
HAL Id: hal-01987295
https://hal.science/hal-01987295v1

Submitted on 21 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrating managerial preferences into the qualitative
multi-criteria evaluation of team members

Ann Barcomb, Nicolas Jullien, Patrick Meyer, Alexandru Liviu Olteanu

To cite this version:
Ann Barcomb, Nicolas Jullien, Patrick Meyer, Alexandru Liviu Olteanu. Integrating managerial
preferences into the qualitative multi-criteria evaluation of team members. Sandra Huber; Martin
Josef Geiger; Adiel Teixeira de Almeida. Multiple Criteria Decision Making and Aiding: Cases on
Models and Methods with Computer Implementations, 274, pp.95-143, 2018, International Series
in Operations Research & Management Science, 978-3-319-99304-1. �10.1007/978-3-319-99304-1_4�.
�hal-01987295�

https://hal.science/hal-01987295v1
https://hal.archives-ouvertes.fr

Integrating managerial preferences into the
qualitative multi-criteria evaluation of team
members

Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

Abstract Managers can find it challenging to assess team members consistently
and fairly. The ideal composition of qualities possessed by good team members
depends on the organization, the team, and the manager. To enable managers to
elucidate the qualities they require, we make use of an innovative methodology.
This methodology is based on a multi-criteria decision aiding process, starting with
the identification and definition of the dimensions that will be used to evaluate
team members, then the inference of the manager’s preferences through a multi-step
protocol combining multiple types of preference models, and finally extracting a set
of rules that can support the manager in his/her tasks. We illustrate this methodology
in the case of free/libre/open source software development teams,wherewewere able
to elicit the characteristics of a good, acceptable or bad contributor based on multiple
managers’ perspectives. We additionally provide an example on how to reproduce
this experiment using the MCDA package for the R statistical environment.

Ann Barcomb
Lero - The Irish Software Engineering Research Centre, University of Limerick, Ireland, e-mail:
ann@barcomb.org

Nicolas Jullien
IMT Atlantique, LEGO-M@rsouin, Univ. Bretagne Loire, F-29238 Brest, France e-mail:
nicolas.jullien@imt-atlantique.fr

Patrick Meyer
IMT Atlantique, Lab-STICC, Univ. Bretagne Loire, F-29238 Brest, France e-mail: patrick.
meyer@imt-atlantique.fr

Alexandru-Liviu Olteanu
Lab-STICC, CNRS, Université de Bretagne Sud, 17 Bd. Flandres Dunkerque, Lorient, France
e-mail: alexandru.olteanu@univ-ubs.fr

1

2 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

1 Introduction

The field of Multiple Criteria Decision Aiding (MCDA) has been growing rapidly
over the past decades, which has resulted in the proposal of various streams of
thought and methodological formulations to solve complex decision problems. In
particular, many so-called MCDA methods have been proposed in the literature and
are very often available as software tools. Implementing a decision aiding process
in practice, however, is still a difficult endeavor, often limited by the expertise of the
analyst who guides it, the tools that are available, and their ability to interface with
one another as well as with those from other fields of research. Nevertheless, the
benefits of usingMCDA approaches—integrating the preferences of the end user and
providing recommendations that are easily understood and which lead to actionable
outcomes—outweigh these difficulties.

The purpose of this chapter is to:

• illustrate the implementation of a decision aiding process from start to finish in
the context of integrating managerial preferences into the qualitative evaluation
of team members,

• promote the use of the MCDA package, which aims at providing a repository of
MCDA methods that can easily be linked together within the statistical program-
ming language R,

• serve as a blueprint for implementing similar decision aiding processes within
other application domains.

The readers will be able to familiarize themselves, in Section 2, with the team-
ing problem within the free/libre/open source software (FLOSS) domain and the
methodology of extracting and then selecting the criteria used to evaluate team
members. In Section 3 they will gain a general understanding of the field of MCDA,
the preference models and methods that will be used in the illustrative examples
as well as how to set up the MCDA package for R. Section 4 introduces them to
the iterative protocol of inferring the managerial perspective on the team member
evaluations, while Section 5 follows this protocol for two different managers. The
case studies from Section 5 are accompanied by the corresponding R code, which
is carefully explained and may additionally be used to replay the experiment on a
personal computer. Finally, the discussion from Section 6 offers additional insights
into implications of the presented approach and its potential to subsequently support
the managerial decision-making process. Conclusions as well as perspectives for
future work are also provided in the end of this chapter.

Integrating managerial preferences into team members’ evaluation 3

2 A specific case: FLOSS teams

2.1 The teaming problem

The competitive advantage of firms has, since the seminal works of Kogut and
Zander, and Locander et al. [35, 38], been deemed to lie in their capacity for orga-
nizing the sharing and transfer of knowledge of individuals and groups within the
organization. More specifically, Grant [24] asserted that the organization does not
create knowledge, but selectively identifies and coordinates the specialist knowledge
embedded within its employees. This is true not only at the scale of a firm, or within
the boundaries of a firm, but also at project level as the goal of the organization
becomes to identify, select and coordinate, dynamically, the knowledge capacities
required for each project [66] through efficient teaming [73].

An example of such dynamic teamings are free/libre/open source software projects
(FLOSS), where teams are built on voluntary and competence-based criteria [21].
Today, for efficiency and flexibility, this structure is copied by firms in two ways:
by outsourcing part of their intellectual production through open innovation or
crowdsourcing, which requires internal reorganization [65]; or through inner source,
where the firm enables voluntary cross-team collaboration within the organization in
order to internally replicate the benefits of FLOSS methods of production [11, 64].

However, it may be difficult for companies to effectively implement changes to
take advantage of FLOSSmethodology within the firm, both because of the company
culture and because of the challenge it creates for managers, who may have difficulty
accounting for and evaluating their employees’ work, but also in signaling which
competencies they are looking for.

Information and decisions systems may be of tremendous help to pre-select the
best candidates, in terms of technical adequacy and personal match to a team and
a project, as shown by Malinowski et al. [39]. But, as these authors also stressed,
the final decision may remain in the hand of the team leaders, or team managers, as
they are those who make the team work; leadership is expressed through selection
and motivation of good team members [25]. In fact, Wageman [71] found that while
design choices and hands–on coaching both impact the well–being of self–managing
teams, only leaders’ design activities affect task performance. It is also important
that any automating pre-selecting staffing system be accepted by the manager, as
“One reason for greater resistance to global staffing systems is the ‘human factor.’
Managers tend to be resistant to anything that might override or lead to a different
conclusion than their own judgment on a ‘people issue’” [58].

In the view of the firm as a system to manage knowledge via ad-hoc, and in-
creasingly virtual, teams, the project manager is the “chief executive” of the “tem-
porary organization” [68]. The manager is responsible not only for motivating team
members—which can be especially challenging in a global, distributed environment
[5, 52]—but also selecting them, as team assembly mechanisms can determine team
performance [25]. This is especially true in creative teams such as those engaged
in building knowledge commons [26]. For instance, both the quality of the team

4 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

and good management are known as important motivation factors in virtual soft-
ware development teams [6], while poor feedback, inequity and unfair rewards are
demotivating and of particular concern in this environment [16]. Consequently, the
best way to improve team efficiency may be to provide the leaders of teams with a
methodology to systematically and transparently describe the characteristics which
matter to them in the evaluation, selection, and development of team members.

The precise elicitation of key characteristics for team members, from the per-
spective of the manager, is at the core of what we propose in this chapter, rather
than other factors contributing to efficiency. In this we follow the shift, especially
in virtual team research, from skills and abilities of people working in virtual teams
to team composition [22], specifically the skills and attributes a specific manager
values in the composition of a particular team.

Having a methodology which allows the manager to weigh the relative benefit of
the characteristics they really look for when assessing their team members would
have several potential managerial benefits. First, in a self-selected team, similar to
the FLOSS scenario, individuals could determine if they were a good match for the
team based on how well they aligned with the desired profile. Alternately, in an
assigned team, dynamic team composition could be constructed based on necessary
qualities.

Second, project managers could explicitly identify the qualities they value in
their team and use this to steer development. Coaching individuals in areas where
improving their skills would most benefit their participation in the team, articulating
why certain individuals are problematic, and developing plans for improvement or
expulsion are examples of steering enabled by assessment. In a self-selected team, as
in the FLOSS scenario, membersmay not be compelled to join or required to improve
their performance, but they may still be asked to leave by a leader. This method could
be used to help articulate why a person’s contributions are unsatisfactory. Finally, a
transparent exposition of desired attributes provides themanager with a non-arbitrary
way of expressing preferences, leading to greater opportunities for consistency and
fairness.

2.2 The specific case of FLOSS teaming

Before proceeding to the main contribution of this work, we offer an explanation
as to why we used the case of free/libre/open source software (FLOSS) software
development teams to illustrate the application of the method.

Firstly, FLOSS is considered a model for firms employing virtual teaming for
the production of knowledge (in this case, software), especially in the Information
Systems literature [21]. The fact that social skills in conjunction with leadership
behavior affect team motivation and performance has already been described in
general and are highly applicable to the context of software development (see, for
instance, [43]). As we have previously stated, FLOSS development methodology is
also highly applicable to companies.

Integrating managerial preferences into team members’ evaluation 5

Secondly, as already said, it is known that managers vary regarding their criteria
of evaluation of team members. As our claim is that our technique helps detecting
those differences, it was necessary to choose a domain where it has been clearly
established that there is something to detect, and FLOSS is a place where such
differences have been documented.

Taking the example of communication skills, certain behaviors can be deemed
‘toxic’ in some projects, but completely acceptable in others [12]. The difference in
perception can be seen in public statements by FLOSS team leaders. For example, the
Dreamwidth community prides itself on its inclusivity1, while Linus Torvalds, the
founder of Linux, has famously said, “Talk is cheap. Showme the code,”2 suggesting
that technical capability/proposals are highly valued in his community over other
attributes.

Finally, existing processes for evaluating team members in FLOSS groups have
clear limitations. Most widespread is the idea of meritocracy, where the best de-
veloper is easily recognized by the quality of contribution, and gains the greatest
recognition through evaluation by peers [60]. However, meritocratic cultures have
been demonstrated to deliver biased observations [13], and FLOSS communities
have been specifically criticized for this shortcoming [50, 55]. FLOSS community
managers wrestling with the difficulty of identifying “poisonous” behaviors [12],
or facing decisions about the allocation of voting rights—a scenario posed by one
of our participants—can benefit from a methodology which aids in articulating the
ways in which a person succeeds or fails to perform within the team.

Consequently, for the rest of the chapter, FLOSS contributors will be described
as team members, and community managers as decision makers (DM).

2.3 Universal team member characteristics

Characteristics of team members can be categorized into technical “multifunctional
knowledge” and the “teamwork capability of team members” such as communica-
tion skills which combine with other factors—such as the “working relationship”
between teammates—to bring knowledge together [14]. The study of Bassellier and
Benbasat [4] uses the categories “business competence” and “IT competence” to de-
scribe, respectively, organization-specific knowledge and more generic, transferable
skills. We opted to use the classification system which distinguishes between uni-
versal human qualities, namely psychological factors, and domain-specific technical
skills.

The work of Chen and Lin [14] proposed five indicators of team member charac-
teristics based on theMyers-Briggs [48] psychological indicators. However, these are

1 Denise Paolucci and Mark Smith, Web 2.0 Expo SF, 2010, https://www.slideshare.
net/dreamwidth/build-your-own-contributors-one-part-at-a-time.
2 Linux kernel mailing list. Google Groups, https://groups.google.com/d/msg/fa.
linux.kernel/iQtWFALi4JA/eSzv64_tOvoJ. Other quotations from L. Torvalds may be
found in Wikiquote: https://en.wikiquote.org/wiki/Linus_Torvalds.

6 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

coarse-grained, and incorporate some measure of technical skills with descriptors
such as “functional expertise.” Consequently, we relied on the personality indica-
tor method described by Driskell et al. [20]. This work examined the relationship
between team member personality traits and team effectiveness, basing the traits
on the ten personality indicators (BFI-10) [40]. The five indicators which describe
the relationship between team members and team effectiveness are: communication,
commitment, collaboration, handling of pressure, and creativity [20]. The set of
psychological factors is considered complete for describing traits associated with
group collaboration, and has been used not only to describe work teaming, but also
a wide range of human interactions from team sports [2] to social behavior among
musicians [69]. Technical skills, on the other hand, are far more domain-specific,
and must thus be customized to allow the solution to be applied to different teaming
contexts.

Measuring these psychometric indicators using the abbreviated BFI-10 scale
normally requires a number of questions for each indicators. However, Rammstedt
and John [54] showed that a ten-question instrument provides a robust measure of
the indicators. The questions actually represent five indicators (the big five) in both
negative and positive incarnations. It can be reduced to a set of five indicators with
negative and positive descriptions, when time is a constraint and the research does
not rely on a precise measure [23], as in our case. We will return to these indicators,
with examples of their negative and positive descriptions, in Table 2 when they are
merged with the technical indicators to create the final set of criteria.

