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Summary. Genomic selection (GS) consists in predicting breeding values of selection candidates,
using a large number of genetic markers. An important question in GS is the determination of the
number of markers required for a good prediction. For this purpose, we introduce new proxies for
the accuracy of the prediction. These proxies are suitable under sparse genetic map where it is
likely to observe some imperfect linkage disequilibrium, i.e. the situation where the alleles at a gene
location and at a marker located nearby vary. We show on rice real data that at least 1553 markers
are required to implement GS.

1. Introduction and background

Genomic Selection (GS), an extremely popular technique in genetics (Meuwissen et al. (2001)),
consists in predicting breeding values of selection candidates using a large number of genetic
markers. The goal is to predict the future phenotype of young candidates as soon as their DNA
has been collected. These predictions should be accurate in order to allow us to select the best
candidates for the breeding program. GS was first applied to animal breeding (see Hayes et al.
(2009) for a review), and GS is nowadays extensively investigated in plants. For instance, we can
mention studies on apple (Muranty et al. (2015)), eucalyptus (Tan et al. (2017)), japanese pears
(Minamikawa et al. (2018)), strawberry (Gezan et al. (2017)), banana (Nyine et al. (2018)) and
coffea (Ferrao et al. (2018)). Note that, in medicine, the predictive ability of complexe diseases
with the help of genome data, is also a topic of large interest (e.g. Lee et al. (2017), Abraham
et al. (2014)). All these application fields make the topic “genomic prediction” very exciting
for geneticists and statisticians, eager to propose new tools for improving the predictions (see
Momen et al. (2018)).

Let us first recall the definition of a Quantitative Trait Locus (so-called QTL). A QTL is
a section of the DNA that contains one or more genes influencing a quantitative trait which
is able to be measured (see for instance Wu et al. (2007)). From a methodological point of
view, GS relies on the expectation that each QTL will be highly correlated with at least one
marker (Schulz-Streeck et al. (2012)), because of the high density of markers. In genetics, this
correlation between a QTL and a marker is named Linkage Disequilibrium (LD): it refers to the
non independence of alleles at 2 different loci (see Durett (2008) for more details). Contrary to
Genome Wide Association Studies (GWAS) that look for QTLs, the goal in GS is to perform
predictions using a large number of markers, without having to detect QTLs. The advantage
of genomic predictions in GS over predictions based only on detected loci in GWAS, lies in the
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fact that small-effects QTLs are very hard to detect and most of traits, characterized as complex
trait, are governed by these small-effects QTLs.

Many factors are known to affect the prediction ability in GS. The size of the training set
on which is learned the model, the architecture of the trait (cf. Section 1.3 on heritability), the
density of markers, the LD and finally the relatedness between the training and the validation
sets are key elements. Panel optimization (e.g. Rincent et al. (2012) and Mangin et al. (2019)),
that investigates in detail this relatedness (see Wientjes et al. (2013)), is an important area of
research in GS. It consists in choosing the best training individuals to predict breeding values
for a given set of candidates.

In this manuscript, we propose a deep study on the LD factor, which is highly linked to the
density of markers, and has a large influence on the prediction reliability. A usual estimator of
LD is the statistic r2, which is the square of the correlation between the values of alleles at two
loci in the same gamete (see for instance Weir (2008)). However, in presence of individuals from
different genetic origins, this estimator is biased since it suggests for instance some LD between
two independent loci with different allele frequencies. In the same way, when the statistic r2 is
computed using a sample of n related gametes, spurious LD is observed: the estimator is biased
because the independence between gametes is a required assumption. As a consequence, Mangin
et al. (2012) proposed new LD estimators (so called novel measures) that correct bias due to
relatedness and population structure. For instance, in case of relatedness, the authors suggest to
decorrelate the observations, by premultiplying the vector of observations by a matrix containing
the correlations between all pairs of gametes. In GWAS, these LD measures play a role in the
power of the association test (see Mangin et al. (2012) for more details). Last but not least,
these measures are key elements in GS since they are also present in our general formula (Rabier
et al. (2016)) on prediction in GS.

The aim of this paper is to study the accuracy of genomic prediction in GS under imperfect
LD. Indeed, in our recent theoretical study (Rabier et al. (2018)), we focused only on perfect
LD: QTLs were located exactly on a few markers. When QTLs do not match marker locations,
we generally observe imperfect LD since the alleles generally vary at a QTL location and at a
marker located nearby. Imperfect LD is a topic of interest since, for some species, the number of
markers remains too small to cover the huge genome size. In that sense, this density of markers
is unable to perfectly tag QTL locations.

