Fig. 3). We

extend the CBD definition by considering the descriptions of

neighbouring nodes of a resource r in its graph. A CBD sub-

graph is a directed one, where the orientation is implied by the500

order of the subject and the object in a triple. This allows us to

introduce the notion of successors of a node r (the nodes that

are in a triple of which r is a subject) and the predecessors of

r (the nodes that are in a triple of which r is an object). We

provide the following definitions.505

‚ Ò CBDprq defines the scope of resource description in-

cluding CBDprq and the CBDs of its direct predecessors.

‚ Ó CBDprq defines the scope of resource description in-

cluding CBDprq and the CBDs of its direct successors.

‚ Ù CBDprq defines the scope of resource description in-510

cluding CBDprq, Ò CBDprq and Ó CBDprq.

‚ CBD˚prq defines the scope of resource description in-

cluding one of the CBDs cited above, i.e., CBDprq,

Ò CBDprq, Ó CBDprq or Ù CBDprq.

We refer to an instance representation obtained on that basis515

as an instance profile, defined as follows.

Definition 4.4 (Instance Profile). Let G be an RDF graph, let r

be a resource in G and let L(G) be the set of literals found in G.

We define the instance profile of r as the set

f prq “ tlr : lr P LpGq ^ lr P CBD˚prqu.

Fig. 3 provides an illustration for an instance of the class

F22 from the DOREMUS ontology17 (a class of music works,

example taken from the DOREMUS OAEI 2017 data). Select-520

ing the most relevant profile depends on the way the resources

are modeled in the graph. Without any user intervention, the

default setting of Legato represents the instances only by lit-

erals found in their CBDs, which shows to produce good re-

sults in terms of F-measure on all benchmarks in our evaluation525

(Section 6). Note however, that this parameter is modifiable

in the open source release of our system. Avoiding property-

based comparison addresses the remaining ontology-level het-

erogeneities introduced in Section 2.

Instance Profiles to Vectors. Once all resources in both530

datasets are profiled, the resulting documents are processed in

order to prepare data for the matching task. This includes tok-

enization and stop-words removal by applying NLP filters. The

set of instance profiles in both datasets are indexed in a standard

manner by using all remaining terms. We project the instance535

profiles to a vector space of a dimension limited to the number

of these terms and weight them by using their TF-IDF (Term

Frequency-Inverse Document Frequency) scores per instance.

Vector-based Instance Matching. The correlation between

the vectors of the resources, expressed by the cosine similarity540

17www.data.doremus.org
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measure, is used as a proxy for the similarity of resources. The

use of a similarity measure is tangled to the choice of a similar-

ity threshold. In this step, it is empirically fixed to 0.2 (deliber-

ately low) in order to capture a large number of links and ensure

high recall. In order to ensure 1 : 1 type of matching, for each545

instance from the source dataset, the one from the target dataset

that has the highest similarity score greater than the threshold

is selected. In case of ties, the instances are handled by the dis-

ambiguation module described below. As an outcome of this

process, a first linkset (a short for “set of links”) is produced,550

called candidate links (Fig. 2).

The main matching module ensures high recall. To im-

prove the matching quality and precision, we perform a post-

processing step, described next, allowing to filter out erroneous

links that may have been generated at this step and add new555

quality links.

Instance Disambiguation Module. Taking as an input the

vector space representations of the indexed instance profiles,

the algorithm proceeds to cluster within each data set highly

similar (in terms of their vector space similarity) instances by560

relying on the generic agglomerative bottom-up hierarchical

clustering algorithm [51]. This results in the formation of a

number of clusters of instances within each dataset. A cluster

matching procedure across the two datasets, using a distance

metric on the cluster centroids, allows to isolate pairs of cor-565

responding clusters, where the first one belongs to the source

dataset and the second one—to the target dataset. Each pair

of corresponding clusters is then analyzed separately and their

respective instances are compared, this time on a property ba-

sis. The effectiveness of the comparison process depends on570

the quality of the selected properties. The RANKey algorithm

[8] is developed to discover keys that are valid on two datasets,

ranked with respect to the performance achieved by a linking

system using these keys in its configuration. This allows to se-

lect the set of properties over two graphs that guarantee the best575

linking result. We apply that algorithm independently on each

pair of corresponding clusters, considering them as a source and

target datasets to be linked. In that, we identify the discriminant

properties among these clusters that would have remained “di-

luted” in the global graphs. This allows to disambiguate the580

highly similar instances in each pair of clusters and maximises

the rate of correct alignments. This component of Legato is il-

lustrated in Fig. 4. As a result of this process, we end up with

a second set of links, that we call sure links (the choice of this

name is motivated by the fact that the instance clustering and585

property-based link discovery ensures high precision and high

quality of these links).

Note that this component of Legato shares certain similari-

ties with the well-known blocking techniques used in ontology

matching, although it differs in its mechanism, motivation and590

application. Blocking aims at isolating disjoint sets of potential

matching candidates based on certain property values so as to

ensure that comparison is performed only among comparable

entities and thus reduce the search space and computational ef-

fort. As an example, works by the same composer would form595

a block. Our instance disambiguation module has a different

motivation: we aim at creating clusters of instances that, rather

than being similar with respect to a small set of property val-

ues, are different with respect to only very few property val-

ues. An example would be all piano sonatas by Beethoven that600

would only differ by their music keys (e.g., G minor vs. A

major, although same composer, genre, title, instrument, etc.).

The motivation comes from observations on real-life data con-

taining many blocks of highly similar entities. The compari-

son of instances belonging to such clusters allows to determine605

the discriminating property (the music key in our example),

which would have been difficult to determine by taking the en-

tire dataset or a block (of all works by Beethoven).

Link Merge. Finally, a merge operation is performed on

the two linksets generated previously. The set of sure links will610

be taken as a catalyser on the links in the candidate links set and

directly fed to the final linkset, because of the high precision in

the process of generation of the links that it contains. For each

link between two resources rs and rt l=(rs, rt) in the set of can-

didate links, the module searches over the set of sure links for a615

link between a source resource rs and a target resource r1t ‰ rt.
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Figure 4: Instance disambiguation by clustering, cluster matching and key rank-

ing techniques.