Because technical abilities are more variable and domain-specific, they are de-
tailed in Section 2.4.

2.4 Domain-specific team member characteristics

In order for a DM to assess a team member on an ordinal scale, it is first necessary
to identify the characteristics on which this evaluation is based. In Section 2.3
we listed five psycho-sociological dimensions which can be universally applied to
teaming situations. These characteristics are meant to be used in conjunction with
the technical attributes, which vary by domain.

Our method for identifying the technical attributes consists of three steps. This
methodology begins with a mainstream step but the third step is distinct to the
problem we are addressing with MCDA techniques.

1. Defining the team members’ evaluation dimensions according to the litera-
ture
The literature on skills required for FLOSS development is sparse, and none of the
three main attempts we identified [3, 15, 34] was suitable for our purpose, for two
reasons. First, they are not at the same level of granularity as the psychological
factors, which we incorporated because they are universal and well-established
by research, and therefore can be applied to any teaming situation. Second, the

Integrating managerial preferences into team members’ evaluation 7

lists are too lengthy to allow participants to keep all attributes in mind. Consid-
ering other domains risked diluting the specific situation we wished to observe.
Therefore, we synthesized the aforementioned literature to nine proposed dimen-
sions summarizing the technical skills. Since the next stage involved validating
the criteria, we were not concerned with overlooking a critical factor.

The proposed technical dimensions were: produces code of quality; understands
the architecture of the code (modular code, code dependencies); proposes imple-
mentation of new features without disturbing others; contributes a lot of commits;
documents the work produced; writes clearly, in good English; implements the
feedback received; is good at describing bugs; and is good at specifying features.

2. Confirming these findings with the managerial point of view
In the second step, a number of DMs with experience in the domain are asked
which attributes they consider relevant for identifying a team member’s value to
the group. We make use of interviews in order to gain an understanding of the
DM, the language and context of the decision [49].

After giving their responses, DMs are then supplied with a list of characteris-
tics the researchers have gleaned from the literature and asked to indicate how
relevant these characteristics are. Finally, they are asked if they want to add any
characteristics to their initial list. This allows the participant to first consider the
question without being primed, then to evaluate the criteria from literature, and
finally to reflect on the initial thoughts.

The interview responses are compared to the initial list derived from the literature.
Where the DMs described existing criteria using different terms, the names or
descriptions of the criteria are updated to reflect the language of the participants.
If any new criteria are identified, this may warrant additional study to understand
why it was not previously described in the literature. When a particular criterion
is not valued by any participants, the criterion could be dropped to reduce the
number of dimensions to be considered.

Based on the interviews, we concluded that our list was sufficiently comprehen-
sive. Furthermore, four of the technical criteria were considered unimportant by
all participants. Because our experts did not consider these dimensions relevant
to the evaluation of team members, we dropped them from our list.

This left us with a set of ten dimensions—five psycho-social and five technical—
which applied to all DMs. These are listed in Table 1. The terms in this table,
and which are used hereafter, reflect the language of our participants, and are
therefore different from the formal terms given in Section 2.3 or identified in the
previous step.

8 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

3. Eliciting the managerial preference model on the team members evaluation
based on the defined dimensions
The set of ten dimensions reflected the full set of factors considered important
to all DMs we interviewed. However, not all DMs were interested in all the di-
mensions. Therefore, for each DM, we identified a working subset of dimensions
of interest, taking those criteria ranked as important or very important. As each
DM ranked at least half of the factors as relevant, it would not have been possible
for the unselected factors to collectively deliver more relevance than the chosen
factors even if all were ranked equally. The primary reason for limiting factors
was to improve the DM’s ability to effectively consider model profiles.

The exact choices of the DMs are discussed in more detail in the next section and
described in Table 2. This result advocates for a manager-based methodology,
where each DM is able to identify a tailored subset of key factors from a longer
list of attributes relevant to the domain.

Table 1 Detail of the full ten dimensions used to evaluate the team members
Variable Description

Negative Positive

Psycho-Social

Communication skills (signal over
noise ratio)

Too much noise / not enough information Is good at providing the right level of information

Commitment to the project Unmotivated/passive in seeking answers Is motivated and does a thorough job

Working with others Tends to find fault with others Is generally trusting, patient with people

Pressure and stress related managing
capacity

Gets nervous & stressed easily (ex.: when things do not go
as expected, when there are delays or due deliverables)

Is relaxed, handles stress, technical limitations, set-
backs well

Creativity Not very creative in terms of solution Has an active imagination, proposes creative
ideas/solutions

Technical

Quantity of code contributed few lines of code an impressive quantity of code

Quality of code contributed Tends to provide incomplete or inferior solutions Produces efficient & well written code, without
disturbing other part of the code

Global picture: understands the tools/
technology/ domain, & processes be-
hind the project

Low, does not understand beyond the talks/the modules ad-
dressed

Understands the technical & non-technical funda-
mentals of the project

Documentation & testing Does not document/test the code produced, or does so in a
way not understandable by others

Documents/test well and clearly the code produced

Contribution on other aspects than code
(new features, bug description)

Does not contribute beyond code production Very active in proposing new features, tracking and
documenting bugs, etc.

Integrating managerial preferences into team members’ evaluation 9

2.5 The manager’s perspective

A total of six DMs participated in the first part of our experiment. Table 2 illustrates
the criteria each of them selected as ‘important’ or ‘very important’ according to the
second step of the proposed methodology.

Table 2 Important Criteria for DMs.

Criteria Decision makers
DM1 DM2 DM3 DM4 DM5 DM6

Communication skills 3 3 3
Commitment to the project 3 3 3 3 3 3

Working with others 3 3 3 3 3 3
Pressure and stress related managing capacity 3 3 3

Creativity 3
Quantity of code produced 3
Quality of code produced 3 3 3 3 3

Global picture 3 3 3 3 3 3
Documentation and testing 3 3 3 3 3 3

Contributions on other aspects 3 3

Each of the dimensions were considered useful by at least one DM, while no DM
felt that all of the criteria were relevant. We observe that the dimensions related to
the commitment of contributors, their capacity to work together, their perspective of
the project as a whole and their ability to document their work were unanimously
considered important factors by all DMs. Furthermore, most were also concerned
with the quality of code produced.

This result supports the premise of the article: if a set of variables can describe
what is observable and important for evaluating a team member, managers will only
use a subset of these variables. Furthermore, the selected subsets are rarely the same,
and even when two DMs choose the same criteria, the resulting preference models
are unlikely to be the same.

3 MCDA techniques

In a case where the criteria are known and are the same for every unit of analysis,
classical data analysis methodologies such as linear regression or decision tree
modeling can be used. The reader who is interested in a review of these findings
may consult Driskell et al. and Stewart [20, 63]. However, these results do not
deliver actionablemanagerial recommendations because there is no single ideal team
composition which can be applied to all groups working on all tasks, even within
a single domain. As we demonstrated earlier, managers value a different subset of
criteria. Due to our interest in team composition, which is typically the purview
of the manager, our method strives to elicit one perspective—the manager’s—rather

10 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

than incorporating impressions frommultiple teammembers as in Sarker et al.’s [59]
approach involving identifying the extent to which a team member is valued by her
or his peers.

In other words, to improve the efficiency of teaming, we propose to develop a non
arbitrary, non ad-hoc evaluation scale based on multiple criteria, which encapsulates
the perspective of the manager. When multiple, potentially conflicting evaluation
criteria must be taken into account, and the individual preferences of the manager
should be captured, it is natural to turn towards Multi-Criteria Decision Aiding
(MCDA) techniques.

3.1 An introduction to MCDA

MCDA is the study of decision problems, methods and tools which may be used in
order to assist a DM in reaching a decision when faced with a set of alternatives,
described via multiple—often conflicting—properties or criteria.

Usually, three types of decision problems are put forward in this context [57]:

• the choice problem, which aims to recommend a subset of alternatives, as re-
stricted as possible, containing the “satisfactory” ones;

• the sorting problem, whose goal is to assign each alternative into predefined
ordered categories;

• the ranking problem, which orders the alternatives by decreasing degree of pref-
erences.

Various models have been proposed to support DMs facing a multi-criteria deci-
sion problem [10, 33, 57] and to represent their preferences. Roughly speaking, they
originate from two methodological schools. First, in the outranking methodologies,
any two alternatives are compared pair-wisely on basis of their evaluations on the set
of criteria, according to a majority rule. More precisely, a DM could consider that an
alternative a outranks an alternative b when a weighted majority of criteria validates
the fact that a is performing at least as good as b and there is no criterion where
b seriously outperforms a. The majority-related condition is called concordance,
whereas the second condition (veto) is called discordance. From a computational
point of view, various implementations of these conditions, and their conjunction,
have been proposed in the literature (see for example [57]). Second, methods based
on multiattribute value theory aim to construct a numerical representation of the
DM’s preference on the set of alternatives. The main difference between these two
methodological schools lies in the way in which the alternatives are compared and
the type of information required from the DM. Outranking methods are preferred
if the evaluations of the alternatives are primarily qualitative, if the DM would like
to include a measure of imprecision about personal preferences in the model, and
when a human-readable evaluation model is desired. Value-based methods can be
favored if a compensatory behavior of the DM should be modeled, and when the
evaluation of the alternatives should be summarized by a single value (as in the case

Integrating managerial preferences into team members’ evaluation 11

of accounting, for instance). These methodologies are usually integrated in a more
general decision aiding process, as described in Tsoukiàs [67].

In the context of this chapter, the DM is the team manager, and the alternatives
are the team members, while the evaluation criteria are the attributes used to
evaluate the team members. Our aim is to evaluate the team members by building
a transparent and understandable evaluation model which integrates the manager’s
preferences. The evaluation of team members relies on qualitative criteria. Further-
more, we require that the overall evaluation also delivers a qualitative scale. Last but
not least, in order to develop a functional tool for teammember evaluation, we require
a readable evaluation model which enables the manager to understand the strengths
and weaknesses of the team members, while providing details on improvement. As
argued by [31], where possible, simple preference models should be used. All of
these arguments are in favor of outranking preference models, more specifically an
outranking sorting technique.

3.2 The Majority-Rule Sorting model

Among the possible outranking sorting methods, we chose Majority-Rule Sorting
(MR-Sort) [37], which is a simplified version of the classic ElectreTRI [56]. This
technique is close to the version axiomatized in Bouyssou and Marchant [8, 9]
and does not consider the previously mentioned discordance or veto principle. The
method allows us to build an overall qualitative evaluation scale for the evaluation
of the contributors, while presenting a very readable and operational model.

The MR-Sort procedure takes thus into account the preferences of the DM, which
are represented through the following preferential parameters :

• criteria weights (w), which give the relative importance of criteria;
• a majority threshold (λ), which indicates the weight of a coalition of criteria in

order to be considered sufficient;
• category limits (b), which are used for comparing with an alternative leading to

its assignment.

Let us consider a finite set of alternatives A, a finite set of criteria indexes J
and a set of category limits separating profiles B = {b1, . . . bk−1}. Each alternative
and each category limit is a vector of evaluations with respect to all criteria. The
evaluation with respect to criterion j can be viewed as a function gj : A ∪ B → R,
where gj(a) denotes the evaluation of alternative a ∈ A on criterion j and gj(bh)
denotes the evaluation of category limit bh,∀h ∈ {1, . . . , k−1}, on criterion j. The
set of category limits are used to define a set of k categories {c1, . . . , ck}, ordered
by their desirability, from c1 being the worst category to ck being the best one. Each
category ch is defined through its upper limit, bh, and its lower limit, bh−1, with the
exception of the worst and best categories, which have only one limit. We assume,
without loss of generality, that the performances are supposed to be such that a higher

12 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

value denotes a better performance. Furthermore the performances of the category
limits are non-decreasing, i.e. ∀j ∈ J, 1 < h < k : gj(bh−1) ≤ gj(bh).