An underlying research topic in GS is the determination of the number of markers required
for implementing GS. In their study on maize population, Zhang et al. (2015) showed that the
prediction of a complex trait required a large number of markers (around 58000 markers thanks
to Genotyping By Sequencing after filtering), whereas 200 markers were sufficient for predicting a
simple trait. In our study on GS in raygrass (Rabier et al. (2016)), we noticed that 24957 markers
were unable to cover the entire genome (2.7 Gb). Furthermore, in a recent study on GS in coffea,
Ferrao et al. (2018) showed that predictions relying on 4000 markers gave similar results as those
based on 35000 markers. Last, in the study of Kriaridou et al. (2020) on aquaculture species,
similar results were obtained when comparing 1000 markers and a high density of markers. In
this context, we propose to tackle here the problem of imperfect LD in GS.

In presence of only a small density of markers, imputation methods (e.g. Beagle software
from Browning et al. (2018)), that replace missing data with substituted values, are generally
used to compensate this lack of information in GS (Habier (2009)). For instance, in the study
on apple of Muranty et al. (2015), selection candidates were genotyped only for 364 markers,
but imputation was performed thanks to a population genotyped for 7829 markers. However,
most of research teams focusing on imputation, do not address the question of building a proxy
suitable under imperfect LD for the prediction ability. Until now, in the literature, we denote
only a few proxies appropriate under imperfect LD. de los Campos et al. (2013) derived an upper
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bound for the prediction ability but computing this bound is unfeasible in practice on real data.
Indeed, the bound relies on the coefficient of the linear regression of genomic relationships at
markers on genomic relationships at QTLs. Recall that genomic relationships at QTLs between
the training and the validation sets are unknown. In Lian et al. (2014), the authors introduced a
proxy, relying on Daetwyler et al. (2008) seminal formula, but adjusted to handle imperfect LD.
In particular, the authors assume the independence of each marker-QTL pair. A variant of this
proxy was later proposed by our team in Rabier et al. (2016): the effective number of independent
loci (Me) was replaced by a term that takes into account the fact that the number of markers
is greater than the number of individuals. However, the independence of each marker-QTL pair
can be viewed as a very strong assumption because of linkage and the fixed genome size. As a
consequence, in this manuscript, we will relax this assumption and present new proxies suitable
under imperfect LD. These proxies will help for determining the number of markers required for
implementing GS, a topic close to research on the design of LD SNPs chips (e.g. Bolormaa et
al. (2015); Corbin et al. (2014)). Indeed, as mentioned by Wu et al. (2016), despite their very
good coverage, High Density (HD) SNPs chips may not optimize the ratio between the prediction
accuracy and the chip price. In this context, our present work should be useful for designing LD
SNP chips that reduce the genotyping costs by considering a moderate density of markers.

In what follows, we will investigate GS in rice with the help of the data of Spindel et al.
(2015). We will concentrate on the rice flowering time (days to 50% flowering) collected in Los
Banos, Philippines, during the dry season 2012. The data and programs used in our study are
available at https://github.com/rabier/GSImperfectLD .

1.1. Causal linear model under imperfect LD
We start by introducing the causal statistical model. We are interested in a quantitative trait
(i.e. the phenotype) which is observed on a sample of n training (TRN) individuals. Y1, . . . , Yn
refers to the observations of the quantitative trait. We consider that we have m QTLs on the
genome, which influence the quantitative trait.

For 1 ≤ j ≤ m, we denote β?j the j-th QTL effect. We denote by X? the matrix of size
n × m containing the QTL alleles for the n individuals. The i-th row of X?, written as x′i =(
X?
i,1, ..., X

?
i,p

)
, corresponds to the i-th individual, where ′ denotes transposition.

We consider the following causal linear model for the quantitative trait:

Y = X?β? + ε, (1)

where Y = (Y1, ..., Yn)
′
, β? = (β?1 , ..., β

?
m)
′
, ε ∼ N(0, σ2

eIn), In is the identity matrix of size n
and σ2

e refers to the environmental variance.
We assume that X? and ε are independent. Moreover, we suppose that genome information

is available at p markers, with p > n (high dimensional setting). Note that QTLs do not
necessarily match markers (imperfect LD setting).

Let X be the matrix of size n × p containing the genome information at p markers for n
individuals. Recall that in our previous work Rabier et al. (2018), we considered the perfect LD
framework, where all QTLs are among markers locations. In that case, the considered model
was

Y = Xβ + ε, (2)

with 1 ≤ j ≤ p, βj = 0 if the marker is not a QTL, and βj 6= 0 if the jth marker is a QTL.

Remark 1. Note that the perfect LD can be viewed as a particular case of imperfect LD. It is
the case when the m QTLs are located on a few markers and β denotes the sparse vector of size
p, containing the components of β?.
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In the present work, we are under the general case (imperfect LD) where QTLs do not
necessarily match markers. r? (resp. r) will denote the rank of the matrix X? (resp. X), and
Rrows(X

?) (resp. Rrows(X)) will refer to the linear space generated by the rows of X? (resp.
X). In the same way, Rcol(X

?) and Rcol(X) will denote the corresponding linear spaces spanned
by the columns. For the sake of readability, we drop the dependence on n in all the notations.
In this work, we condition on x?1, . . . , x?n, x1, . . . , xn, to build proxies for GS under imperfect
LD. Note however that, before conditioning, some correlation is present between the matrices
X? and X: for instance, due to the fixed genome size, xi and x?i are necessarily correlated.