If found, the link l=(rs, rt) is deleted from the candidate links

set. The remaining links in the candidate links set, merged with

those from the sure links set, are then fed to the final linkset.

The disambiguation module followed by the link merge pro-620

cedure can be seen as post-processing steps. In our experi-

ments, we analyse their impact on the global linking quality.

5. Discussion and Positioning

After having introduced our approach, in this section we

discuss how it stands with respect to state of the art methods625

and issues presented in Sections 2 and 3.

5.1. Positioning with Respect to Dataset Heterogeneities

Most of the heterogeneities on value level, as well as certain

quality-related heterogeneities (such as the value-type hetero-

geneities) are relatively well-understood and assisted by vari-630

ous similarity measures, external resources and data unification

methods [15]. A large number of instance matching tools of

reference rely on string similarity measures and their combina-

tions, coupled with thresholds that condition the matching de-

cision [4, 12, 13]. Legato is only partially an exception to this635

tradition—we do consider instance similarities, but similarity

between strings is not explicitly computed. Instead, we repre-

sent instances as bags of words, which allows their information

retrieval kind of indexing and a projection onto a vector space,

in a similar spirit as [22, 28]. We rely more strongly on the640

data presentation, or instance profiling (taking place at the pre-

processing step) and matching selection (post-processing) than

on the actual instance similarity computation.

While logical heterogeneities are in the realm of reasoning—

a field of research in its own right—Legato focuses on issues645

from the ontological level that appear to be more challenging

for the majority of the linking tools. The representation of in-

stances that we adopt allows to avoid a number of structure-

and property-related heterogeneities found on ontological level.

Particularly, the use of CBD vs. a fixed distance n to the re-650

source, as proposed for example in [29], tackles heterogeneities

on ontological level (excluding key heterogeneity discussed be-

low), allowing to ensure that literal values of relevance will be

included in the description of an instance. Note that [49] defines

and compares attribute sets across graphs that are equivalent to655

CBDs. In contrast, we also look into the CBDs of the neigh-

bouring nodes of the resources of interest, in order to ensure

that information found at a greater depth is taken into consider-

ation.

The presence of unstructured information, such as proper-660

ties containing textual descriptions, although common in real-

world examples is, to our knowledge, not directly handled by

linking systems. In the same line of thought, other types of

single-property keys, such as instance identifiers specific to a

single data provider, present a hindrance for property-based665

linking systems. Legato adresses these issues by the help of

a property filtering method, allowing to automatically identify

and remove from the process “problematic” attributes. This is-

sue pertains to the key heterogeneity category outlined above.

Finally, the paradigm adopted by state-of-the-art systems670

traditionally stands on the plausible premise that heterogeneities

are a major hindrance to the instance comparison task. How-

ever, the problem of disambiguating between very similar de-

scriptions of yet different resources has received less attention.

An example can be two different music works by the same com-675

poser, written in the same genre and key for the same instru-

ment. Comparing their property values is likely to lead to the

generation of false positives. The identification of the discrim-

inative properties for such groups of instances can be a diffi-

cult task for automatic key-discovery methods, because these680

groups of instances are found in larger datasets where these
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properties are not keys. Therefore, in addition to data hetero-

geneity, Legato pays attention to the problem of data similar-

ity, in an attempt to disambiguate cross-datasets entities by in-

troducing an unsupervised learning post-processing module. It685

aims to identify and isolate clusters of highly similar instances

across the two datasets in order to enable efficient key identifi-

cation on these clusters.

5.2. Level of Automaticity

We position our approach with respect to user configuration690

effort reduction methods, reviewed in Section 3.

With regard to property selection, in contrast to state-of-

the-art tools [4, 5], our system takes a holistic stance by repre-

senting an instance as the set of literals collected from a CBD-

defined subgraph. In that, no property selection is required from695

the user at the main matching module. At the instance disam-

biguation and link selection phase, to the best of our knowledge,

Legato is the first tool of its kind to apply a key discovery algo-

rithm combined with a key ranking tool in its internal mechan-

ics, which allows to automatically select the discriminative set700

of properties that guarantee the best linking performance. The

types of instances to compare has to be manually specified.

As we have seen in the discussion in Section 3, fully au-

tomatic link specification remains a challenge, even for spe-

cialised approaches. In all cited methods, the user input is re-705

quired under one form or another (we detail on that in Sec-

tion 6.6). With regard to the choice of similarity measures and

thresholds, we take a different and simpler approach as com-

pared to machine learning-based techniques. In the first place,

given the vector space framework that we adopt, the choice710

of the cosine similarity combined with a TF-IDF weighting

scheme that allows to take into account the overall textual con-

tent of the instance descriptions, appears to be natural. Legato

depends on a single threshold for the cosine similarity. It has

been fixed as an outcome of an extensive empirical analysis,715

although the user is given the possibility to easily modify this

parameter. In a similar spirit as [52], during the main matching

phase, the similarity threshold is deliberately kept very low, so

that the system can discover a large number of candidate links,

ensuring high recall. Improving precision is handled at the time720

by the preprocessing module (particularly the filter on problem-

atic properties), and by the instance disambiguation and link

merging module (see details in the preceding section).