An alternative a is said to outrank a category limit bh−1 if and only if there is a
sufficient coalition of criteria supporting the assertion “a is at least as good as bh−1”.
A coalition of criteria corresponds to a subset of criteria which “agree” on how an
alternative compares to a category limit, either being at least a good or strictly worse.
To measure this, we define for each criterion j a function Cj : A × B → {0, 1}
which assesses whether criterion j supports that statement or not:

∀j ∈ J, a ∈ A, 1 ≤ h ≤ k : Cj(a, bh−1) =

{
1, if gj(a) ≥ gj(bh−1),
0, otherwise. (1)

To assess whether a coalition of criteria is in favor of the outranking or not, ∀a ∈
A, 1 ≤ h ≤ k, we first define the overall concordance as:

C(a, bh−1) =
∑
j∈J

wjCj(a, bh−1), (2)

wherewj is the weight of criterion j. The weights are defined so that they are positive
(wj > 0,∀j ∈ J) and sum up to one (

∑
j∈J wj = 1). This overall concordance

is then compared to a majority threshold λ ∈ [0.5, 1] extracted from the decision-
maker’s preferences along with the weights. As we do not consider any veto rule
here, the outranking relation S is then defined as:

a S bh−1 ⇐⇒ C(a, bh−1) > λ. (3)

If C(a, bh−1) < λ, the coalition of criteria is not sufficient, the alternative does
not outrank the frontier bh−1 and will therefore be assigned in a category lower than
ch.

Alternative a is assigned to the highest category it outranks, hence this rule can
be written as:

a ∈ ch ⇐⇒ aS bh−1 and a 6S bh. (4)

In order for this assignment rule to be used for the limit categories, two dummy
profiles b0 and bk need to be added to B, the first holding the lowest possible
evaluations on all criteria, while the second holding the highest possible ones.

We provide a simple illustrative example for this assignment rule in Figure 1. We
consider three teammembers denoted with TM1, TM2 and TM3, who are evaluated
with respect to five criteria with ordinal scales corresponding to their performance
levels: good (g), neutral (n) and bad (b). These scales are numerically encoded as
−1 for b, 0 for n and 1 for g. We wish to assign these team members to either one of
three categories: c1 (bad), c2 (medium), c3 (good).

At the top we observe the parameters of the sorting model. The first parameter
(λ) is the majority threshold, followed by the vector of criteria weights (w) and
two category separating profiles (b1 and b2). Below the parameters we illustrate the
assignment of three alternatives using the assignment rule from Equation (4). In the
case of the first and last categorieswe have added twofictive limits in order to simplify

Integrating managerial preferences into team members’ evaluation 13

λ = 3
5

w = (1
5
, 1
5
, 1
5
, 1
5
, 1
5
) b1 = (n, n, n, n, n) b2 = (g, g, g, g, g)

A g1 g2 g3 g4 g5 ai S b0 ai S b1 ai S b2 ai S b3 assignment

SC1 g g g n b 3 3 3 5 c3 (good)
SC2 g n n n g 3 3 5 5 c2 (medium)
SC3 b b g b n 3 5 5 5 c1 (bad)

weights

medium−bad
g1 g2 g3 g4 g5

0.2 0.2 0.2 0.2 0.2

0 0 0 0 0

weights

good−medium
g1 g2 g3 g4 g5

0.2 0.2 0.2 0.2 0.2

1 1 1 1 1

majorityThreshold = 0.6 TM1 TM2 TM3majorityThreshold = 0.6 TM1 TM2 TM3

Fig. 1 Illustrative example for the MR-Sort assignment procedure.

the example. The lower category limit of the worst category (b0) is considered to
have the lowest possible evaluations on all criteria (in this case b), while the upper
profile of the best category (b3) is considered have the evaluations that are always
better than all alternatives in A on each criterion. TM1 is at least as good as b1 on
4 out of the 5 criteria, and it is at least as good as b2 on 3. Therefore TM1 outranks
both b1 and b2, and is therefore assigned to the highest category. The second team
member is at least as good as b1 on all criteria, however it is at least as good as b2
on only the two. Therefore TM2 outranks b1 but not b2 and is therefore assigned to
the second category. Finally, the last alternative is at least as good as b1 on only two
criteria and is therefore assigned to the lowest category. The illustration serves as a
visual aid, containing two plots of the relation between the three team members and
the profiles separating each consecutive pair of categories. The separating profiles
are plotted in black with filled round markers, while the team members are colored
based on their category assignment and each contain a different marker.

14 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

3.3 The Majority-Rule Sorting model with large performance
differences

In order to model more accurately the preferential behavior of the DM, several
extensions of the MR-Sort model have been proposed in literature. We focus on the
work of Meyer and Olteanu [41], who extended this approach in order to handle
large positive performances (resulting in what is called dictator effects). This work
shows that various options of combining the veto and dictator effects lead to different
preference models. These extensions lead to more flexible and more complex models
as their number of parameters increases. Consequently, they allow the modeling of
increasingly complex preferential statements of the DM.

The first type of large performance difference corresponds to the classical veto
concept used in outranking relation. As we have previously stated, an alternative a
is said to outrank a category limit bh−1 if and only if there is a sufficient coalition
of criteria supporting the assertion “a is at least as good as bh−1”. However, even
when the coalition is strong enough, a criterion may veto the outranking situation.
An alternative a is in a veto relation (denoted with V) with a profile bh−1 when:

aV bh−1 ⇐⇒ ∃j ∈ J : gj(a) 6 gj(b
v
h−1). (5)

A veto profile bvh−1 is added to the MR-Sort method, and represents the maximal
level of performance that that is considered unacceptable for an alternative to be
allowed into category ch via the weighted coalition of criteria in favor of this
assignment. If on any criterion an alternative has at most this level of performance,
then it is forbidden from being assigned to ch or above. The following constraint
on the evaluations of a veto profile bvh−1 needs to hold: gj(bvh−1) < gj(bh−1),∀j ∈
J, h ∈ 1..k. Furthermore, the performances on the veto profiles are non-decreasing,
i.e. ∀j ∈ J, h ∈ 1..k + 1 : gj(b

v
h−1) ≤ gj(b

v
h). In addition, the performances of

the top most veto profile will be fixed to be equal to those of the top most category
profile, so that no veto situation may be triggered in this case.

To summarize, alternative a outranks the category limit bh−1 (and therefore is
assigned to at least the category ch) if and only if:

aS bh−1 ⇐⇒ C(a, bh−1) > λ and not aV bh−1. (6)

We take the illustrative example from Figure 1 and add two additional veto profiles
in order to illustrate the assignment rule of the previously presented model, as seen
in Figure 2. Only a few of the veto profiles evaluations are defined in this case, while
the graphical illustration shades in black the value ranges that these profiles define
as unacceptable for the upper category they separate.

The addition of the veto profiles leads to the first contributor being assigned to
the medium category due to the fact that, despite having three good evaluations,
it has a bad evaluation on the last criterion. bv2 indicates that such an evaluation
is unacceptable for being assigned to the top category. All the other contributors
assignments do not change, however, it should be noted that, in order for the third

Integrating managerial preferences into team members’ evaluation 15

λ = 3
5

w = (1
5
, 1
5
, 1
5
, 1
5
, 1
5
) b1 = (n, n, n, n, n) b2 = (g, g, g, g, g)

bv1 = (, , , b,) bv2 = (, , , b, b)

A g1 g2 g3 g4 g5 ai S b0 ai S b1 ai S b2 ai S b3 assignment

TM1 g g g n b 3 3 5 5 c2 (medium)
TM2 g n n n g 3 3 5 5 c2 (medium)
TM3 b b g b n 3 5 5 5 c1 (bad)

weights

medium−bad
g1 g2 g3 g4 g5

0.2 0.2 0.2 0.2 0.2

0 0 0 0 0

−1

weights

good−medium
g1 g2 g3 g4 g5

0.2 0.2 0.2 0.2 0.2

1 1 1 1 1

−1 −1

majorityThreshold = 0.6 TM1 TM2 TM3majorityThreshold = 0.6 TM1 TM2 TM3

Fig. 2 Illustrative example for the MR-Sort assignment procedure with vetoes.

contributor to be allowed into the medium category, he/she should improve on the
fourth criterion first, as otherwise a veto would continue to be triggered regardless
of any improvements on the first two criteria (see veto profile bv1).

We continue by considering the dictator effect [41], which may be seen as the
opposite concept of a veto. When only an insufficient coalition of criteria supports
the assertion “a is at least as good as bh−1”, having a much better performance of
a with respect to bh−1 on even one criterion allows us to validate the outranking
relation. An alternative a is in a dictator relation (denoted with D) with a profile
bh−1 when:

aD bh−1 ⇐⇒ ∃j ∈ J : gj(a) > gj(b
d
h−1). (7)

A dictator profile bdh−1 is added to the MR-Sort method, and represents the
minimum level of performance that an alternative needs to have in order to be
guaranteed assignment into at least category ch. The following constraint on the
evaluations of a dictator profile bdh−1 needs to hold: gj(bh−1) < gj(b

d
h−1),∀j ∈

J, h ∈ 1..k. Furthermore, the performances on the veto profiles are non-decreasing,
i.e. ∀j ∈ J, h ∈ 1..k + 1 : gj(b

d
h−1) ≤ gj(bdh).

To summarize, alternative a outranks the category limit bh−1 (and therefore is
assigned to at least the category ch) if and only if:

aS bh−1 ⇐⇒ C(a, bh−1) > λ or aD bh−1. (8)

16 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

Equations (5) and (7) correspond to MR-Sort models with vetoes and with dicta-
tors respectively. In [41], multiple assignment rules combining the veto and dictator
relations have been proposed, each using a slightly modified outranking relation:

• MR-Sort with a dictator effect weakened by a veto effect:

aS bh−1 ⇐⇒ C(a, bh−1) > λ or
(
aD bh−1 and not aV bh−1

)
. (9)

• MR-Sort with a veto effect weakened by a dictator effect:

aS bh−1 ⇐⇒ C(a, bh−1) > λ and not
(
aV bh−1 and not aD bh−1

)
. (10)

• MR-Sort with a dictator effect and a dominating veto effect:

a S bh−1 ⇐⇒
(
C(a, bh−1) > λ or aD bh−1

)
and not aV bh−1. (11)

• MR-Sort with a veto effect and a dominating dictator effect:

aS bh−1 ⇐⇒ aD bh−1 or
(
C(a, bh−1) > λ and not aV bh−1

)
. (12)

• MR-Sort with conflicting dictator and veto effects:

a S bh−1 ⇐⇒
(
C(a, bh−1) > λ and not

(
aV bh−1 and not aD bh−1

))
or
(
aD bh−1 and not aV bh−1

)
. (13)

The first model is similar to MR-Sort with dictators, except that the dictator effect
may be invalidated by a veto effect occurring at the same time. However, the veto
on its own does not impact in any way the outranking relation. The second rule
corresponds to MR-Sort with vetoes where the dictator invalidates the veto, but does
not do anything on its own. The following three models benefit from both veto and
dictator effects, but handle cases where both occur at the same time differently. On
their own, a veto invalidates an outranking relation while a dictator validates it.When
both occur at the same time, the model with dominating dictator gives precedence
to the dictator effect, the one with dominating veto gives precedence to the veto,
while the one with conflicting dictator and veto invalidates both and considers the
weighted coalition of criteria in favor of the outranking.

3.4 Learning a Majority-Rule Sorting model

Several techniques have been proposed in the literature to learn the parameters of
outranking-based multi-criteria sorting models as an alternative to directly asking
the DM to provide them.

Mousseau and Słowiński [47] have proposed to find the entire model through the
use of assignment examples. More specifically, the DM is asked in a first step to

Integrating managerial preferences into team members’ evaluation 17

assign a few well known alternatives to the predefined categories. Mousseau et al.
[46] only sought to find the criteria importance weights with the other parameters
being supposedly known, while Ngo The and Mousseau [51] only looked for the
category limits. Othermore robust approaches compute for each alternative a range of
possible categories to which they may be assigned when the parameters of the model
are not completely determined [17, 18, 19]. Approaches that deal with inconsistent
sets of assignment examples leading to non existing preference model solutions have
also been explored in Mousseau et al. [44, 45].

In most cases, the approaches of inferring the parameters of majority-rule sorting
models use mathematical programming techniques involving binary variables, such
as in Leroy et al. [37]. As these approaches find the optimal solution, they may
also require large amounts of computational resources and time, making their use
limited when large sets of assignment examples are considered. Sobrie et al. [62]
have suggested to use a technique based on a metaheuristic to learn the parameters
of the sorting model, which has been adapted and extended by Olteanu and Meyer
[53] in order to additionally take into account veto thresholds. Finally, Olteanu and
Meyer [41] proposed mixed integer programming techniques to learn the parameters
of the previously presented extensions of the MR-Sort method.

In the context of our example, the team members are the alternatives, and the DM
will assign them to categories such as “good”, “medium” or “bad”, based on their
performance on the selected evaluation criteria (i.e. their skills). Then, from these
assignment examples, the model parameters are extracted using a given algorithmic
approach.

3.5 The MCDA R package as a support tool

In this section we present the software which can be used to support the previously
presented method, namely the MCDA package for R. R is an open-source functional
programming language and environment mainly centered around data analysis [29,
70]. In recent years it has grown in popularity with the IEEE identifying it as the 9th
most popular programming language in 2014, the 6th most popular in 2015 and the
5th most popular in 2016 [28]. Due to the large community of R users, many tools
in the form of functions within packages have been proposed, many dealing with
handling different data formats, data pre-processing, data filtering and interactive
visualizations. An interactive tutorial for learning R may be found at [1].