1.2. Test (TST) individual
We suppose that for a random supplementary individual, so-called test (TST) individual (denoted
new), we dispose of its genotype but not of its phenotype. As before, let x?new denote the column
vector containing the m QTLs information of the individual new.

The quantitative trait Ynew is such that:

Ynew = x?′new β
? + εnew,

where εnew ∼ N(0, σ2
e), and x?new, εnew and ε are all independent.

Moreover, xnew refers to the random genome information at markers. Note that xnew and
x?new are correlated because of the genetic linkage due to the fixed genome size.

In what follows, we will assume that Y , Ynew, xnew, x?new, the columns of X and the columns of
X? are centered.

1.3. Accuracy and prediction model
Based on the genome information available from the n individuals, we will construct an estimator
Ŷnew for the phenotypic value of the new individual.

Accuracy criteria
The prediction ability is quantified according to the so-called phenotypic accuracy, ρph (e.g.
Visscher et al. (2010)) or to the genotypic accuracy, ρg (e.g. Daetwyler et al. (2008, 2010)):

ρph :=
Cov

(
Ŷnew, Ynew

)
√

Var
(
Ŷnew

)
Var (Ynew)

, ρg :=
Cov

(
Ŷnew, x

?′
newβ

?
)

√
Var

(
Ŷnew

)
Var (x?′newβ

?)

. (3)

Note that the accuracy criteria, very important in genetics, measures the correlation between
predicted and true values. In particular, the accuracy is an essential component in the breeders
equation (see for instance Lynch and Walsh (1998)).

Heritability
Since x?new, εnew and ε are supposed to be all independent, we have the relationship ρph/ρg = h,
where h is the squared root of the heritability of the trait:

h2 :=
Var (x?′new β

?)

Var (Ynew)
. (4)

With the notation σ2
G = Var (x?′new β

?), we have the relationship h2 = σ2
G/
(
σ2
G + σ2

e

)
.
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Oracle situation
In the oracle situation, the QTLs locations and their effects are known. In this case, the natural
predictor is Ŷ oraclenew = x?′new β

? and the the oracle accuracies are ρoracleg = 1 and ρoracleph = h

L2 prediction loss
In the main manuscript, we focused on the accuracy criteria. In Supplementary Material, we
present a few results regarding the L2 prediction loss, more familiar for statisticians.

Predictor based on Ridge regression
As in our previous study (Rabier et al, 2018), we will use as instrumental model, the Ridge
regression which can be viewed as a Bayesian regression. Then, the Ridge regression estimator
for the marker effects β (Tihonov (1963); Hoerl et al. (1970)) is:

β̂ = (X ′X + λIp)
−1
X ′Y = X ′V −1Y, (5)

where V = XX ′ + λIn, λ refers to a regularization (or tuning) parameter, and Ip denotes the
identity matrix of size p× p.

The corresponding Ridge regression predictor for the phenotype of the test individual is:

Ŷnew = x′newβ̂ = x′newX
′V −1Y. (6)

Note that this Ridge estimator is based on genome information at markers and is suitable in
a high dimensional setting (i.e. p > n, see e.g. Shao and Deng (2012) and Bühlmann (2013)). In
genetics, this estimator is also called random regression best linear unbiased predictor (RRBLUP)
and it is known to be equivalent to genomic best linear unbiased predictor (GBLUP).

1.4. Our contributions and roadmap
Our study starts in Section 2, by recalling a recent formula on the accuracy, suitable under
imperfect LD. We also introduce two singular value decompositions, the one of the causal matrix
(i.e. at genes), and the one of the design matrix (i.e. at markers). Then, we state our Theorem
1 dealing with the genotypic accuracy under imperfect LD. This theorem is somewhat essential
since the other results, appropriate under imperfect LD, are built on it.

In Section 3, Theorem 2 introduces an estimation ρ̂g of ρg that does not require the genome
information of TST individuals. TRN and TST are supposed to be sampled from the same
probability distribution. According to this theorem, the projection of the regression function
X?β? on Rcol(X) is a key element for the genotypic accuracy. From Theorem 2, we can retrieve
results under perfect LD: the key factor becomes the projection of the signal β on Rrows(X) (as
in Rabier et al. (2018)). Lemma 1 introduces, under imperfect LD, a lower bound for ρ̂g: it
takes into account a global projection (same weights on each subspace) of X?β? on the space
spanned by the columns of X. Lemma 2 assumes that the signal β? is spread out uniformly on
each subspace of Rrows(X

?). The oracle accuracy is reached as soon as the limit of a loss factor
(so called 1-ξ(n)), due to imperfect LD, is equal to zero.