While we do not claim that the tool provides a fully auto-

matic solution, we have attempted to offer punctual solutions to725

several issues that are not integrally handled automatically by

a couple of the most popular state-of-the-art tools, such as (1)

property filtering, (2) property selection and (3) similarity mea-

sures combination and tuning. A direct comparison in terms

of user configuration to other tools is difficult, because of the730

varying underlying principles of these tools. However, we at-

tempt to compare Legato to several other popular and freely

available systems - SILK, LIMES, AML, as well as three au-

tomatic configuration versions of LIMES (relying on batch, ac-

tive or Unsupervised learning) (cf. Table 1). The comparison735

criteria in the table come from the union of the sets of param-

eters in the configuration files of SILK and LIMES, as well as

the set of “potential” parameters of Legato and AML. We use

the word “potential” to indicate that a number of parameters

are currently hard-coded both in AML and Legato (giving rise740

to automatic and manual versions of these tools). For fairness

of comparison, we have chosen to include both versions of the

two systems to the table. Regarding AML, note that there is no

officially released user-tuneable version of the system: in the

current release all parameter values are hard-coded except for745

the type restriction and a threshold. We therefore consider as a

manual version of the tool a one containing all parameters that

could be included in a configuration file of the tool or could

be set by a user with programming skills.18 The table allows

us to conclude that Legato and AML are least demanding in750

terms of user intervention, while the experiments reported in

the following section give an advantage to Legato in terms of

performance.

18Source: personal exchanges with the authors of AML.
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Configuration element
Legato

(manual)

Legato

(automatic)

Silk, Limes

(standard)

Limes +

Batch L.

Limes +

Active L.

Limes +

Unsupervised L.

AML

(manual)

AML

(automatic)

Types y (=yes) y y y y y y y

Properties y n (=no) y y y y n n

Similarity measures n n y n n n y n

Local sim. thresholds n n y n n n y n

Global sim. threshold y y y y y y y y

Instance profile type y n n n n n n n

Machine learning alg. n n n y y y n n

Training data n n n y n n n n

Label link candidates n n n n y n n n

Matching strategy n n n n n n y n

Total ratio 4/10 2/10 5/10 5/10 5/10 4/10 5/10 2/10

Table 1: End-user configuration effort comparison.

6. Experimental Evaluation

The experiments reported in this section aim (1) to assess755

the effectiveness of the internal modules of Legato, (2) com-

pare the system to other linking tools and (3) compare it to ap-

proaches for automatic link specification. Legato was imple-

mented in Java 8 and the experiments were conducted on a ma-

chine running under Windows 10 over an Intel Core i5-5300U,760

with 2.30 GHz CPU and 16 GBytes RAM. Note that the au-

tomatic (default) version of Legato is evaluated here. The sys-

tem is available as an open source release at https://github.

com/DOREMUS-ANR/legato.

6.1. Experimental Setting765

We begin by describing the evaluation framework that we

have established.

Datasets. For the various experiments carried out and reported

in this paper, we have relied on data coming from the Instance

Matching evaluation campaigns of OAEI (IM@OAEI) from 2015770

to 2017.

‚ DOREMUS datasets. One of the main results of the

DOREMUS project is the representation of the catalogs of three

French cultural institutions as knowledge graphs following a

specifically designed for this purpose model [9] and their pub-775

lication on the web. This has resulted in the creation of (cur-

rently) three knowledge graphs—one per partner institution.19

The DOREMUS benchmarks have been built together with li-

brarian experts form the BnF and the Philharmonie de Paris.

The basis for the construction of the benchmark is a set of pairs780

of identical works (given in a synthetic table) that have been

manually selected by the experts such that one work in each pair

belongs to the catalog of the BnF and the other - to that of the

Philharmonie. In that process, the experts have identified the

heterogeneities that each pair of works manifest. As it can be785

seen in the table,20 this resulted in a set of heterogeneity types,

specific to the DOREMUS data (note that these types have been

generalized in our heterogeneity types categorization provided

in Section 2): (1) numbers vs. letters in the tiles, arabic vs. ro-

man numbers in the titles, (2) differences in spelling, (3) miss-790

ing catalog numbers, (4) different catalogues, (5) multilingual

titles, (6) specific characters, (7) differences in the lengths of the

property chains that lead to the value of interest (graph depths),

(8) different property names for the same entity types, (9) miss-

ing descriptions (missing property values), (10) missing titles,795

(11) use of synonyms. Whenever a given pair of works mani-

fests one of these heterogeneity types, this has been indicated

19https://github.com/DOREMUS-ANR/knowledge-base/tree/

master/data
20https://docs.google.com/spreadsheets/d/19dLjabt_

fggTVNuM7XW9CUZkuB1JgoH9xKWQgLZv_Y4/edit#gid=1271677916
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in the table. This resulted in two RDF datasets benchmarks re-

leased by OAEI in 2016 and 2017 (the datasets are not identical,

the underlying model as well as their sizes have evolved from800

one year to the other):

• DOREMUS 2016 consists of three datasets of different

sizes and scopes: 9-HT, 4-HT (for heterogeneities) and

FP-trap (for false positives trap). The data is available

and described at http://islab.di.unimi.it/content/805

im_oaei/2016/#doremus.

• DOREMUS 2017 consists of HT (for heterogeneities)

and FPT (for false positives trap). The data is available

and described at http://islab.di.unimi.it/content/

im_oaei/2017/#doremus.810

The particularity of these benchmarks is that they contain

datasets that were particularly designed to challenge the capac-

ity of linking tools to correctly disambiguate highly similar in

their descriptions instances (FP-trap (2016) and FPT (2017)).

All data follow the same model and therefore share significant815

number of vocabulary terms. Nonetheless, these datasets are

highly heterogeneous in terms of all other ontology-dimension

heterogeneities and many value-dimension heterogeneities (Sec-

tion 2) .

‚ Synthetic datasets. We additionally evaluated Legato on820

synthetic benchmark datasets from three consecutive years of

the OAEI campaign.

• SPIMBENCH 2015: This includes three benchmark datasets

generated through the Semantic Publishing Instance Match-

ing Benchmark (SPIMBENCH) [34] by transforming the825

source instances based on their values and semantics (the

Val-Sem dataset), on their values and structures (the Val-

Struct dataset) and on their values, structures and seman-

tics (the Val-Struct-Sem dataset). The data is available

and described at http://oaei.ontologymatching.org/830

2015/im/index.html.

• SPIMBENCH 2016: This comprises SPIMBENCH small,

that we denote SB-s and SPIMBENCH large, that we

denote SB-l, two datasets of different sizes, produced

by following the same strategy as described above. The835

data is available and described at http://islab.di.

unimi.it/content/im_oaei/2016/#synthetic.