The MCDA package [7] that we propose to use follows the philosophy of R, by
encompassing a growing array of MCDA algorithms that may be used to decom-
pose a decision aiding process into sub-steps. The package mainly targets MCDA
practitioners that are familiar with the decision aiding process, giving them the pos-
sibility to construct this process as they see fit. As very often during a decision
aiding process the DM does not have a clear picture of his/her problem [61], being
able to quickly adapt the process as new information is made available is of great
importance. Finally, the MCDA package may benefit both MCDA practitioners and

18 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

data analysts, as MCDA practitioners could further apply methods linked to data
analysis throughout the decision aiding process, while data analysts could use their
data for reaching an objective in addition to analyzing it.

At the time of writing, the package is still young and consequently is far from
covering all of the algorithms from the classicalMCDA literature.However, functions
supporting various steps of theMCDA process have been implemented in theMCDA
R package. They can be categorized as follows:

• state of the art aggregation algorithms;
• state of the art preference elicitation algorithms;
• data manipulation functions;
• plot functions.

In order to be able to use this package, the user should first install either GLPK,
CPLEX or both on their machine. GLPK is a free and open-source, while a free
version of CPLEX can be easily acquired through the Academic Initiative of IBM.
We recommend using CPLEX for testing the case studies that we present in Section 5,
as it is much faster than GLPK.

On a Debian-based Linux machine, installing GLPK is as simple as: sudo
apt-get install libglpk-dev.

Within R, the MCDA package and its dependencies can be installed using the
following command:
install the MCDA package

install.packages("MCDA")

The user should carefully check whether all of the package dependencies were
able to be installed correctly, and otherwise proceed to installing each of them
separately.

Additionally, for users wishing to make use of CPLEX, the cplexAPI package
should also be installed, as theMCDA package does not list it as a direct dependency:
install the cplexAPI package

install.packages("cplexAPI")

In certain cases, this command will not work and it might be necessary to also
point towards the path where CPLEX is installed on your machine:
install the cplexAPI package

install.packages("cplexAPI",configure.args = "--with-cplex-dir=
/path/to/cplex")

Integrating managerial preferences into team members’ evaluation 19

4 A method to integrate managerial preferences into the ordinal
evaluation of contributors

4.1 Selecting the criteria for the MCDA analysis

Selecting the criteria for an MCDA process requires reducing the options to a
manageable level. According to Miller [42], there are limits to human capacity
for processing information, which explains why the maximum number of aspects
which can be simultaneously considered is around seven, plus or minus two. From
our literature review and initial interviews, we were able to narrow the full set of
dimensions to ten by excluding factors which were not valued by any DM.

In order to extract the subset of dimensions relevant for each DM, we asked them
to rate each dimension based on their perception of its importance with one of five
levels, ranging from very important to not important at all. We then included all
criteria they ranked as very important or important. A balanced three-factor scale
would have captured the same information, but as part of our exploration we wanted
to demonstrate to the DM the similarities and differences between the off-the-cuff
assessment of the relative importance of items and the more nuanced model we
created.

It is worth noting that in other types of analysis of preferences, such as Q-
methodology, the standard is to incorporate those factors which can explain at least
50% of the sample variance [72]. If we considered each factor equally important to
the DM, incorporating five dimensions would already capture half of the variance.
However, based on the DM’s rankings, it was certain that by dropping the less
important factors we were reducing the demands on the DM without significant loss
of detail.

4.2 Inferring the DM’s preferences

In Section 3, we explained why we advocated using the MR-Sort technique to model
the DM preferences. To infer the parameters of such an MR-Sort preference model,
the following protocol, illustrated in Figure 3, is applied.

The protocol may be used for interactively inferring an MR-Sort model for any
problem. As we are interested here on applying it to the problem of inferring the
preferences of a manager with respect to team members, we will consider that the
alternatives (the decision objects in MCDA) correspond to team member profiles. A
team member profile represents the series of evaluations of a team member across
several criteria. The protocol consists of the following series of steps:

1. Generate an initial set of team member profiles A.
In the first step, fictitious team members are generated by randomly constructing
vectors of evaluations on the previously selected criteria. These team members
profiles correspond to the alternatives used in MR-Sort.

20 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

1. 2. 8. 10.3. 4.

5.

6.7.

9.

no DM input

DM input

Fig. 3 Protocol for inferring the parameters of an MR-Sort model

2. The DM assigns the team member profiles to categoriesK.
This corresponds to the construction of the assignment examples used during
the subsequent steps to infer the MR-Sort model. The DM assigns each of the
previously constructed team member profiles to one category.

3. Generate an MR-Sort modelM .
AnMR-Sort model is constructed using an inference algorithm that takes as input
the provided assignment examples. The initial attempt is to look for the most
simple model (the classical MR-Sort model) which is able to assign the team
member profiles in the way provided by the DM.

4. If the model fits then go to step 8.
The fit corresponds to the model, through its inferred parameters and assignment
rule, assigning the team member profiles in exactly the same way as the DM.

5. Generate all minimal sets of incompatible assignments.
If the MR-Sort inference algorithm is not able to output a model that fulfills all
of the assignment examples, we extract the minimal sets of team member profiles
which would need to be assigned to different categories in order for a valid output
to be provided.

6. If the DM accepts changing the assignments in accordance to at least one incom-
patible assignment set then go to step 8.
The previously generated sets of incompatible assignment examples are presented
to the DM in order to make sure that no error or hesitation were introduced. If the
DM agrees to change their assignments then the MR-Sort model that was initially
generated can be used further.

7. Select a more complex model and go to step 3.
If the DM does not agree to changing their assignments in accordance to the pre-
sented incompatible assignment sets, we proceed by considering a more complex
MR-Sort model. The choice of models is elaborated further below.

Integrating managerial preferences into team members’ evaluation 21

8. If a stopping condition is met then go to 10.
After we are able to select a model that fits the assignment examples of the DM,
or at least one that minimizes the number of incompatible assignments, we check
whether a stopping condition is met. This condition may be based on subjective
factors linked to the willingness of the DM to proceed further, or on factors linked
to the extracted assignment rules that accompany an MR-Sort model.

9. Update the set of team member profiles A by generating additional ones.
Additional team member profiles are randomly generated in the same way as in
step 1.

10. Validate the model and finish.
The DM is presented with the final MR-Sort model, as well as with an illustration
and explanation of its assignment rules.

Regarding the choice of models in steps 3 and 7, we consider first the MR-Sort
model with a simple majority rule, followed by the models which take into account
a single large performance difference effect (MR-Sort with vetoes or with dictators)
and only then models that take into account both. Among the latter models, we
consider that the models that take into account a single effect but which may be
weakened by another (MR-Sort with vetoes weakened by dictators and MR-Sort
with dictators weakened by vetoes) are the least complex, followed by models that
have one dominating effect (MR-Sort with vetoes dominating dictators and MR-Sort
with dictators dominating vetoes), and finally the model which equally balances
the two effects together (MR-Sort with conflicting vetoes and dictators). When no
model completely fits the assignments, we choose based on which model is better
able to fit the set of assignment examples, i.e. the one which minimizes the number
of incorrectly assigned team member profiles. When this criterion is not sufficient
in order to differentiate between such models, or when multiple complex models fit,
we select one at random.

This incremental approach has been chosen in order to reduce the cognitive effort
of the DM and also to test for hesitations or inconsistencies in their assignments.
Furthermore, by starting with a simple preference model and increasing its complex-
ity as warranted by the input of the DM allows us to lower the needed computational
resources as simpler models no longer need to be tested once their are deemed
insufficiently flexible for modeling the perspective of the DM.

5 Experimental case: FLOSS

Although six DMs agreed to participate in our research, three of them only par-
ticipated in the criteria selection step, whereas one of the remaining three stopped
mid-way through the presented protocol. We therefore illustrate below the proposed
methodology for the two DMs who reached the end of our proposed methodology.

Both of these DMs selected the same five criteria in order to evaluate their
contributors, therefore we present them below:

22 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

• Commitment to the project (g1), psycho-sociological;
• Working with others (g2), psycho-sociological;
• Quality of code produced (g3), technical;
• Global picture: understands the tools/technology/domain, & processes behind the

project (g4), technical;
• Documentation & testing (g5), technical.

For each of these criteria, a five-level ordinal scale ranging from very bad to very
good ({vb, b, n, g, vg}) was selected, as well as a final three-level ordinal evaluation
scale (K = {Bad,Neutral,Good}). The scale evaluations are numerically denoted
from −2 for vb up to 2 for vg.

5.1 Inferring the preferences of DM1

We begin with illustrating the inference of the first decision maker’s (DM1) pref-
erences. We will additionally show how the proposed protocol was implemented in
R.

The entire R script for this case study is available in the MCDA package using:
path to the R script of the example

system.file("examples","exampleFLOSS.R",package="MCDA")

We started by defining the criteria and the categories:
load the MCDA library

library(MCDA)

define the criteria and their preference directions

criteria <- c("c1","c2","c3","c4","c5")

criteriaMinMax <- c("max","max","max","max","max")

define the categories and their ranks

categories <- c("Good","Neutral","Bad")

categoriesRanks <- c(1,2,3)

names(categoriesRanks) <- categories

names(criteriaMinMax) <- criteria

We then continuedwith the first step of themodel inference protocol by generating
an initial set of 25 team member profiles. The code that generates these profiles is
presented below.
generate the initial set of unique alternatives

Integrating managerial preferences into team members’ evaluation 23

pT <- unique(matrix(sample.int(5, 1000, T), 100, 5))[1:25,] - 3

rownames(pT) <- 1:dim(pT)[1]

colnames(pT) <- criteria

In order for the reader to be able to reproduce our experiment, the provided R
script does not include this code, but simply loads step by step the profiles that were
generated using this method.

Given the 25 generated team member profiles, we asked DM1 to assign them to
one of the three categories, while explaining his reasoning to one of the chapter’s
authors. DM1’s assignments are illustrated in Table 3. This corresponds to step 2 in
the proposed protocol.

Table 3 The initial set of contributor profiles and their assignment by DM1;

Profile Criteria Assigned
number g1 g2 g3 g4 g5 category

1 vg g vb vg n Bad
2 b vg n vb n Neutral
3 b b b b g Bad
4 b b vb vg n Bad
5 g vb vg b b Neutral
6 vg g vg n vg Good
7 g n b n vg Neutral
8 n n g b g Good
9 n vg n g b Bad
10 vb g vg vb b Bad
11 g g g vb vg Good
12 n vg g vb g Neutral
13 g g n n vb Bad

Profile Criteria Assigned
number g1 g2 g3 g4 g5 category

14 vg n vb b g Bad
15 n b b vb n Bad
16 b vg g vg vb Bad
17 n b n g n Bad
18 vg vb vg g b Neutral
19 vg vb n n vb Bad
20 vb vg vg b vg Neutral
21 vb n vb n vb Bad
22 vb b vb vg g Bad
23 vb vb g g vg Neutral
24 g vb b g vb Bad
25 b n b vg b Bad

Using this information, we then tried to construct a MR-Sort model with a simple
majority rule (step 3 of the protocol).
define the category assignments of the generated alternatives

assignments <-c("Bad", "Neutral", "Bad", "Bad", "Neutral",
"Good", "Neutral", "Good", "Bad", "Bad",
"Good", "Neutral", "Bad", "Bad", "Bad", "Bad",
"Bad", "Neutral", "Bad", "Neutral", "Bad",
"Bad", "Neutral", "Bad", "Bad")

names(assignments) <- rownames(pT)

m1 <- MRSortInferenceExact(pT, assignments, categoriesRanks,
criteriaMinMax, veto = FALSE,
readableWeights = TRUE,

24 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

readableProfiles = TRUE)

Running the R code up to this point gives us the following result contained in m1:
> m1

$solverStatus
[1] "Failed (invalid bounds)"

This means that no MR-Sort model with only the majority rule is able to capture
the assignments given by DM1 on the 25 profiles (step 4). In order to determine
whether we need to use a more expressive model, we first generate the minimal sets
of incompatible assignments (step 5).
incomp <- MRSortIdentifyIncompatibleAssignments(pT, assignments,

categoriesRanks,
criteriaMinMax,
veto = FALSE)

The result, containing a list of sets of indexes corresponding to the profiles that
would need to be assigned to different categories in order for us to use an MR-Sort
model, is given by:
> incomp
$incompatibleSets
$incompatibleSets[[1]]
[1] "2" "12"

$incompatibleSets[[2]]
[1] "2" "8"

$incompatibleSets[[3]]
[1] "2" "11"

$solverStatus
[1] "Success"

The solverStatus output reassures us that we have found all incompatible
sets of alternatives assignments. In order to also provide DM1 with the alternative
category assignments for each incompatible assignment example, we removed one
by one each set of team member profiles and generated a new MR-Sort model (see
the alternativesIDs parameter below).
> m1pr <- MRSortInferenceExact(pT, assignments, categoriesRanks,

criteriaMinMax, veto = FALSE,
readableWeights = TRUE,
readableProfiles = TRUE,
alternativesIDs = rownames(pT)
[!rownames(pT) %in% c(2, 12)])

The result of this function is given by m1pr:
> m1pr
$lambda
[1] 0.6004

Integrating managerial preferences into team members’ evaluation 25

$weights
c1 c2 c3 c4 c5

0.2008 0.1988 0.2008 0.1998 0.1998

$profilesPerformances
c1 c2 c3 c4 c5

Good 0.000 0.0000 1.000 1.001 1.501
Neutral -0.999 -1.0005 0.001 -1.000 1.001
Bad NA NA NA NA NA

$vetoPerformances
NULL

$solverStatus
[1] "Solution found"

lambda corresponds to the majority threshold of the MR-Sort model, the vector
weights contains the criteria weights, while profilesPerformances con-
tains a matrix with the evaluations of the category limits. The first line of this matrix
corresponds to the limit between categories Good and Neutral, the second line cor-
responds to the limit between categories Neutral and Bad, while the last is simple
a dummy profile corresponding to the lower limit of category Bad. No values are
needed for this profile (NA), however it is nevertheless provided as other function
of the package require it to be present. We also find that no veto profiles are pro-
vided and that the model corresponds to the optimal solution fulfilling all provided
assignment examples.