Section 4 of this manuscript introduces a modified predictor ˆ̃ρg that improves the quality of
the prediction. It relies on the projection of Y on a well chosen subspace of Rcol(X). Lemma
3 proposes an estimation of that predictor’s accuracy: as expected, under imperfect LD, it
depends on the projection of the regression function X?β? on the chosen subspace. After having
introduced bounds for ˆ̃ρg in Lemma 4, we will give a result that allows to compare ˆ̃ρg and ρ̂g
under imperfect LD.

To conclude, in Section 5, we will present new imperfect LD proxies relying on our theoretical
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results. Performances of these proxies will be illustrated on simulated data and on real data.
Our proxies rely only on phenotypes and markers of TRN, but take into account the sparsity
of the TST map. In order to build these imperfect LD proxies, we investigate a topic in GS
that has not been studied before (as far as we know): the accuracy of the prediction of TST
individuals when the genetic map of TRN differs from the one of TST. In particular, we suggest
to consider a more dense map for TRN than for TST: the dense TRN map will help to estimate
the nuisance parameters X? and β? required to compute our proxies. This concept relies on the
expectation that QTLs will be in perfect LD with markers under this dense TRN map, which
is not the case for the TST map (imperfect LD). Contrary to our “perfect LD” study where
the Adaptive LASSO (Zou (2006)) was found to be the best substitute for β, we found here
that the LASSO (Tibshirani (1996)) was the best substitute for β? when a sparse TST map
was considered. Moreover, the Adaptive LASSO was more appropriate for a dense TST map.
Finally, performances of the modified ridge estimator are also illustrated, and we analyze real
data of Spindel et al. (2015) on GS in rice, considering different densities of markers. With the
help of our imperfect LD proxies, we show that geneticists can evaluate the accuracy of their
future predictions on TST individuals and figure out if they should redensify their TST genetic
map to improve the reliability of their predictions. Last but not least, on these rice datasets, our
imperfect LD proxies outperformed existing proxies based on Lian et al. (2014).

In the Supplementary Material, we present the mathematical proofs of our results, and show
extra results regarding real data. In Section 10 of the Supplementary Material, we also present
a few results regarding the L2 prediction loss.

2. General expression for the genotypic accuracy

2.1. An existing formula suitable under imperfect LD
Recall that Y , Ynew, xnew, x?new, the columns of X and the columns of X? are centered.

Conditioning on x1, . . . , xn, x?1, . . . , x?n, we have the following formula of Rabier et al. (2016)
for the genotypic accuracy corresponding to the predictor Ŷnew:

ρg =
β?′ E (x?newx

′
new)X ′V −1X?β?{

σ2
eE
(
‖x′newX ′V −1‖2

)
+ β?′X?′V −1XVar (xnew)X ′V −1X?β?

}1/2

σG

(7)

where ‖.‖ is the L2 norm.

2.2. Alternative expression based on singular value decomposition (SVD)
We consider the singular value decomposition (SVD) of X? (see Shao and Deng (2012) and
Bühlmann (2013)):

X? = P ?D?Q?′, (8)

where P ? is a n×r? matrix satisfying P ?′P ? = Ir? , Q? is a m×r? matrix satisfying Q?′Q? = Ir? ,
D? = Diag (d?1, . . . , d

?
r?) with d?1 ≥ . . . ≥ d?r? > 0 and r? is the rank of the matrix X?.

The columns of Q? (resp. P ?) constitute an orthogonal basis of the space spanned by the
rows (resp. columns) of X?. In what follows, Q?(s) will denote the s-th column of Q?, and as a
consequence Rrows(X

?) = Span
{
Q?(1), . . . , Q?(r

?)
}

.
In the same way, the SVD of X is

X = PDQ′, (9)
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where P is a n × r matrix satisfying P ′P = Ir, Q is a p × r matrix satisfying Q′Q = Ir,
D = Diag (d1, . . . , dr) with d1 ≥ . . . ≥ dr > 0, and r is the rank of the matrix X.

Using the SVD, the formula (7) gives the following alternative expression for the accuracy
under imperfect LD

Theorem 1. Let us assume that ε, xnew, x?new and εnew are random. Then, conditionnally on
X and X?, the genotypic accuracy has the following expression

ρg =
A1

(A2 +A3)
1/2

(A4)
1/2

,

where

A1 =

r∑
s=1

ds
d2
s + λ

β?′ E (x?newx
′
new) Q(s)P (s)′

r?∑
j=1

d?jP
?(j)Q?(j)′β? ,

A2 = σ2
e

r∑
s=1

d2
s

(d2
s + λ)2

E
(∥∥∥Q(s)Q(s)′xnew

∥∥∥2
)

,

A3 =

 r∑
s=1

ds
d2
s + λ

Q(s)P (s)′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

′ E (xnewx
′
new)

×

 r∑
s=1

ds
d2
s + λ

Q(s)P (s)′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

 ,

A4 = β?′E (x?newx
?′
new)β?.

The proof is given in Section 1 of the Supplementary Material. The phenotypic accuracy is
obtained by replacing the term A4 at the denominator by A4 + σ2

e . For a version of this result
in the case of perfect LD, see Rabier et al. (2018).