• SPIMBENCH 2017: This includes SPIMBENCH sand-

box, that we denote SB-s (the year of edition helps dis-

ambiguate the two SB-s notations) and SPIMBENCH840

mainbox, that we denote SB-m, datasets of different sizes,

produced by following the SPIMBENCH transformation

patterns.

Scenarii. We consider five evaluation scenarii. First, we eval-

uate Legato with respect to three of its core components, by845

assessing (1) the efficiency of the automatic property filtering

module by measuring the impact of automatically identified

problematic properties on the quality of the generated links (Sec-

tion 6.2), (2) the impact of the choice of instance profile (Sec-

tion 6.3) and (3) the use of keys to efficiently disambiguate in-850

stances and assess and select links by improving recall (Section

6.4). Then, (4) we assess the overall performance of Legato by

comparing it to state-of-the-art systems and participant-systems

to the IM@OAEI campaigns on a large variety of datasets (Sec-

tion 6.5). Finally, (5) we confront Legato with EAGLE and855

WOMBAT (in its two versions)—two automatic link specifica-

tion methods implemented with LIMES (Section 6.6).

We use three well-known performance measures: Precision

(P), Recall (R) and F-Measure (F-m). P and R evaluate the

correctness and the completeness of the generated links, respec-860

tively, while F-m is their harmonic mean.

Tuning. We have conducted a series of experiments by varying

the cosine similarity threshold value (cf. Section 4) observing

its impact on F-m, P and R. We observed that the best results

of Legato on all data were achieved with a threshold of 0.2. We865

report as an example the results obtained on the DOREMUS

2017 HT dataset in the form of couples (F-m, threshold): (0.92,

0.1), (0.93, 0.2), (0.81, 0.3), (0.59, 0.4), (0.29, 0.5), (0.14, 0.6),

(0.1, 0.7), (0.02, 0.8), (0.0, 0.9). Analogical behaviour has been
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Figure 5: Property filtering evaluation on DOREMUS datasets: without (histograms) and with (curves) automatic removal of problematic properties.

observed with other datasets. This threshold is low, which guar-870

antees a fair trade-off between the matching module (ensuring

high recall) and the disambiguation and merge module (improv-

ing precision).

6.2. Effectiveness of Property Filtering

In this experiment (scenario 1), instances are compared first875

by considering all the properties and then after removing the

automatically identified problematic ones. An improved per-

formance is expected after property filtering. We experiment

on the DOREMUS datasets from 2016 and 2017, as reported

in Fig. 5, articulating the assessment in two phases: without880

(histograms) and with (curves) the automatic removal of prob-

lematic properties. The experiments show that applying the au-

tomatic property filtering module allows to improve the linking

quality for all datasets except for HT and 9-HT, where this mod-

ule has no impact. Further experiments and analysis on these885

two datasets reveal that removing all the other properties sepa-

rately does not improve the results either, which indicates that

no problematic property has been “missed” by the module.

6.3. Effectiveness of Instance Profiling

In these experiments (scenario 2), we analyse the behaviour890

of Legato with respect to different choices of instance profiles,

expressed as four CBD-based instance representations (Section

4): CBD, Ò CBD, Ó CBD or Ù CBD. We have selected two

real-world datasets from OAEI 2017, as well as four synthetic

ones from OAEI 2015 and 2016. As expected, the effectiveness895

of instance profiling depends on how the data is modelled (Fig-

ure 6). Particularly, these tests show that the choice of a Ù CBD

profile is relevant for the real-world datasets HT and FPT data,

as the highest F-measure scores are achieved with that represen-

tation (91% and 98% for HT and FPT, respectively), while for900

the synthetic datasets the relevant information is located in their

direct CBDs. For those datasets, we can also deduce that tak-

ing into account the description of predecessors does not impact

the matching decision. The results do not allow to conclude on

the choice of an instance profile in the general case. An under-905

standing of how data is modelled (where to look for important

information) is needed in order to guarantee a choice of a pro-

file that maximises the outcome. Based on our results, we set

Ù CBD and CBD as profile parameters for the real-world and

the synthetic datasets, respectively.910

6.4. Effectiveness of Post-processing

We evaluate the efficiency of the post-processing step (sce-

nario 3) of Legato consisting of an instance disambiguation and

a link merge module. In that, we execute Legato with and with-

out performing this step. By taking as a reference the set of915

candidate links, generated at the main matching step, we mea-

sure the proportion of links that fall on its intersection with

the sure links set, dubbed #safe links, as well as the propor-
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Figure 6: CBD-based instance profiling evaluation on reference datasets (F-measures).

dataset / profile #safe links #deleted links #added links

HT

CBD » 10% » 2% 0%

Ó CBD » 14% » 2% 0%

Ò CBD 10.5% » 2% 0%

Ù CBD » 5% » 1% 0%

FPT

CBD » 55% » 18% » 3%

Ó CBD » 21% » 3% 0%

Ò CBD » 15% 0% 0%

Ù CBD » 15% 0% 0%

Table 2: Post-processing evaluation on OAEI 2017 datasets.

tion of links deleted or added by the merge module, dubbed

#deleted links and #added links, respectively, in order to form920

the final linkset. Table 2 shows the results on the DOREMUS

2017 data. We observe, as hypothesised, that performing the

post-processing step is significant in the presence of highly sim-

ilar instances (dataset FPT). We also notice that the precision

boost is pronounced in the case of a simple CBD profile, which925

(or variants of which) is most commonly used in the existing

instance representation approaches (cf. Section 3). This shows

the potential of the post-processing module of Legato to make

up for possible flaws in the instance representation.