Using the model from m1pr, we then applied the MR-Sort assignment procedure
on the alternatives that we previously removed, in order to extract their category
assignments which would allow us to continue using an MR-Sort model.
> MRSort(pT, m1pr$profilesPerformances, categoriesRanks,

m1pr$weights, criteriaMinMax, m1pr$lambda,
alternativesIDs = c(2, 12))

2 12
"Bad" "Good"

The above output indicates that alternative 2 should be assigned to the Bad
category, while alternative 12 should be assigned to Good (DM1 initially assigned
them both to Neutral).

We repeated this procedure for the remaining two sets of incompatible assign-
ments ({2, 8} and {2, 11}) and obtained the results illustrated in Table 4.

Using these sets, we devised a series of questions for DM1 to simplify his task
of considering these alternative assignments (step 6). As the second team member
profile appeared in all three sets, we asked if he would agree to change his assignment
from Neutral to Bad. DM1 agreed to change his assignment, and confirmed that he
had initially hesitated between these two categories.

We continued by asking if he would be willing to change the assignment for 8,
11, or 12, in order to complete one of the three sets of assignment profiles. DM1 did
not agree with changing any of these other assignments. Because we were unable

26 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

Table 4 The alternative assignments for anMR-Sort model within the first iteration of the inference
protocol for DM1.

Profile Criteria Category
number g1 g2 g3 g4 g5 original alternative

First set
2 b vg n vb n Neutral Bad
8 n n g b g Good Neutral

Second set
2 b vg n vb n Neutral Bad
11 g g g vb vg Good Neutral

Third set
2 b vg n vb n Neutral Bad
12 n vg g vb g Neutral Good

to apply any of the alternative assignments in full, we did not apply the change to
profile 2.

Consequently we increased the complexity of the model (step 7) and found that
an MR-Sort model with vetoes was able to capture all 25 profile assignments (again
steps 3 and 4). The code for constructing an MR-Sort model with vetoes is presented
below:
> m1 <- MRSortInferenceExact(pT, assignments, categoriesRanks,

criteriaMinMax, veto = TRUE,
readableWeights = TRUE,
readableProfiles = TRUE)

Notice that we have used the same function MRSortInferenceExact, how-
ever, by making the veto parameter TRUE, the function will now try to construct
an MR-Sort model with vetoes. The result of this step is presented below.
> m1
$lambda
[1] 0.5996

$weights
c1 c2 c3 c4 c5

0.1992 0.2002 0.2012 0.1992 0.2002

$profilesPerformances
c1 c2 c3 c4 c5

Good 0.001 0.000 1.001 -1.0000 0.667
Neutral -1.000 -0.999 0.001 -1.5005 -0.667
Bad NA NA NA NA NA

$vetoPerformances
c1 c2 c3 c4 c5

Good -2 NA -1 NA -1
Neutral NA NA -2 NA -2
Bad NA NA NA NA NA

$solverStatus
[1] "Solution found"

Integrating managerial preferences into team members’ evaluation 27

We now find that an MR-Sort model with vetoes fits the provided assignments ex-
amples, since the MRSortInferenceExact function found an optimal solution.
We observe that the vetoPerformances parameter is now not empty, containing
the veto profiles for each of the three categories. The veto profiles only contain val-
ues where minimum performances for a category are necessary. Naturally, the veto
profile of the Bad category will always be empty, and is only provided for interfacing
with other functions of the package.

This ended the first iteration of the protocol. In order to output an illustration of
the model given by m1, we may use the following R code:
defining the plot lower and upper bounds

criteriaLBs=c(-2,-2,-2,-2,-2)

names(criteriaLBs) <- criteria

criteriaUBs=c(2,2,2,2,2)

names(criteriaUBs) <- criteria

plotMRSortingProblem(pT, m2$profilesPerformances,
categoriesRanks, assignments,
criteriaMinMax, criteriaUBs,
criteriaLBs, NULL, m2$vetoPerformances,
’V’, m2$weights, m2$lambda,
alternativesIDs = "no alternatives")

We use the plotMRSortingProblem function in order to draw the generated
MR-Sort model. This function also requires that we specify the lower and upper
bounds of the criteria evaluation scales, which we provide thought criteriaLBs
and criteriaUBs variables. The function also allows to plot several alternatives
along with their assignment, however, at this point we are only interested in seeing
the model. The output of this code is given in Figure 4. The first diagram shows the
limit between the Bad and Neutral categories, while the second shows the boundary
between Neutral and Good. The lines correspond to the category limits, while the
dark regions represent the range of values which would trigger a veto.

At this point, the model was not yet presented to DM1, as at least a couple of
iterations of the protocol need to be followed. An additional set of 10 profiles were
generated and presented to DM1 (step 9). The code below illustrates the generation
procedure, however, the script that can be loaded from the MCDA package uses the
same evaluations that were used in this experiment, instead of regenerating them, in
order for us to be able to reproduce the original results.
generate new alternatives and add them to the performance table

pT <- unique(rbind(pT,matrix(sample.int(5, 1000, T), 100, 5)
- 3))[1:35,]

rownames(pT) <- 1:35

28 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

weights

Neutral−Bad
1 2 3 4 5

0.1992 0.2002 0.2012 0.1992 0.2002

−1 −0.999

0.001

−1.5005

−0.667

−2 −2

weights

Good−Neutral
1 2 3 4 5

0.1992 0.2002 0.2012 0.1992 0.2002

1

0

1.001

−1

0.667

−2

−1 −1

majorityThreshold = 0.5996

Fig. 4 First iteration preference model of DM1 (MR-Sort with vetoes).

DM1 assigned the new set of alternatives (step 2) as shown in Table 5. This was
again done interactively with a researcher present.

Table 5 The second set of contributor profiles and their assignment by DM1.

Profile Criteria Assigned
number g1 g2 g3 g4 g5 category

26 vg vg n b b Bad
27 vg b n vg b Bad
28 vg b n b vg Neutral
29 vb vg n vg b Bad
30 vb vg n b vg Bad

Profile Criteria Assigned
number g1 g2 g3 g4 g5 category

31 vb b vg vg b Bad
32 vb b n vg vg Bad
33 vg vg vb vg vg Neutral
34 vg vg vg vg vb Good
35 b vb g vb n Neutral

Adding the new assignments in R is done as follows:
define the category assignments of the generated alternatives

assignments <-c(assignments, "Bad", "Bad", "Neutral", "Bad",
"Bad", "Bad", "Bad", "Neutral", "Good", "Neutral")

names(assignments) <- rownames(pT)

Using these new alternatives and their assignments, we again tested whether an
MR-Sort model with vetoes was able to capture them (step 3):
> m2 <- MRSortInferenceExact(pT, assignments, categoriesRanks,

criteriaMinMax, veto = TRUE,
readableWeights = TRUE,
readableProfiles = TRUE)

Integrating managerial preferences into team members’ evaluation 29

> m2
$solverStatus
[1] "Failed (invalid bounds)"

As the code above illustrates, this model did not completely fit the assignments.
The MRSortInferenceExact function reported that the mixed-integer linear
solver did not find a feasible solution. We therefore proceeded to check if DM1 had
any hesitations in his assignments which would allow this model to be used. We
again identified the sets of alternatives with incompatible assignments (step 5):
incomp <- MRSortIdentifyIncompatibleAssignments(pT, assignments,

categoriesRanks,
criteriaMinMax,
veto = TRUE)

> incomp
$incompatibleSets
$incompatibleSets[[1]]
[1] "2" "16"

$incompatibleSets[[2]]
[1] "2" "34"

$incompatibleSets[[3]]
[1] "2" "35"

$incompatibleSets[[4]]
[1] "2" "33"

$incompatibleSets[[5]]
[1] "30" "33"

$solverStatus
[1] "Success"

Five sets of alternatives were found (incompatibleSets). We use the same
approach of inferring an MR-Sort model using all assignment examples except
those from each incompatible set and then using this model in order to find their
new assignments for each of the five incompatible sets. We illustrate the results in
Table 6.

We observed that the first four sets contained the second team member profile,
which DM1 had already agreed to change. Therefore, we continued by first asking if
he would also agree to an alternative assignment for one of the remaining profiles in
these sets (step 6). DM1 did not accept changing the assignment of profiles 16, 33 or
34, especially for the third set where the alternative assignment strongly contradicted
the initial assignment. However, DM1 agreed to change the assignment of profile 35
from Neutral to Bad. We make these changes using the following code:
assignments[2] <- "Bad"

assignments[35] <- "Bad"

With these changes made, we now construct an MR-Sort model with vetoes:

30 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

Table 6 The alternative assignments for an MR-Sort model with vetoes within the second iteration
of the inference protocol for DM1.

Profile Criteria Category
number g1 g2 g3 g4 g5 original alternative

First set
2 b vg n vb n Neutral Bad
16 b vg g vg vb Bad Neutral

Second set
2 b vg n vb n Neutral Bad
33 vg vg vb vg vg Neutral Bad

Third set
2 b vg n vb n Neutral Bad
34 vg vg vg vg vb Good Bad

Fourth set
2 b vg n vb n Neutral Bad
35 b vb g vb n Neutral Bad

Fifth set
30 vb vg n b vg Bad Neutral
33 vg vg vb vg vg Bad Bad

m2 <- MRSortInferenceExact(pT, assignments, categoriesRanks,
criteriaMinMax, veto = TRUE,
readableWeights = TRUE,
readableProfiles = TRUE)

The resulting model given by m2 is:
> m2
$lambda
[1] 0.6006

$weights
c1 c2 c3 c4 c5

0.2002 0.1992 0.2002 0.2002 0.2002

$profilesPerformances
c1 c2 c3 c4 c5

Good 0.000 0.667 1.000 -1 1.501
Neutral -0.999 -0.667 0.001 -2 1.001
Bad NA NA NA NA NA

$vetoPerformances
c1 c2 c3 c4 c5

Good -2 -1 -1 NA NA
Neutral NA NA NA NA NA
Bad NA NA NA NA NA

$solverStatus
[1] "Solution found"

Wedepict thismodel using theplotMRSortingProblem function in Figure 5.
With the second iteration of preference modeling completed, DM1 agreed to

continue with another iteration (step 8). Adding more assignment examples allows
us to more accurately infer the model of DM1’s preferences. We have not used in

Integrating managerial preferences into team members’ evaluation 31

weights

Neutral−Bad
1 2 3 4 5

0.2002 0.1992 0.2002 0.2002 0.2002

−0.999
−0.667

0.001

−2

1.001

weights

Good−Neutral
1 2 3 4 5

0.2002 0.1992 0.2002 0.2002 0.2002

0

0.667
1

−1

1.501

−2

−1 −1

majorityThreshold = 0.6006

Fig. 5 Second preference model of DM1 (MR-Sort with vetoes).

these experiments any measure of convergence of the model, but only the opinion
of DM1 with respect to its output, in the form of assignment rules, as we will see
shortly.

Starting a new iteration, we generated an additional 10 profiles (step 9), and asked
DM1 to assign them during an interview (step 2). The results of this assignment are
presented in Table 7.

Table 7 The third set of contributor profiles and their assignment by DM1.