Remark 2. Note that we can express the L2 prediction loss as follows:

E
{

(x′newβ̂ − x?′newβ?)2
}

= A2 +A3 +A4 − 2A1 .

We will prove this formula in Section 10.1 of the Supplementary Material.
Note that an alternative expression for A1 is the following:

A1 =

r∑
s=1

ds
d2
s + λ

β?′ E (x?newx
′
new) Q(s)Q(s)′Q(s)P (s)′X?β?. (10)

Recall that under perfect LD, the QTLs are located on a few markers and β denotes the
sparse vector of size p containing the components of β?. According to the above formula (10), we
can notice that the term dsQ

(s)Q(s)′β from Theorem 1 of Rabier et al. (2018) has been replaced
here by the quantity Q(s)Q(s)′Q(s)P (s)′X?β?. In other words, under imperfect LD, we have to
consider the projection of the vector P (s)′X?β?Q(s) on Span

{
Q(s)

}
, whereas under perfect LD,

the projection of dsβ on Span
{
Q(s)

}
is taken into account. Same remark holds for A3 at the

denominator.

Remark 3. Since formulas obtained under imperfect LD are more general, we can easily retrieve
formulas suitable under perfect LD from formulas obtained under imperfect LD. We just have to
consider that the regression function is the same (i.e. X?β? = Xβ), and X?β?Q(s) is obviously
equal to dsβ.
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In what follows we are interested in estimating the genotypic accuracy ρg. The consistency
of estimators of A1, A2, A3 and A4 guarantees the consistency of the estimator of ρg, thanks
to Slutsky’s lemma in the matrix case. However, as mentioned in our previous study, finding
consistent estimators of A1, A3 and A4 is challenging in the high dimensional setting: the
covariance matrix Σ needs to be estimated. As a consequence, we have chosen the empirical
covariance estimator of Σ, as generally used by geneticists in practice.

3. Estimation of the genotypic accuracy

In the following, we consider that TRN and TST samples come from the same probability
distribution. In this context, using the empirical covariances X?′X/n, X ′X/n and X?′X?/n
as estimates for the covariances E (x?newx

′
new), E (xnewx

′
new) and E (x?newx

?′
new) appearing in

Theorem 1, we obtain the following theorem.

Theorem 2. Let us assume that x1, . . . , xn and xnew are independent and identically distributed
(i.i.d.). In the same way, let us assume that x?1, . . . , x?n and x?new are i.i.d. Then, conditionnally
on X and X?, and assuming that ε, xnew and εnew are random, an estimation of the genotypic
accuracy is

ρ̂g =
Â1(

Â2 + Â3

)1/2 (
Â4

)1/2
,

where

Â1 =
1

n

r∑
s=1

d2
s

d2
s + λ

∥∥∥P (s)P (s)′X?β?
∥∥∥2

, Â2 =
σ2
e

n

r∑
s=1

d4
s

(d2
s + λ)2

,

Â3 =
1

n

r∑
s=1

d4
s

(d2
s + λ)2

∥∥∥P (s)P (s)′X?β?
∥∥∥2

, Â4 =
1

n

r?∑
`=1

d?2`

∥∥∥Q?(`)Q?(`)′β?∥∥∥2

.

The proof is given in Section 2 of the Supplementary Material.

We can see that the term d2
s

∥∥Q(s)Q(s)′β
∥∥2

from Theorem 2 of Rabier et al. (2018) obtained

under perfect LD has been replaced by the quantity
∥∥P (s)P (s)′X?β?

∥∥2
in the expressions of Â1

and Â3. This theorem is more general than Theorem 2 of Rabier et al. (2018): we can easily
switch from imperfect LD formulas to perfect LD formulas as soon as we impose X?β? = Xβ.

Remark 4. This estimation ρ̂g relies only on phenotypes and markers of TRN. As a consequence,
this accuracy estimation can be used to evaluate GS accuracy before genotyping of the TST
individuals.

Remark 5. In practice, the nuisance parameters X? and β? can be estimated with a penalized
likelihood method, by considering a more dense map for TRN than for TST. We refer to the
applications in Section 5 for more details.

Let us now give bounds for the quantity ρ̂g.

Lemma 1 (Bounds on ρ̂g). Using same assumptions as in Theorem 2, we always have

‖PP ′X?β?‖2 mins
d2s

d2s+λ√
σ2
e r + ‖PP ′X?β?‖2 maxs

d4s
(d2s+λ)2

√
‖Q?Q?′β?‖2 max` d?2`

≤ ρ̂g ≤ ρoracle
g .
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The proof is given in Section 3 of the Supplementary Material.
Note that Â1 and Â3 can be rewritten in the following way:

Â1 =
1

n

r∑
s=1

β?′
d2
s

d2
s + λ

r?∑
`=1

Q?(`)d?`P
?(`)′P (s)

r?∑
j=1

d?jP
(s)′P ?(j)Q?(j)′β? ,

Â3 =
1

n

r∑
s=1

d4
s

(d2
s + λ)2

(
r?∑
`=1

d?`P
(s)′P ?(`)Q?(`)′β?