6.5. General Evaluation930

In this experiment (scenario (4)), we assess the performance

of Legato in its complete automatic version, performing both

property filtering and post-processing. We compare Legato to

the participant tools to IM@OAEI on all benchmarks from the

years 2015, 2016 and 2017 and additionally with SILK [5] for935

the DOREMUS 2017 data. In 2015, two systems participated

on the three tasks: STRIM [53] and LogMap21 [36]. In 2016,

the systems LogMapIm [54], AML22 [55, 52] and RiMOM [28]

participated on the two proposed tasks. In 2017, in addition to

Legato, which participated to OAEI for the first time, AML,940

I-Match [56] and LogMap participated to the SPIMBENCH

task, while AML, I-Match, NjuLink23 [57] and LogMap par-

ticipated to the DOREMUS task. In addition to the partici-

pant systems, we have included to the comparison SILK24 in

its 2.6.1 version on the 2017 data. Note that the comparison945

to SILK was made by using the best keys in its link specifi-

cation as identified by the RANKey algorithm [8], namely the

21https://github.com/ernestojimenezruiz/logmap-matcher/
22https://github.com/AgreementMakerLight/AML-Project
23https://github.com/nju-websoft/njuLink
24https://github.com/silk-framework/silk
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Benchmark (year) System P R F-m size

HT (2017) Legato 0.930 0.920 0.930 476

AML 0.851 0.479 0.613

I-Match 0.680 0.071 0.129

LogMap 0.406 0.882 0.556

NjuLink 0.966 0.945 0.955

SILK 0.34 0.12 0.18

FPT (2017) Legato 1.000 0.980 0.990 150

AML 0.914 0.427 0.582

I-Match 1.000 0.053 0.101

LogMap 0.119 0.880 0.210

NjuLink 0.959 0.933 0.946

SILK 0.45 0.2 0.27

SB-s (2017) Legato 0.980 0.730 0.840 » 1800

LogMap 0.938 0.763 0.841

AML 0.849 1.000 0.918

I-Match 0.854 0.997 0.920

SB-m (2017) Legato 0.970 0.700 0.810 » 1800

LogMap 0.893 0.709 0.790

AML 0.855 1.000 0.922

I-Match 0.856 0.997 0.921

9-HT (2016) Legato 0.9 0.9 0.9 60

AML 0.96 0.87 0.91

RIMOM 0.81 0.81 0.81

4-HT (2016) Legato 0.9 0.9 0.9 400

AML 0.93 0.77 0.84

RIMOM 0.74 0.74 0.74

FP-trap (2016) Legato 0.9 0.9 0.9 80

AML 0.92 0.85 0.88

RIMOM 0.7 0.7 0.7

SB-s (2016) Legato 0.98 0.74 0.84 » 380

LogMapIm 0.95 0.76 0.85

AML 0.9 0.74 0.82

RiMOM 0.98 1.0 0.99

SB-l (2016) Legato 0.96 0.71 0.81 » 1800

LogMapIm 0.98 0.69 0.81

AML 0.9 0.74 0.81

RiMOM 0.99 1.0 0.99

Table 3: Results on different benchmark datasets for Legato, compared to other linking tools.
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U16 has catalogue statement property from the DORE-

MUS ontology.25 For the sake of reproducibility, we make

available the SILK configuration files used for the HT and the950

FPT data at the following link: https://github.com/manoach/

SILK-Evaluation.

Note that, among the cited systems RIMOM and I-Match do

not have openly available source code or executable versions.

The results reported for these tools are taken from the OAEI955

web site for the year 2015 or via the SEALS platform to which

we had access as co-organisers of the OAEI tracks of 2016 and

2017. The runtimes of the systems participating in the differ-

ent OAEI campaign editions are not reported, for which rea-

son comparison with respect to that criterion to Legato is not960

feasible (runtimes of our system are reported in the following

experiment).

The results of the evaluation are presented in Table 3. For

the sake of readability, we provide only the results of the eval-

uation on data from OAEI 2016 and 2017. The complete re-965

sults can be found at https://github.com/DOREMUS-ANR/

legato/blob/master/Legato-Results.png.

We can observe that Legato has comparable (and in cer-

tain cases better) performance as the state-of-the-art systems on

all benchmarks. These results show in particular that Legato970

is well-suited for dealing with real-world data containing diffi-

cult to disambiguate instances (FPT and FP-trap), which con-

firms the effectiveness of the post-processing module. Overall,

Legato performs well when data heterogeneity is related to de-

scriptive differences and all remaining heterogeneity types of975

the ontological dimension (Section 2) thanks to its property fil-

tering and indexing techniques. As expected, our system is less

effective on the synthetic data transformed with SPIMBENCH.

This is explained by the fact that the heterogeneities of value di-

mension are not considered by Legato (for example, we did not980

implement string unification methods in the indexing process).

Nevertheless, we consider the results of Legato satisfactory on

these data, given that it provides comparable results as the sys-

25http://data.doremus.org/ontology#U16_has_catalogue_

statement

Table 4: Automatic LS approaches vs. Legato on SPIMBENCH data.

Method System F-m P R Execution (ms)

SB-s (2016)

UNSUPERVISED

EAGLE 0.62 0.63 0.61 74531

WOMBAT simple 0.64 0.61 0.67 14905

WOMBAT complete 0.64 0.61 0.67 64275

ACTIVE

EAGLE 0.36 0.28 0.50 100373

WOMBAT simple 0.64 0.61 0.67 15958

WOMBAT complete 0.64 0.61 0.67 61612

BATCH

EAGLE 0.64 0.77 0.55 93857

WOMBAT simple 0.64 0.61 0.67 14079

WOMBAT complete 0.64 0.61 0.67 61730

Legato 0.84 0.98 0.74 7000

SB-l (2016)