Profile Criteria
number g1 g2 g3 g4 g5 Category

36 b vg n vg g Bad
37 n b g vb vg Neutral
38 n vb vb b vg Bad
39 vb vb g b vg Neutral
40 vg vb vg vg vg Good

Profile Criteria
number g1 g2 g3 g4 g5 Category

41 n vb g vb vb Bad
42 n b g b vb Bad
43 b vg n vb vg Good
44 b vg vb g b Bad
45 vb g vb vb vg Bad

After adding the new profiles and their assignments to the existing ones, we found
that an MR-Sort model with vetoes was not able to represent all of the assignments
(step 3 and 4). We generated four possible profile changes, as shown in Table 8.
incomp <- MRSortIdentifyIncompatibleAssignments(pT, assignments,

categoriesRanks,
criteriaMinMax,
veto = TRUE)

> incomp
$incompatibleSets
$incompatibleSets[[1]]

32 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

[1] "8" "34"

$incompatibleSets[[2]]
[1] "14" "43"

$incompatibleSets[[3]]
[1] "33" "43"

$incompatibleSets[[4]]
[1] "34" "43"

$solverStatus
[1] "Success"

Table 8 The alternative assignments for an MR-Sort model with vetoes within the third iteration
of the inference protocol for DM1.

Profile Criteria Category
number g1 g2 g3 g4 g5 original alternative

First set
8 n n g b g Good Neutral
34 vg vg vg vg vb Good Bad

Second set
14 vg n vb b g Bad Neutral
43 b vg n vb vg Good Bad

Third set
33 vg vg vb vg vg Neutral Bad
43 b vg n vb vg Good Bad

Fourth set
34 vg vg vg vg vb Good Bad
43 b vg n vb vg Good Bad

Profiles 8, 33 and 34 reoccurred, but we were already aware that DM1 did not
want to change their assignments. Therefore we only inquired on the possibility of
changing profiles 14 and 43. DM1 felt strongly about retaining his initial assessment,
motivating us to test a more complex model (step 6).

We tested all other MR-Sort variants and found that only the one with conflicting
vetoes and dictators was able to fulfill DM1’s assignments.
m3 <- LPDMRSortInferenceExact(pT, assignments, categoriesRanks,

criteriaMinMax, majorityRule = "dv",
readableWeights = TRUE,
readableProfiles = TRUE,
minmaxLPD = TRUE)

> m3
$lambda
[1] 0.601

$weights
c1 c2 c3 c4 c5

0.200 0.199 0.201 0.200 0.200

Integrating managerial preferences into team members’ evaluation 33

$profilesPerformances
c1 c2 c3 c4 c5

Good 0.000 -0.001 1.000 -1 2.001
Neutral -0.999 -1.001 0.001 -2 1.001
Bad NA NA NA NA NA

$vetoPerformances
c1 c2 c3 c4 c5

Good -2 NA -1 NA 1
Neutral -2 NA -2 NA 1
Bad NA NA NA NA NA

$dictatorPerformances
c1 c2 c3 c4 c5

Good NA 0 NA NA NA
Neutral NA 0 2 NA 2
Bad NA NA NA NA NA

$solverStatus
[1] "Solution found"

This model is illustrated in Figure 6. Vetoes are shown in black, while dictators
are lightly shaded.

weights

Neutral−Bad
1 2 3 4 5

0.2 0.199 0.201 0.2 0.2

−0.999 −1.001

0.001

−2

1.001

0

2 2

−2

−2

1

weights

Good−Neutral
1 2 3 4 5

0.2 0.199 0.201 0.2 0.2

0 −0.001

1

−1

2.001

0

−2

−1

1

majorityThreshold = 0.601

Fig. 6 Third preference model of DM1 (MR-Sort with conflicting vetoes and dictators).

At this point, DM1 expressed his interest in reviewing themodelwe had generated.
In order to allow DM1 to validate the model, we presented a series of rules derived
from it, depicted in Figure 7. The rules were displayed as a series of graphs showing
all combinations of evaluations that a good or bad teammember could have. The rules
for the neutral category were not included, as they can be inferred as a complement
of the rules for the good and bad team members. At the time of this writing, the

34 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

functionalities of generating and plotting the assignment rules are currently not
implemented in the MCDA package. In order to minimize the number of rules per
category, we allowed for some overlap to occur. It may be noticed, for instance, that
the ideal team member profile (containing the highest evaluations on all criteria) is
included in all rules corresponding to the Good contributors.

Good Contributors

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

Bad Contributors

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

Fig. 7 Assignment rules for good and bad contributors from the perspective of DM1.

We explained the interpretation of the rules verbally to DM1, who validated
the illustrated rules without making any changes to them. For example, the first
rule tells us that a Good contributor is at least very good in documentation and
testing, good in coding, neutral in commitment, bad in his/her global vision on the
project and very bad in working with others. The second rule tells us that a Good
contributor can alternatively be at least good in coding, documentation and testing,

Integrating managerial preferences into team members’ evaluation 35

neutral in commitment and in working with others and bad in his/her global vision
on the project. Finally, a Good contributor may also be someone at least very good
in documentation and testing, neutral in working with others and in coding, bad in
commitment and very bad in his/her global vision on the project. Similar descriptions
of the rules describing a Bad contributor can be made, except that in that case the
boundaries correspond to “at most” assertions, instead of “at least”.

5.2 Inferring the preferences of DM2

We continue with the second DM, who selected the same 5 criteria as the first one.
Below, we will only illustrate the different steps of the protocol and their results,
without including this time the R code.

Because DM2 selected the same subset of dimensions as DM1, we asked him
to assign the same initial 25 model alternatives as DM1 in order to better illustrate
any similarities or differences in assignment choices. DM2’s assignments were quite
different from those of DM1, and are shown in Table 9.

Table 9 The initial set of contributor profiles and their assignment by DM2.

Profile Criteria Assigned
number g1 g2 g3 g4 g5 category

1 vg g vb vg n Good
2 b vg n vb n Bad
3 b b b b g Bad
4 b b vb vg n Bad
5 g vb vg b b Neutral
6 vg g vg n vg Good
7 g n b n vg Good
8 n n g b g Neutral
9 n vg n g b Good
10 vb g vg vb b Bad
11 g g g vb vg Good
12 n g g vb g Good
13 g g n n vb Good

Profile Criteria Assigned
number g1 g2 g3 g4 g5 category

14 vg n vb b g Good
15 n b b vb n Bad
16 b vg g vg vb Neutral
17 n b n g n Neutral
18 vg vb vg g b Neutral
19 vg vb n n vb Neutral
20 vb vg vg b vg Bad
21 vb n vb n vb Bad
22 vb b vb vg g Bad
23 vb vb g g vg Bad
24 g vb b g vb Neutral
25 b n b vg b Bad

We tried to fit the data with an MR-Sort model and found that at most 24 of the
25 assignment examples could be captured with this type of model. Therefore we
provided DM2with the possible sets of alternatives, shown in Table 10, which would
allow for an MR-Sort model to be used should the assignments be changed.

DM2 had already verbally expressed hesitation in assigning the eighth profile,
and therefore agreed to change his assignment. The resulting MR-Sort model is
presented in Figure 8.

36 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

Table 10 The alternative assignments for anMR-Sortmodelwithin the first iteration of the inference
protocol with DM2.

Profile Criteria Category
number g1 g2 g3 g4 g5 original alternative

First set 8 n n g b g Neutral Good

Second set 14 vg n vb b g Good Neutral

weights

Neutral−Bad
1 2 3 4 5

0.2012 0.2002 0.1992 0.1992 0.2002

−0.999 −0.999 −0.999
−0.667

−2

weights

Good−Neutral
1 2 3 4 5

0.2012 0.2002 0.1992 0.1992 0.2002

0 0 0

0.667
1

majorityThreshold = 0.6006

Fig. 8 First preference model for DM2 (MR-Sort using a simple majority rule).

We continued with a second iteration by generating an additional 10 profiles. This
new set was presented to DM2, who assigned them as shown in Table 11.

Table 11 The second set of contributor profiles and their assignment by DM2.

Profile Criteria Assigned
number g1 g2 g3 g4 g5 category

26 b b b vg vg Bad
27 vb n g n g Bad
28 vg b n b n Neutral
29 n n vb vb g Neutral
30 b b vg b vg Bad

Profile Criteria Assigned
number g1 g2 g3 g4 g5 category

31 n n g vb vb Neutral
32 n vb n vb vb Bad
33 vb n n n vb Bad
34 n n vb n vb Bad
35 n vb vb n g Neutral

We combined the initial 25 profiles with the 10 new profiles and checked their
fit with an MR-Sort model. As only 33 out of the 35 profiles could be represented
by this model, we proceeded to determine if DM2 would accept adapting a minimal
number of his assignments. Only one set of profile changes wouldmake this possible.
This option is shown in Table 12.

Integrating managerial preferences into team members’ evaluation 37

Table 12 The alternative assignments for an MR-Sort model within the second iteration of the
inference protocol (DM2).

Profile Criteria Category
number g1 g2 g3 g4 g5 original alternative

First set
16 b vg g vg vb Neutral Bad
34 n n vb n vb Bad Good

DM2 expressed a willingness to change the assignment of the first profile from
this set. However, the change in assignment for the second profile was too drastic.
Therefore we looked at a more complex model, in particular an MR-Sort with vetoes
or an MR-Sort with dictators, could describe the assignments. Both of these models
were also unable fit the data completely, but the model with dictators required two
profiles to be changed,whereas themodelwith vetoes only needed one profile change.
Therefore we focused on the MR-Sort with vetoes. The possible profile changes are
found in Table 13.

Table 13 The alternative assignments for anMR-Sort model with vetoes within the second iteration
of the inference protocol (DM2).

Profile Criteria Category
number g1 g2 g3 g4 g5 original alternative

First set 16 b vg g vg vb Neutral Bad

Second set 32 n vb n vb vb Bad Neutral

Third set 34 n n vb n vb Bad Neutral

As DM2 had previously expressed a hesitation on the assignment of profile 16,
he quickly agreed to the proposed changed. The model that reflects all assignments
at the end of the second iteration is depicted in Figure 9.

The model appeared to further illustrate the existence of vetoes on the first two
criteria, which we had already posited from the reasoning DM2 expressed in the
assignment interview. DM2 agreed to continue with another iteration of the protocol.

We generated an additional set of 10 profiles, which were assigned as illustrated
in Table 14.

After adding the 10 new profiles and their assignments to the existing ones, we
found that an MR-Sort model with vetoes was not able to represent all of these
assignments and that at least three profile assignments needed to be altered to allow
for this type of model to be used. These sets are presented in Table 15.

As profile 39 appeared in all three sets, we began with asking DM2 if he hesitated
in assigning this profile. As the answer was negative, we considered a more complex
model. An MR-Sort model with veto weakened by a dictator was able to fully reflect
all of the DM2’s assignments. Figure 10 presents this model.

At this point, DM2 expressed an interest in reviewing themodel, which, after three
iterations, already reflected a large portion of his perspective. A set of rules were

38 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

weights

Neutral−Bad
1 2 3 4 5

0.1673 0.1663 0.1663 0.3327 0.1673

0.001

−1 −0.999

−2

0.001

−1

weights

Good−Neutral
1 2 3 4 5

0.1673 0.1663 0.1663 0.3327 0.1673

1.001 1

0

−1

1

−1

majorityThreshold = 0.5

Fig. 9 Second preference model for DM2 (MR-Sort with vetoes).

Table 14 The third set of contributor profiles and their assignment by DM2.

Profile Criteria Assigned
number g1 g2 g3 g4 g5 category

36 n vb vb vb g Neutral
37 n g n vb g Neutral
38 vg vb vg vg vg Good
39 b vg vg vg vg Neutral
40 n n b vg vg Neutral

Profile Criteria Assigned
number g1 g2 g3 g4 g5 category

41 g g n vb vb Good
42 n vb b vg vg Neutral
43 g b vb vb vb Neutral
44 n b n vb vb Neutral
45 vg vb b vg n Good

Table 15 The alternative assignments for an MR-Sort model with vetoes within the third iteration
of the inference protocol (DM2).

Profile Criteria Category
number g1 g2 g3 g4 g5 original alternative

First set
9 n vg n g b Bad Neutral
32 n vb n vb vb Bad Neutral
39 b vg vg vg vg Neutral Bad

Second set
9 n vg n g b Bad Neutral
12 n vg g vb g Good Neutral
39 b vg vg vg vg Neutral Bad

Third set
38 vg vb vg vg vg Good Neutral
39 b vg vg vg vg Neutral Bad
45 vg vb b vg n Good Neutral

Integrating managerial preferences into team members’ evaluation 39

weights

Neutral−Bad
1 2 3 4 5

0.334 0.1665 0.1665 0.1665 0.1665

−0.999 −1

1.001

−0.999
−0.667

1 1

−1

weights

Good−Neutral
1 2 3 4 5

0.334 0.1665 0.1665 0.1665 0.1665

0

1

2.001

1.001
0.667

1

2

−1

−2

majorityThreshold = 0.5005

Fig. 10 Third preference model for DM2 (MR-Sort with vetoes weakened by dictators).

generated from the model, as shown in Figure 11, and we explained the implications
in an interview with DM2.