)2

.

3.1. Asymptotic study of ρ̂g when n→ +∞ and p > n with m bounded
Recall that d?1 ≥ d?2 ≥ . . . ≥ d?r? > 0 are the singular values of X?, and that d1 ≥ d2 ≥ . . . ≥
dr > 0 are the singular values of X. Note that, since the number of QTLs m is bounded, the
rank r? is bounded. In contrast, the rank r may diverge because we let p and n tend to +∞ in
our high dimensional setting.

In order to study asymptotic properties of ρ̂g, we consider that

d?21 ∼ nψ with 0 < ψ ≤ 1,

d?2r? ∼ nη with η ≤ ψ ≤ 1 and η and ψ not depending on n.

Recall that un ∼ vn means that
un
vn
−→ 1 when n→∞. Besides, we assume that

‖Q?Q?′β?‖2 ∼ n2τ , with τ < η and τ not depending on n.

Although r? is bounded in our study, these conditions are somewhat inspired from Shao and
Deng (2012) and Fan and Lv (2008).

Let us further consider a regularization parameter λ such as λ→∞ and λ = o
(
d?21

)
. Let us

consider the following partition Ω?1, Ω?2, Ω?3 of {1, . . . , r?}:

Ω?1 :=
{
`
∣∣λ := o(d?2` )

}
, Ω?2 :=

{
`

∣∣∣∣d?2` ∼ 1

C?`
λ with C?` > 0

}
, Ω?3 :=

{
`
∣∣d?2` = o(λ)

}
.

Note that Ω?1 contains at least the index 1. Moreover, let Ω1, Ω2, Ω3 be the following partition
of {1, . . . , r}:

Ω1 :=
{
s
∣∣λ = o(d2

s)
}

, Ω2 :=

{
s

∣∣∣∣d2
s ∼

1

Cs
λ with Cs > 0

}
, Ω3 :=

{
s
∣∣d2
s = o(λ)

}
.

Recall that in our previous “perfect LD” study, we considered only these last 3 sets.

3.1.1. The projected signal is spread out uniformly on each subspace
For every ` ∈ {1, . . . , r?}, we define the following sets Ω`k, k = 1, 2, 3 :

Ω`k :=

{
s ∈ Ωk |

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2

6= 0

}
.

In other words, we assume that the projection of P ?(`) on Span
{
P (1), . . . , P (r)

}
is spread out on

the subspaces Span
s∈Ω`1

{
P (s)

}
, Span
s∈Ω`2

{
P (s)

}
, and Span

s∈Ω`3

{
P (s)

}
.
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For every k = 1, 2, 3, we impose Ω`k ∩ Ω`
′

k = ∅, ∀` 6= `′. In other words, a given “s” can not
tag different “`”.

Besides, ∀` ∈ Ω?1, we will impose the corresponding set Ω`1 to be non empty: each “`”
associated to a large singular value of X? is tagged by at least one “s” associated to large
singular values of X. This implies that #Ω?1 ≤ #Ω1, where # denotes the cardinality. Note that
this condition is not required for the other sets associated to `: Ω`2 and Ω`3 may be empty or not.
In that sense, each ` ∈ Ω?1 can also be tagged by some “s” that belong to Ω2 or Ω3.

Moreover, for a general `, with 1 ≤ ` ≤ r?, we assume that within each subspace Span
s∈Ω`k

{
P (s)

}
,

k = 1, 2, 3, the projection is spread out uniformly on each component P (s). As a consequence,

taking into account the fact that
∥∥P ?(`)∥∥2

= 1, we define ξ
(`)
k ∈]0, 1], k = 1, 2, 3 by:

(C0?) If #Ω`k 6= 0 ,
∥∥∥P (s)P (s)′P ?(`)

∥∥∥2

∼
ξ

(`)
k

#Ω`k
∀s ∈ Ω`k ,

with
∑

k|Ω`k 6=∅

ξ
(`)
k ≤ 1.

Let us consider a few extra conditions. In what follows, conditions denoted with a star are
specific to this paper, whereas the others were already present in Rabier et al. (2018):

• (C1?)
n2τ

r?

∑
`∈Ω?1

d?2` → +∞ • (C2)
∑
s∈Ω3

d2
s = o(λ)

• (C3)
∑
s∈Ω3

d4
s = o(λ2) • (C4?)

n2τ

r?
= o(1/λ)

• (C5) #Ω1 = O(1) • (C6) #Ω2 = O(1)

• (C7?)
n2τ

r?

∑
`∈Ω?1

ξ
(`)
2 d?2` = o(1) • (C8?)

n2τ

r?

∑
`∈Ω?1

ξ
(`)
3 d?2` = o(1).