UNSUPERVISED

EAGLE 0.43 0.32 0.63 1597173

WOMBAT simple 0.43 0.32 0.63 413450

WOMBAT complete 0.43 0.32 0.63 364643

ACTIVE

EAGLE 0.43 0.32 0.63 1668132

WOMBAT simple 0.43 0.32 0.63 282928

WOMBAT complete 0.43 0.32 0.63 254423

BATCH

EAGLE 0.45 0.38 0.55 1032956

WOMBAT simple 0.43 0.32 0.63 249196

WOMBAT complete 0.43 0.32 0.63 226922

Legato 0.81 0.96 0.71 31000

tems, to which it was confronted, but requires significantly less

user-tuning effort than many of these tools.985

6.6. Comparison to Automatic Link Specification Methods

These experiments (scenario (5)) confront Legato with two

approaches to automatic links specification (LS), EAGLE [44]

and WOMBAT [48], that are included in the linking system

LIMES. We have used the limes-core-1.2.1 release of the sys-990

tem,26 where two versions of WOMBAT are implemented: sim-

ple and complete. The simple version of WOMBAT learns links

specifications and combines them to improve F-measure, while

the complete version implements a refinement operator, which

guarantees the best specification.995

Regarding the level of automation of the linking process,

in the case of the three methods a manual configuration is re-

quired. At the beginning, the user is asked to select the pre-

ferred link specification method (EAGLE or WOMBAT) and

afterwards a number of parameters need to be manually fed to1000

the system. In the first place, the user has to select the type

of learning approach to apply (supervised, active or batch, see

Section 3). Then, the names of the properties to compare across

the source and the target datasets (types) have to be specified.

26https://github.com/dice-group/LIMES/releases
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Table 5: Automatic LS approaches vs. Legato on DOREMUS data.

Method System F-m P R Execution (ms)

HT (2017)

UNSUPERVISED

EAGLE 0.45 0.97 0.29 1882

WOMBAT simple 0.45 1.0 0.29 390

WOMBAT complete 0.45 1.0 0.29 472

ACTIVE

EAGLE 0.44 1.0 0.28 1227

WOMBAT simple 0.45 1.0 0.29 395

WOMBAT complete 0.45 1.0 0.29 565

BATCH

EAGLE 0.44 1.0 0.28 7733

WOMBAT simple 0.45 1.0 0.29 387

WOMBAT complete 0.45 1.0 0.29 459

Legato 0.93 0.93 0.92 69000

FPT (2017)

UNSUPERVISED

EAGLE 0.57 1.0 0.4 911

WOMBAT simple 0.57 1.0 0.4 232

WOMBAT complete 0.57 1.0 0.4 294

ACTIVE

EAGLE 0.57 1.0 0.4 1399

WOMBAT simple 0.57 1.0 0.4 238

WOMBAT complete 0.57 1.0 0.4 294

BATCH

EAGLE 0.57 1.0 0.4 813

WOMBAT simple 0.57 1.0 0.4 235

WOMBAT complete 0.57 1.0 0.4 294

Legato 0.99 1.0 0.98 16000

For each pair of properties to compare, the user does not have1005

to select the similarity measure and its associated threshold, but

a global similarity threshold needs to be manually set. For the

batch algorithm, a small sample of owl:sameAs links over the

data is also required. In our experiments, the choice of proper-

ties to compare has been done again by using the RANKey key1010

selection system (just as described in the previous subsection).

This resulted in the choice of the following keys on each of the

datasets:

SB-s: {bbc27:bbc/primaryContentOf,

bbc:creativework/description}1015

SB-l: {bbc:creativework/title, bbc:creativework/about}

HT & FPT: {mus28:#U16 has catalogue statement}

The results are given in Tables 4 and 5. For the sake of re-

producibility of the experiments, all configuration files used for

the different LS tools for LIMES, together with the data and the1020

results are made available.29 In that experiment, we also report

on the respective execution times of the evaluated systems. We

see that Legato, in its fully automatic version where only the

classes to compare need to be specified, achieves better results

than the three tested methods in terms of performance. In terms1025

27bbc=http://www.bbc.co.uk/ontologies/
28mus=http://data.doremus.org/ontology
29https://github.com/manoach/LIMES-Evaluation

of execution times, our system outperforms the other methods

on the synthetic data but scales much worse on the DOREMUS

real-world datasets.

We explain this difference by the characteristics of the datasets.

Particularly, the sizes of the respective CBD-based profiles and1030

hence documents generated in each of the two cases are dif-

ferent. The number of literals collected by the CBD-profile of

the DOREMUS resources (using both successors and predeces-

sors) is larger than those of the SPIMBENCH data (using only

the CBD of the resource), leading to larger in size documents1035

and hence vectors of larger dimension, which has a direct im-

pact on the computational efficiency.

7. Conclusion and Future Work

In this work, we propose, implement and evaluate Legato,

an open source framework for discovery of identity links across1040

RDF graphs in the context of the web of open data. We pro-

vide an extensive inventory of dataset heterogeneities, which

lie at the origin of the data linking problem. We show that

Legato addresses efficiently many of these heterogeneities, par-

ticularly those at ontological level, by implementing efficient1045

property filtering (data cleaning) and link selection modules,

acting, respectively, at the pre- and post-processing steps of the

linking pipeline. A core feature of Legato is its capacity to avoid

the generation of false positives by disambiguating effectively

highly similar instances across datasets by the help of a clus-1050

tering method and a key selection and ranking algorithm. In

addition, the system has the advantage of proposing a fully au-

tomatic version (only the types of instances to compare need to

be indicated) - in that, nor property, neither similarity selection

are performed manually.1055

Fully automating the data linking process is a highly chal-

lenging task. As we have seen in our related work discus-

sions, several approaches have been proposed to handle auto-

matic system configurations at different levels (e.g., selecting

properties, or tuning similarity measures and thresholds). These1060

approaches, even when included in the internals of a tool, do not

19
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guarantee a process with zero user implication—to our knowl-

edge, there does not exist to date an entirely automatic data

linking system, that is also agnostic to the underlying data. In

reality, there is a multitude of factors that make it difficult (or1065

even futile) to think of a generic fully automatic linking system,

and these factors strongly relate to the specificities of data with

respect to domains, structure, coverage, their degree of hetero-

geneity, and varieties of presentation. For that reason, we have

left the possibility to the alerted user to set two parameters in1070

a customised version of Legato: the threshold for the similarity

measure and the shape of the CBD-based instance profile.

We evaluate Legato on real-world music-related data and

on synthetic datasets coming from OAEI 2015, 2016 and 2017.