DM2 felt that the model was slightly inaccurate, and decided to tweak the first
two rules of the Good category by raising the boundary of the second criterion from
very bad to bad, as he felt that being neutrally committed to the project and having
a clear inability to work with others would not be a characteristic of a good team
member, regardless of all other factors. In the Bad category, DM2 also felt that a very
committed team member should not be in the Bad category, regardless of other poor
evaluations, however if the commitment were to fall to neutral, this would indeed
be a Bad team member. We therefore lowered the evaluation on the first criterion of
the first Bad rule from very good to neutral. The second and third rules in the Bad
category were also adjusted by lowering slightly the good evaluation on the second
criterion to a neutral one. The adjusted assignment rules, which were still consistent
with the profiles assignments of DM2, are presented in Figure 12.

The rules can again be interpreted as lower limits for a contributor to be considered
good, a single rule among the five being needed by a contributor to validate, and as
upper limits for a contributor to be considered bad respectively.

In the next section we will discuss the findings from these experiments, and what
it implies to practitioners and scholars.

40 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

Good Contributors

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

Bad Contributors

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

Fig. 11 Assignment rules for good and bad contributors for DM2.

6 Discussion

6.1 Using the MCDA R package as a support tool

In this chapter, we proposed to support the multi-criteria evaluation process through-
out all of its steps by use of a single environment, the R statistical software. This
prevents analysts and DMs from having to resort to using multiple tools at differ-
ent stages of the decision aiding process, adding an additional level of difficulty.
The choice of using R throughout the process was motivated by its focus towards
data analysis, its open source and package-based philosophy, as well as its large
community of users and contributors.

While the MCDA package currently contains only a few MCDA algorithms, its
authors wish to continue developing it in the future so that as many of the MCDA
algorithms can be found within it. Furthermore, functions linked to the presentation
of the results, for instance graphically, will also be added to complement the existing
ones.

Integrating managerial preferences into team members’ evaluation 41

Good Contributors

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

Bad Contributors

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

Fig. 12 Adjusted assignment rules for good and bad contributors (DM2).

This application of MCDA in a real-world case has also shown that, even when
the decision aiding process is complex, by using R and the MCDA package we are
able to successfully obtain a convincing solution.

6.2 Managerial and theoretical implications

In proposing this methodology, we contributed towards filling the gap between
operational research techniques and information management sciences regarding the
expression of different points of view, and the automation of the process, here in
the manager/team relationship. We are confident that our method can be applied to
different situations exhibiting teaming, and are key to the building of an efficient
staffing support system, especially in the case of team building.

It proposes a way to go beyond the paradox raised by Kayworth and Leidner
[32] about both the non-statistical link between team manager characteristics and
team performance, but also team leader importance in trust-building by exposing that
there is no direct link because managers are different and have different expectations.
From a theoretical point of view, it opens a new area of research into the collection

42 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

of data on a manager’s expectations regarding team members in particular, and
principal-agent modeling in general. Instead of trying to identify a good agent for
the majority of managers through statistical inference, we propose to construct an
individual preference model for every manager.

From a practical point of view, the importance of trust-building and the role of
the manager in doing so [32], through integrity and benevolence [30], has been
identified. Therefore the first contact between the manager and the team, and the
manager’s communication of expectations are of utmost importance. This is where
our work may provide solutions to practitioners. We have proposed a method and
showed that this allows managers to better define what their evaluation criteria are.
This model does not identify a single acceptable profile, but allows for teammembers
to have different strengths and weaknesses, yet understand the relative importance of
different attributes. Because the results are presented in a structured way, ambiguity
is reduced and transparency is increased.

We are confident that this approach would result in solid and actionable results
regarding efficient teaming questions, not only in the team building phase, but also
in subsequent coaching and in explaining the team manager’s expectations.

6.3 Application of assignment rules

The assignment rules provided as the output of our preference elicitation protocol can
firstly serve the manager in better understanding his/her perspective on the important
characteristics that make for a good team member, and similarly, those which make
for a bad one. The use of these rules is also linked to more consistent evaluation of
the team members, since the manager will refer to the generated assignment rules
for all subsequent evaluations of new team members or re-evaluation of existing
ones. While the evaluations of a given team member on every criterion are currently
subjectively provided by the manager, using the assignment rules provides a level
of objectivity. Additionally, the criteria evaluations could potentially be linked to
less subjective means of evaluating team members, by linking them to systems
that automatically asses their performance, or by having other members from the
managerial structure intervene in constructing them.

A second benefit of the assignment rules is the possibility to provide recommen-
dations to team members on which criteria they need to improve and on which they
should be careful not to worsen. Let us consider the illustrative example presented
in Fig. 13. We use, in this case, the assignment rules extracted for DM2, as well as a
team member who was evaluated by DM2 as neutral in commitment (first criterion),
bad in working with other and produced code quality (the following two criteria),
very bad in his or her vision on the whole project (fourth criterion), but very good
in documentation and testing (last criterion).

We notice that this contributor is evaluated by DM2 as neutral, since none of
the assignment rules from the Good category are validated, nor any from the Bad
category. The plots, however, give insights into how the contributor may improve in

Integrating managerial preferences into team members’ evaluation 43

Good Contributors

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

Bad Contributors

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

g1 g2 g3 g4 g5

vb
b
n
g
vg

Fig. 13 Assignment rules of DM2 overlaid with contributor profile.

order to become a good contributor. With respect to the first assignment rule, he/she
could improve slightly in produced code quality (g3) in order to become good on
this criterion and in the overall vision of the project (g4) in order to not be very bad.
The second assignment rule requires more drastic changes on the fourth criterion
and will not likely be taken into account by DM2. The third rule requires the same
changes as the first, but also an improvement from bad to good in teamwork skills.
The fourth rule tells us that slight improvements in commitment (g1) from neutral to
good and in documentation and testing from good to very good may also make this
contributor a good one. Finally, only improving in teamwork, however quite radically
(from bad to very good) could also be proposed.

While DM2 would naturally ask all contributors to strive to improve on all
criteria, ideally wishing all contributors to be very good on all of them, the previous
recommendations may serve as the paths of least resistance, allowing contributors to
become globally good quickly and without too much effort, As the recommendations
with respect to the second and third assignment rules include those for the first rule,
DM2 would consider recommending only the latter as well as those from rules 4 and
5. While we may be inclined to select only a subset of recommendations pertaining
to the minimum number of characteristics to improve, or the least amounts, it may

44 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

be ultimately up to the contributor to decide on what to improve, as he/she may have
a different perspective on the difficulty of improving on every criterion.

A similar analysis may be made with respect to the three rules corresponding to
the Bad category, assessing in this case the risk for a contributor to become bad. The
first rule tells us that a decrease from bad to very bad in teamwork and a decrease
from good to neutral in documentation and testing would make this contributor a
bad one. The same decrease on the last criterion paired with a decrease from neutral
to bad on the first one also correlates with this contributor becoming bad. Finally,
the third rule only requires the same performance decrease in documentation and
testing, and since it is included in the other recommendations, we can safely state
that the highest risk of becoming bad is associated with a performance drop on
this criterion. DM2 may in this case suggest to the contributor to be careful to not
decrease their efforts on this aspect.

7 Conclusion

This chapter’s goal was to advocate for a manager-specific approach to evaluating
the composition of a good team member, especially in the case of FLOSS inspired
organizations and to illustrate a methodology to make this assessment explicit with
existing tools, available in a standard platform such as R. We do not pretend to have
provided any categorization of types of managers on the basis of their preferences.
However, our experiment clearly shows that while a set of variables relevant to the
evaluation of team members can be identified within a domain, different managers
rely on different subsets of factors, and weigh the factors differently.

Furthermore, we demonstrated that our 3-step methodology can be used to create
a model which was accepted by the FLOSSmanagers we included in our experiment.
The three steps consist in defining the variables according to the literature and to
validate them with practitioners, selecting an appropriate subset of criteria for each
individual manager, and finally eliciting a model of the manager’s contributors
evaluation through an interactive and iterative process using fictitious contributors
profiles.

The presented methodology and the illustrated implementation within R may
serve as a blueprint for readers interested in applying it to a different context, where
an ordered evaluation of entities (objects, people, strategies) is required, and where
this evaluation needs to be done in accordance to the preferences of one or multiple
decision-makers.

We wish to mention, however, several limitations of our approach, which open
several perspectives for improvement. One such limitation is the number of inter-
actions with the DM, which were substantial and may be streamlined by making
the interactions automatic through a dedicated system. One direct factor for having
multiple interactions with the DM was our use of exact inference algorithms, which
begin to require large amounts of time and computational resources even for rela-
tively modest numbers of contributor profiles. Because of this, we also had to deal

Integrating managerial preferences into team members’ evaluation 45

with the effects of bounded rationality, where the DM’s judgments could become
slightly inconsistent, changing perspective on the problem from one session to the
next. In order to overcome this by accelerating the whole process, approximative in-
ference methods could be explored. This would allow us to perform more iterations
of the protocol and therefore arrive to models that do not vary consistently between
the final iterations.

The next steps regarding the use of this methodology for the analysis of teams
would be to do the same at group level, and then to study the connexions between
teammember qualities and group performance, contributing to the discussion opened
by [36] on that matter. We could additionally explore how business processes and
existing information systems within companies can be used to automatically evaluate
the performance of a contributor on the technical criteria as well as how procedures
used in recruitment can be used to evaluate them on the psychological criteria,
leading to the perspective of integrating our methodology directly into such systems.

Finally, we only explored the family of models based on outranking relations,
MR-Sort and its extensions. The motivation behind the use of these models was
based on the ordinal scales used to evaluate team members on the different criteria,
and the fact that the DM often describes a good teammember based on the member’s
outstanding characteristics rather than the average of all attributes. We also assumed
that the DM has accurate knowledge of the performance of each team member in
all dimensions, although quantitative measures linked to each dimensions could be
additionally considered, allowing the DM to judge unknown team members, for
instance, in the context of a recruitment procedure.

In that sense it would provide a new piece to a recruitment system workflow,
after a first selection of the candidate according to their technical skills and their
social/trust links as in Malinowski et al. [39], whose data would be proposed as input
for the manager in that context.

Acknowledgements This work was supported, in part, by Science Foundation Ireland grants
10/CE/I1855 and 13/RC/2094 to Lero - the Irish Software Research Centre (www.lero.ie).

We would like to thank the six FLOSS community managers who participated in this research
and Pr. Mathieu Simonnet, who provided input on the modeling of psychological traits.

References

[1] Introduction to R. https://www.datacamp.com/courses/
free-introduction-to-r. Accessed: 2018-03-15.

[2] Mark S Allen, Iain Greenlees, and Marc Jones. Personality in sport: A com-
prehensive review. International Review of Sport and Exercise Psychology,
6(1):184–208, 2013.

[3] AnnBarcomb,Michael Grottke, Jan-Philipp Stauffert, Dirk Riehle, and Sabrina
Jahn. How developers acquire FLOSS skills. In Proceedings of the 11th In-

46 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

ternational Conference on Open Source Systems (OSS 2015). Springer Verlag,
2015.

[4] Genevieve Bassellier and Izak Benbasat. Business competence of informa-
tion technology professionals: Conceptual development and influence on IT-
business partnerships. MIS quarterly, pages 673–694, 2004.

[5] Sarah Beecham. Motivating software engineers working in virtual teams across
the globe. In Software Project Management in a Changing World, pages 247–
273. Springer, 2014.

[6] Sarah Beecham and John Noll. What motivates software engineers work-
ing in global software development? In Pekka Abrahamsson, Luis Cor-
ral, Markku Oivo, and Barbara Russo, editors, International Conference on
Product-Focused Software Process Improvement, pages 193–209. Springer,
2015.

[7] Sébastien Bigaret, Richard Hodgett, Patrick Meyer, Tatyana Mironova, and
Alexandru-Liviu Olteanu. Supporting the multi-criteria decision aiding pro-
cess: R and the MCDA package. EURO journal on decision processes, 5(1–
4):169 – 194, November 2017.

[8] D. Bouyssou and T. Marchant. An axiomatic approach to noncompensatory
sorting methods in MCDM, I: the case of two categories. European Journal
of Operational Research, 178(1):217–245, April 2007.