Because of conditions (C5) and (C6), since p > n, the rank r of the matrix X, which is bounded
by n, will diverge to +∞ if and only if the number of elements of Ω3 diverges. On the other
hand, since the number m of QTLs is bounded, the rank r? of the matrix X? is bounded and Ω?1,
Ω?2 and Ω?3 are finite sets. Some intuition and some explanations on these conditions are given
in Section 4 of the Supplementary Material.

The following Lemma 2 assumes imperfect LD and that the signal is spread out uniformly
on each subspace of Rrows(X

?).

Lemma 2 (Convergence to the oracle accuracy). Let us consider same assumptions as in The-
orem 2 and suppose that for every k = 1, 2, 3, we have Ω`k ∩ Ω`

′

k = ∅, ∀` 6= `′. Besides, let us
suppose that the projected signal is spread out uniformly on each subspace Span

{
Q?(`)

}
, i.e.∥∥∥Q?(`)Q?(`)′β?∥∥∥2

∼ n2τ

r?
, ` = 1, . . . , r?. (11)

Moreover, ∀` ∈ Ω?1, let us assume that Ω`1 6= ∅ and that ξ
(`)
1 = ξ(n) with 0 < b < ξ(n) ≤ 1. Then,

assuming conditions (C0? − C1? − C2− C3− C4? − C5− C6− C7? − C8?):

• for large n, we have ρ̂g ∼
√
ξ(n) ρoracleg
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• if ∀` ∈ Ω?1, ξ
(`)
2 = 1/nθ1 and ξ

(`)
3 = 1/nθ2 with θ1 > ψ and θ2 > ψ, then we have

ρ̂g −→ ρoracleg .

The proof is given in Section 5 of the Supplementary Material (see also Section 4 for some
intuition). In Lemma 2 of Rabier et al. (2018), we obtain a simpler result in the case of perfect
LD, in the case where the signal is spread out uniformly on the subspaces of Rrows(X).

Remark 6. For each ` ∈ Ω?1, ξ(n) is the percentage of the L2 norm of P ?(`) represented on
Span
s∈Ω`1

{
P (s)

}
. Note that under our conditions, we are only able to capture this percentage of the

L2 norm of P ?(`) (see Sections 4 and 5 of the Supplementary Material). 1− ξ(n) can be viewed
as a loss coefficient: it is the percentage of the L2 norm of P ?(`) that is unable to be captured
(either from Span

s∈Ω`2

{
P (s)

}
, either Span

s∈Ω`3

{
P (s)

}
or the complementary subspace).

Moreover, since p→ +∞ when n→ +∞, the distance between markers and QTLs tends to zero.
As a consequence, QTLs locations match certain marker locations (i.e. perfect LD), and each
column of X? is included in X. Then, according to Lemma 2, the oracle accuracy is reached as
soon as lim

√
ξ(n) is equal to one when n→ +∞ (i.e. no loss). Typically, this is the case when

we set ξ
(`)
2 = 1/nθ1 and ξ

(`)
3 = 1/nθ2 .

3.1.2. The projected signal belongs only to one component
Let us come back to the assumptions given at the beginning of Section 3.1 (before paragraph
3.1.1). In this context, we propose to study in Section 6 of Supplementary Material the asymp-
totic behavior of our estimate ρ̂g when the projected signal belongs only to one component (either
Span

{
Q?(1)

}
or Span

{
Q?(r

?)
}

).

4. An improved predictor

As before, we are interested in predicting the phenotype Ynew of a so-called test (TST) individual
(denoted new), whose genome information is denoted xnew. We propose to project the vector
Y on a well chosen subspace of the space spanned by the columns of X, in order to improve the
quality of the prediction. Let 1 ≤ r̃ ≤ r and σ(.) a one-to-one map σ : {1, . . . , r̃} → {1, . . . , r}.
We thus have σ(k) 6= σ(k′) for k 6= k′. Let us consider the estimator

β̃ := X ′V −1P̃ P̃ ′Y where P̃ =
(
Pσ(1), . . . , P σ(r̃)

)
.

Besides, we set Q̃ :=
(
Qσ(1), . . . , Qσ(r̃)

)
. Then, we propose the following predictor for the so-

called new individual:

Ỹnew = x′newβ̃ = x′newX
′V −1P̃ P̃ ′Y .

The corresponding genotypic accuracy is then :

ρ̃g :=
Cov

(
Ỹnew, x

′
newβ

)
√

Var
(
Ỹnew

)
Var (x′newβ)

. (12)
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In Lemma 7.1 of Section 7 of the Supplementary Material, we give a more detailed formula for
ρ̃g.

Similarly to Theorem 2, we propose in the following theorem an estimation of the accuracy
of the new predictor.