The results showed that our system is in competition with state-1075

of-the-art tools, outperforming them on datasets containing highly

heterogeneous or difficult to disambiguate instances. Addition-

ally, we evaluate the performance of Legato with respect to a

version of LIMES that uses automatic link specification mod-

ules and obtain better results.1080

Scalability is an important factor given the sizes of datasets

that one has to deal with. Legato can be improved in that re-

spect. One way that we deal with this issue in real-wolrd match-

ing tasks is to partition the data with respect to the values of

a property that we know that will generate groups of potential1085

linking candidates across the two datasets and treat these groups

separately (in the case of the DOREMUS data, this property is

the name of the composer of a music work).30 It is a subject of

future work to automate this process and thus reduce the execu-

tion time of the system.1090

As observed before, our approach is sensitive to the under-

lying data model, particularly with regard to the CBD-based

profiling. Our experiments do not allow to conclude on which

CBD presentation is most appropriate in the general case. More

experiments need to be performed on larger sets of benchmarks1095

30Note that this manipulation has not been applied to the experiments re-

ported in this paper and therefore does not impact the execution times reported

here.

(for example, those coming form the HOBBIT project31) in or-

der to confirm this observation. The choice of centroid vectors

to represent clusters of instances in the disambiguation method

requires further evaluation as well, under the hypothesis that

such representation would provide skewed results in the pres-1100

ence of outliers.

In future work, we also aim to address the problem of in-

formation complementarity across datasets—how to handle en-

tities that are described by complementary sets of properties

in two different graphs and therefore have little information in1105

common in order to compare them. We will explore the appli-

cation of knowledge graph augmentation techniques in order to

reconstitute the missing descriptions intersection.

Acknowledgements

This work has been partially supported by the French Na-1110

tional Research Agency (ANR) within the DOREMUS Project,

under grant number ANR-14-CE24-0020.

References

[1] A. Ferrara, A. Nikolov, F. Scharffe, Data linking for the semantic web,

Semantic Web: Ontology and Knowledge Base Enabled Tools, Services,1115

and Applications 169.

[2] M. Achichi, Z. Bellahsene, K. Todorov, A survey on web data linking,

Revue des Sciences et Technologies de l’Information - ISI.

[3] M. Nentwig, M. Hartung, A.-C. Ngonga Ngomo, E. Rahm, A survey of

current link discovery frameworks, Semantic Web 8 (3) (2017) 419–436.1120

[4] A. N. Ngomo, S. Auer, LIMES - A time-efficient approach for large-scale

link discovery on the web of data, in: IJCAI, 2011, pp. 2312–2317.

[5] A. Jentzsch, R. Isele, C. Bizer, Silk-generating rdf links while publishing

or consuming linked data, in: ISWC, 2010.

[6] D. Symeonidou, V. Armant, N. Pernelle, F. Sais, Sakey: Scalable almost1125

key discovery in RDF data, in: ISWC, 2014, pp. 33–49.

[7] R. Isele, C. Bizer, Active learning of expressive linkage rules using ge-

netic programming, J. Web Sem. 23 (2013) 2–15.

[8] M. Achichi, M. Ben Ellefi, D. Symeonidou, K. Todorov, Automatic key

selection for data linking, in: EKAW, Springer, 2016, pp. 3–18.1130

[9] M. Achichi, P. Lisena, K. Todorov, R. Troncy, J. Delahousse, Doremus:

A graph of linked musical works, in: International Semantic Web Confer-

ence, Springer, 2018, pp. 3–19.

31https://project-hobbit.eu/

20

https://project-hobbit.eu/


[10] A. Ferrara, D. Lorusso, S. Montanelli, G. Varese, Towards a benchmark

for instance matching, in: Ontology Matching-Volume 431, CEUR-WS.1135

org, 2008, pp. 37–48.

[11] R. Navigli, S. P. Ponzetto, Babelnet: Building a very large multilingual

semantic network, in: 48th annual meeting of the association for compu-

tational linguistics, ACL, 2010, pp. 216–225.

[12] J. Volz, C. Bizer, M. Gaedke, G. Kobilarov, Silk-a link discovery frame-1140

work for the web of data., LDOW 538.

[13] D. Faria, C. Pesquita, B. S. Balasubramani, C. Martins, J. Cardoso, H. Cu-

rado, F. M. Couto, I. F. Cruz, OAEI 2016 results of AML, in: Ontology

Matching ISWC, CEUR, Vol. 1766, 2016.

[14] D. Ngo, Z. Bellahsene, K. Todorov, Extended tversky similarity for re-1145

solving terminological heterogeneities across ontologies, in: OTM On

the Move to Meaningful Internet Systems”, Springer, 2013, pp. 711–718.

[15] M. Cheatham, P. Hitzler, String similarity metrics for ontology alignment,

in: ISWC 2013, Springer, 2013, pp. 294–309.

[16] Y. Yamamoto, A. Yamaguchi, H. Bono, T. Takagi, Allie: a database and1150

a search service of abbreviations and long forms, Database 2011.

[17] C. Li, L. Ji, J. Yan, Acronym disambiguation using word embedding, in:

AAAI, 2015, pp. 4178–4179.

[18] J. Gracia, E. Montiel-Ponsoda, P. Cimiano, A. Gomez-Perez, P. Buitelaar,

J. McCrae, Challenges for the multilingual web of data, Web Semantics:1155

Science, Services and Agents on the World Wide Web 11 (2012) 63–71.

[19] A. Simon, R. Wenz, V. Michel, A. D. Mascio, Publishing bibliographic

records on the web of data: Opportunities for the bnf (french national

library), in: ESWC 2013, 2013, pp. 563–577.

[20] K. D. Bollacker, R. P. Cook, P. Tufts, Freebase: A shared database of1160

structured general human knowledge, in: AAAI, 2007, pp. 1962–1963.

[21] F. Scharffe, Y. Liu, C. Zhou, Rdf-ai: an architecture for rdf datasets

matching, fusion and interlink, in: IJCAI 2009 workshop IR-KR, 2009.