[9] D. Bouyssou and T. Marchant. An axiomatic approach to noncompensatory
sorting methods in MCDM, II: more than two categories. European Journal
of Operational Research, 178(1):246–276, April 2007.

[10] D. Bouyssou, T. Marchant, M. Pirlot, A. Tsoukiàs, and P. Vincke. Evaluation
and decision models with multiple criteria: Stepping stones for the analyst.
International Series in Operations Research andManagement Science, Volume
86. Boston, 1st edition, 2006.

[11] Maximilian Capraro and Dirk Riehle. Inner source definition, benefits, and
challenges. ACM Computing Surveys (CSUR), 49(4):67, 2017.

[12] Kevin Daniel André Carillo and Josianne Marsan. “The dose makes the
poison”—exploring the toxicity phenomenon in online communities. In ICIS,
2016.

[13] Emilio J Castilla and Stephen Benard. The paradox of meritocracy in organi-
zations. Administrative Science Quarterly, 55(4):543–676, 2010.

[14] Shi-Jie Chen and Li Lin. Modeling team member characteristics for the forma-
tion of a multifunctional team in concurrent engineering. IEEE Transactions
on Engineering Management, 51(2):111–124, 2004.

[15] Paul David, Rishab A. Ghosh, Rüdiger Glott, Jesús M. González-Barahona,
Federico Heinz, and Joseph Shapiro. Free/Libre and Open Source Software:
Worldwide Impact Study. FLOSS World D31: Track 1 International Report,
Jun 2007.

[16] Sadhana Deshpande and Ita Richardson. Management at the outsourcing
destination-global software development in India. In Global Software Engi-
neering, 2009. ICGSE 2009. Fourth IEEE International Conference on, pages
217–225. IEEE, 2009.

Integrating managerial preferences into team members’ evaluation 47

[17] L.C. Dias and J.N. Clímaco. On computing ELECTRE’s credibility indices un-
der partial information. Journal of Multi-Criteria Decision Analysis, 8(2):74–
92, 1999.

[18] L.C. Dias and J.N. Clímaco. ELECTRE TRI for groups with imprecise infor-
mation on parameter values. Group Decision and Negotiation, 9(5):355–377,
September 2000.

[19] L.C. Dias, V. Mousseau, J. Figueira, and J.N. Clímaco. An aggregation/disag-
gregation approach to obtain robust conclusions with ELECTRE TRI. Euro-
pean Journal of Operational Research, 138(2):332–348, April 2002.

[20] James E Driskell, Gerald F Goodwin, Eduardo Salas, and Patrick Gavan
O’Shea. What makes a good team player? Personality and team effective-
ness. Group Dynamics: Theory, Research, and Practice, 10(4):249, 2006.

[21] Brian Fitzgerald. The transformation of open source software. MIS Quarterly,
30(3):587–598, 2006.

[22] Lucy L Gilson, M Travis Maynard, Nicole C Jones Young, Matti Vartiainen,
and Marko Hakonen. Virtual teams research: 10 years, 10 themes, and 10
opportunities. Journal of Management, 41(5):1313–1337, 2015.

[23] Samuel D Gosling, Peter J Rentfrow, and William B Swann Jr. A very brief
measure of the big-five personality domains. Journal of Research in Personal-
ity, 37(6):504 – 528, 2003.

[24] R.M. Grant. Toward a knowledge-based theory of the firm. Strategic Manage-
ment Journal, 17(Winter):109–122, 1996.

[25] Roger Guimera, Brian Uzzi, Jarrett Spiro, and Luis A Nunes Amaral. Team
assembly mechanisms determine collaboration network structure and team
performance. Science, 308(5722):697–702, 2005.

[26] Charlotte Hess and Elinor Ostrom. Introduction: An Overview of the Knowl-
edge Commons. In [27], editor, Understanding Knowledge as a Commons.
From Theory to Practice, pages 3–26. 2006.

[27] Charlotte Hess and Elinor Ostrom, editors. Understanding Knowledge as a
Commons. From Theory to Practice. MIT Press, december 2006.

[28] IEEE Spectrum. The 2016 top programming languages. Available from:
http://spectrum.ieee.org/computing/software/the-2016-top-programming-
languages, 2016.

[29] Ross Ihaka and Robert Gentleman. R: a language for data analysis and graphics.
Journal of computational and graphical statistics, 5(3):299–314, 1996.

[30] Sirkka L. Jarvenpaa, Kathleen Knoll, and Dorothy E. Leidner. Is anybody out
there? Antecedents of trust in global virtual teams. Journal of Management
Information Systems, 14(4):29–64, 1998.

[31] Konstantinos V. Katsikopoulos, Ian N. Durbach, and Theodor J. Stewart. When
should we use simple decision models? A synthesis of various research strands.
Omega, 2017.

[32] Timothy R. Kayworth and Dorothy E. Leidner. Leadership effectiveness in
global virtual teams. Journal of Management Information Systems, 18(3):7–
40, 2002.

48 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

[33] R. L. Keeney and H. Raiffa. Decisions with multiple objectives: Preferences
and value tradeoffs. J. Wiley, New York, 1976.

[34] Nicole Kimmelmann. Career in Open Source? Relevant Competencies for
Successful Open Source Developers. IT–Information Technology, 55(5):204–
212, 2013.

[35] Bruce Kogut andUdo Zander. Knowledge of the firm, combinative capabilities,
and the replication of technology. Organization science, 3(3):383–397, 1992.

[36] Srinivas Kudaravalli, Samer Faraj, and Steven L Johnson. A configural ap-
proach to coordinating expertise in software development teams. MIS Quar-
terly, 41(1):43–64, 2017.

[37] A. Leroy, V. Mousseau, and M. Pirlot. Learning the parameters of a multiple
criteria sorting method. In R. Brafman, F. Roberts, and A. Tsoukiàs, editors,
Algorithmic Decision Theory, volume 6992, pages 219–233. Springer, 2011.

[38] William B Locander, H Albert Napier, and Richard W Scamell. A team
approach to managing the development of a decision support system. MIS
Quarterly, pages 53–63, 1979.

[39] Jochen Malinowski, TimWeitzel, and Tobias Keim. Decision support for team
staffing: An automated relational recommendation approach. Decision Support
Systems, 45(3):429–447, 2008.

[40] Robert R. Mc Crae and Paul T. Costa. Reinterpreting the Myers-Briggs Type
Indicator From the Perspective of the Five-FactorModel of Personality. Journal
of Personality, 57(1):17–40, 1989.

[41] Patrick Meyer and Alexandru-Liviu Olteanu. Integrating large positive and
negative performance differences into multicriteria majority-rule sorting mod-
els. Computers & Operations Research, 81:216 – 230, 2017.

[42] George A. Miller. The magical number seven, plus or minus two: Some
limits on our capacity for processing information. The Psychological Review,
63(2):81–97, March 1956.

[43] Jesús Moreno-León, Gregorio Robles, and Marcos Román-González. Exam-
ining the Relationship between Socialization and Improved Software Develop-
ment Skills in the Scratch Code Learning Environment. Journal of Universal
Computer Science, 22(12):1533–1557, December 2016.

[44] V. Mousseau, L.C. Dias, and J. Figueira. Dealing with inconsistent judgments
in multiple criteria sorting models. 4OR, 4(3):145–158, 2006.

[45] V. Mousseau, L.C. Dias, J. Figueira, C. Gomes, and J.N. Clímaco. Resolving
inconsistencies among constraints on the parameters of an MCDA model.
European Journal of Operational Research, 147(1):72–93, 2003.

[46] V. Mousseau, J. Figueira, and J.P. Naux. Using assignment examples to infer
weights for ELECTRE TRI method: Some experimental results. European
Journal of Operational Research, 130(2):263–275, April 2001.

[47] V. Mousseau and R. Słowiński. Inferring an ELECTRE TRI model from
assignment examples. Journal of Global Optimization, 12(2):157–174, 1998.

[48] Isabel Briggs Myers, Mary H McCaulley, and Robert Most. Manual: A guide
to the development and use of the Myers-Briggs Type Indicator, volume 1985.
Consulting Psychologists Press, Palo Alto, CA, 1985.

Integrating managerial preferences into team members’ evaluation 49

[49] Michael D Myers. Qualitative research in information systems. Management
Information Systems Quarterly, 21(2):241–242, 1997.

[50] Dawn Nafus. ‘Patches don’t have gender’: What is not open in open source
software. New Media & Society, 14(4):669–683, 2012.

[51] A. Ngo The and V. Mousseau. Using assignment examples to infer category
limits for the ELECTRE TRI method. JMCDA, 11(1):29–43, November 2002.

[52] John Noll, Sarah Beecham, Ita Richardson, and Clodagh Nic Canna. A global
teaming model for global software development governance: A case study. In
Global Software Engineering (ICGSE), 2016 IEEE 11th International Confer-
ence on, pages 179–188. IEEE, 2016.

[53] A-L. Olteanu and P. Meyer. Inferring the parameters of a majority rule sorting
model with vetoes on large datasets. In DA2PL 2014: From Multicriteria
Decision Aid to Preference Learning, pages 87–94, 2014.

[54] Beatrice Rammstedt andOliver P John. Measuring personality in oneminute or
less: A 10-item short version of the big five inventory in English and German.
Journal of research in Personality, 41(1):203–212, 2007.

[55] Joseph Reagle. “Free as in sexist?” Free culture and the gender gap. First
Monday, 18(1), 2012.

[56] B. Roy. The outranking approach and the foundations of ELECTRE methods.
Theory and Decision, 31:49–73, 1991.

[57] B. Roy. Multicriteria Methodology for Decision Aiding. Kluwer Academic,
Dordrecht, 1996.

[58] Ann Marie Ryan, Darin Wiechmann, and Monica Hemingway. Designing and
implementing global staffing systems: Part II - best practices. Human Resource
Management, 42(1):85–94, 2003.

[59] Saonee Sarker, Manju Ahuja, Suprateek Sarker, and Sarah Kirkeby. The role of
communication and trust in global virtual teams: A social network perspective.
Journal of Management Information Systems, 28(1):273–310, 2011.

[60] Walt Scacchi. Free/open source software development: Recent research results
and methods. Advances in Computers, 69:243–295, 2007.

[61] HerbertAlexander Simon. Administrative behavior; a study of decision-making
processes in administrative organization-3. 1976.

[62] O. Sobrie, V. Mousseau, and M. Pirlot. Learning a majority rule model from
large sets of assignment examples. In ADT, volume 8176 of Lecture Notes in
Computer Science, pages 336–350. Springer, 2013.

[63] Greg L Stewart. A meta-analytic review of relationships between team design
features and team performance. Journal of management, 32(1):29–55, 2006.

[64] Klaas-Jan Stol, Muhammad Ali Babar, Paris Avgeriou, and Brian Fitzgerald. A
comparative study of challenges in integrating open source software and inner
source software. Information and Software Technology, 53(12):1319–1336,
2011.

[65] Klaas-Jan Stol and Brian Fitzgerald. Two’s Company, Three’s a Crowd: A
Case Study of Crowdsourcing Software Development. In Proceedings of the
36th International Conference on Software Engineering, ICSE 2014, pages
187–198, New York, NY, USA, 2014. ACM.

50 Ann Barcomb, Nicolas Jullien, Patrick Meyer and Alexandru-Liviu Olteanu

[66] D.J. Teece, G. Pisano, and A. Shuen. Dynamic capabilities and strategic
management. Strategic Management Journal, 18(7):509–533, 1997.

[67] Alexis Tsoukiàs. On the concept of decision aiding process: an operational
perspective. Annals of Operations Research, 154(1):3 – 27, October 2007.

[68] J Rodney Turner and Ralf Müller. On the nature of the project as a temporary
organization. International journal of project management, 21(1):1–8, 2003.

[69] Giovanna Varni, Gualtiero Volpe, and Antonio Camurri. A system for real-time
multimodal analysis of nonverbal affective social interaction in user-centric
media. IEEE Transactions on Multimedia, 12(6):576–590, 2010.

[70] Bill Venables, Dave Smith, Robert Gentleman, and Ross Ihaka. Notes on R:
a programming environment for data analysis and graphics. University of
Auckland, 1998.

[71] Ruth Wageman. How Leaders Foster Self-Managing Team Effectiveness: De-
sign Choices Versus Hands-on Coaching. Organization Science, 12(5):559–
577, 2001.

[72] StephenCWingreen, J Ellis Blanton, SandraKNewton, andMadelineDomino.
Assessing the IT training and development climate: an application of the Q-
methodology. In Proceedings of the 2005 ACM SIGMIS CPR conference on
Computer personnel research, pages 12–23. ACM, 2005.

[73] Stefan Wuchty, Ben Jones, and Brian Uzzi. The Increasing Dominance of
Teams in the Production of Knowledge. Science, 316:1036–1039, May 2007.