[22] T. Lesnikova, J. David, J. Euzenat, Interlinking english and chinese rdf

data sets using machine translation, in: ESWC workshop Know@ LOD,1165

Vol. 2013, 2014.

[23] T. Lesnikova, J. David, J. Euzenat, Interlinking english and chinese RDF

data using babelnet, in: ACM DocEng, 2015, pp. 39–42.

[24] A. N. Tigrine, Z. Bellahsene, K. Todorov, Light-weight cross-lingual on-

tology matching with lyam++, in: OTM: On the Move to Meaningful1170

Internet Systems, Springer, 2015, pp. 527–544.

[25] F. Narducci, M. Palmonari, G. Semeraro, Cross-lingual link discovery

with TR-ESA, Inf. Sci. 394 (2017) 68–87.

[26] A. Nikolov, V. Uren, E. Motta, Knofuss: A comprehensive architecture

for knowledge fusion, in: K-Cap, ACM, 2007, pp. 185–186.1175

[27] S. Rong, X. Niu, E. W. Xiang, H. Wang, Q. Yang, Y. Yu, A machine

learning approach for instance matching based on similarity metrics, in:

ISWC, Springer, 2012, pp. 460–475.

[28] C. Shao, L. Hu, J. Li, Z. Wang, T. L. Chung, J. Xia, Rimom-im: A novel

iterative framework for instance matching, J. Comput. Sci. Technol. 31 (1)1180

(2016) 185–197.

[29] M. Kejriwal, D. P. Miranker, Semi-supervised instance matching using

boosted classifiers, in: ESWC, 2015, pp. 388–402.

[30] D. Symeonidou, N. Pernelle, F. Saı̈s, KD2R: A key discovery method for

semantic reference reconciliation, in: On the Move to Meaningful Internet1185

Systems: OTM 2011 Workshops, 2011, pp. 392–401.

[31] T. Soru, E. Marx, A. N. Ngomo, ROCKER: A refinement operator for key

discovery, in: WWW, 2015, pp. 1025–1033.

[32] C. Bizer, R. Cyganiak, Quality-driven information filtering using the wiqa

policy framework, Web Semantics: Science, Services and Agents on the1190

World Wide Web 7 (1) (2009) 1–10.

[33] M. B. Ellefi, Z. Bellahsene, J. Breslin, E. Demidova, S. Dietze, J. Szy-

manski, K. Todorov, Rdf dataset profiling-a survey of features, methods,

vocabularies and applications, Semantic Web.

[34] T. Saveta, E. Daskalaki, G. Flouris, I. Fundulaki, M. Herschel, A.-C.1195

Ngonga Ngomo, Pushing the limits of instance matching systems: A

semantics-aware benchmark for linked data, in: WWW, ACM, 2015, pp.

105–106.

[35] T. Saveta, E. Daskalaki, G. Flouris, I. Fundulaki, M. Herschel, A. N.

Ngomo, LANCE: piercing to the heart of instance matching tools, in:1200

ISWC, 2015, pp. 375–391.

[36] E. Jimenez-Ruiz, B. C. Grau, Logmap: Logic-based and scalable ontol-

ogy matching, in: ISWC, Springer, 2011, pp. 273–288.

[37] M. Atencia, J. David, J. Euzenat, Data interlinking through robust linkkey

extraction., in: ECAI, 2014, pp. 15–20.1205

[38] T. Soru, E. Marx, A.-C. Ngonga Ngomo, Rocker: a refinement operator

for key discovery, in: WWW, ACM, 2015, pp. 1025–1033.

[39] M. Atencia, J. David, F. Scharffe, Keys and pseudo-keys detection for

web datasets cleansing and interlinking, in: EKAW, 2012, pp. 144–153.

[40] D. Symeonidou, I. Sanchez, M. Croitoru, P. Neveu, N. Pernelle, F. Sais,1210

A. Roland-Vialaret, P. Buche, A. Muljarto, R. Schneider, Key discovery

for numerical data: Application to oenological practices, in: ICCS, 2016,

pp. 222–236.

[41] D. Symeonidou, L. Galarraga, N. Pernelle, F. Saı̈s, F. Suchanek,

VICKEY: Mining Conditional Keys on Knowledge Bases, in: ISWC,1215

2017.

[42] H. Farah, D. Symeonidou, K. Todorov, Keyranker: Automatic rdf key

ranking for data linking, in: K-Cap, ACM, 2017, p. 7.

[43] A.-C. N. Ngomo, J. Lehmann, S. Auer, K. Höffner, Raven-active learning
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[54] E. Jiménez-Ruiz, B. C. Grau, V. Cross, Logmap family participation in

the OAEI 2017, in: OM@ISWC, 2017, pp. 153–157.

[55] D. Faria, C. Pesquita, E. Santos, M. Palmonari, I. F. Cruz, F. M. Couto,

The agreementmakerlight ontology matching system, in: OTM: On the

Move to Meaningful Internet Systems, Springer, 2013, pp. 527–541.1250

[56] A. Khiat, M. Mackeprang, I-match and ontoidea results for OAEI 2017,

in: OM@ISWC, 2017, pp. 135–137.

[57] X. Lyu, Q. Zhang, W. Hu, Z. Sun, Y. Qu, njulink: results for instance

matching at OAEI 2017, in: OM@ISWC, 2017, pp. 158–165.

22


	Introduction
	RDF Datasets Heterogeneity Types
	Value Dimension
	Ontological Dimension
	Logical Dimension
	Data Quality Dimension

	Doing Linked Open Data with Less User Effort 
	Selecting Classes and Properties
	Learning Link Specifications

	Data Linking with Legato
	Discussion and Positioning
	Positioning with Respect to Dataset Heterogeneities
	Level of Automaticity

	Experimental Evaluation
	Experimental Setting
	Effectiveness of Property Filtering
	Effectiveness of Instance Profiling
	Effectiveness of Post-processing
	General Evaluation
	Comparison to Automatic Link Specification Methods

	Conclusion and Future Work