Lemma 3. Let us consider same hypotheses as in Theorem 2. Then, an estimation of the
quantity ρ̃g is

ˆ̃ρg =
ˆ̃A1(

ˆ̃A2 + ˆ̃A3

)1/2 ( ˆ̃A4

)1/2
,

where

ˆ̃A1 :=
1

n

r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

∥∥∥P (σ(s))P (σ(s))′X?β?
∥∥∥2

, ˆ̃A2 :=
σ2
e

n

r̃∑
s=1

d4
σ(s)

(d2
σ(s) + λ)2

,

ˆ̃A3 :=
1

n

r̃∑
s=1

d4
σ(s)

(d2
σ(s) + λ)2

∥∥∥P (σ(s))P (σ(s))′X?β?
∥∥∥2

, ˆ̃A4 := Â4.

The proof is given in Section 8 of the Supplementary Material.
Let us now give bounds for the quantity ˆ̃ρg.

Lemma 4 (Bounds on ˆ̃ρg). Using same assumptions as in Theorem 2, we always have∥∥∥P̃ P̃ ′X?β?
∥∥∥2

min1≤s≤r̃
d2σ(s)

d2
σ(s)

+λ√
σ2
e r̃ +

∥∥∥P̃ P̃ ′X?β?
∥∥∥2

max1≤s≤r̃
d4
σ(s)

(d2
σ(s)

+λ)2

√
‖Q?Q?′β?‖2 max` d?2`

≤ ˆ̃ρg ≤ ρoracle
g .

The proof relies heavily on the proof of Lemma 1, using the expressions of ˆ̃A1, ˆ̃A2 and ˆ̃A3

given in Lemma 3. We can notice that at the denominator, the quantities r̃ and
∥∥∥P̃ P̃ ′X?β?

∥∥∥2

replace now the quantities r and ‖PP ′X?β?‖2 of Lemma 1. This decrease at the denominator
will be profitable provided that the numerator does not decrease too much.

The following Lemma 5 is the analogue of Lemma 6 under imperfect LD of Rabier et al.
(2018) and allows to compare the quantities ˆ̃ρg and ρ̂g for fixed n.

Lemma 5. Let us suppose that Â1− ˆ̃A1 6= 0. Then, we have ˆ̃ρg ≥ ρ̂g if and only if the following
relation holds:

ˆ̃A1

Â1 − ˆ̃A1

≥ ( ˆ̃A2 + ˆ̃A3)

Â2 + Â3 − ( ˆ̃A2 + ˆ̃A3)

1 +

√√√√ Â2 + Â3

ˆ̃A2 + ˆ̃A3

 .

Let us briefly recall the explanation given in Rabier et al. (2018). We have the decomposition

β̂ = β̃+ ~β, with ~β := X ′V −1 ~P ~P ′Y where ~P denotes the matrix obtained from P by removing the
column vectors Pσ(1), . . . , P σ(r̃). Similarly, we have Ŷnew = Ỹnew + ~Ynew, where ~Ynew := x′new

~β
denotes the prediction.

Then, the different terms of the statement can be rewritten:

ˆ̃A1 = Ĉov(Ỹnew, Ynew) , Â1 − ˆ̃A1 = Ĉov(~Ynew, Ynew) ,

ˆ̃A2 + ˆ̃A3 = V̂ar(Ỹnew) , Â2 + Â3 = V̂ar(Ŷnew) ,

Â2 + Â3 − ( ˆ̃A2 + ˆ̃A3) = V̂ar(~Ynew).
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Last, in the same way as what has been done before, we tackle in Section 9 of Supplementary Ma-
terial, a few extreme cases: the projected signal belongs either to Span

{
Q?(1)

}
or Span

{
Q?(r

?)
}

.

5. Applications under imperfect LD

We propose to illustrate here our theoretical results, with the help of simulated and real data. To
begin with, Subsection 5.1 describes the simulation framework. Next, Subsection 5.2 is devoted
to a new topic in GS: the accuracy of the prediction on TST individuals when the genetic map of
TRN differs from the one of TST. A dense TRN map will help for estimating nuisance parameters,
required to compute our imperfect LD proxies. Subsection 5.3 studies the performances of the
estimator β̃, introduced in Section 4. Last, Section 5.4 is dedicated to GS in rice. We reanalyzed
real data of Spindel et al. (2015) and compared performances of our proxies with existing proxies,
using different densities of markers.

5.1. Simulation framework

The simulation framework is largely inspired of Rabier et al. (2016, 2018). The hypred R package
(Technow (2014)) was used to produce genomic data. Populations were simulated by random
mating between haploid individuals (i.e. with only one copy of each chromosome), during (a)
50, (b) 70 generations, or (c) 100 generations. In generation zero, eight haploid founder lines
were crossed. The eight founder setup was supposed to introduce less LD due to relatedness.
We focused on one chromosome of length 1 Morgan and also on a genome of length 4 Morgan
or 6 Morgan. Recall that by definition, according to the Haldane (1919) model, there are on
average x crossovers on a genetic map of length x Morgan (see for instance Wu et al. (2007)). We
considered 3 different densities of genetic markers equally spaced on the chromosome: (a) 500,
(b) 1,000, or (c) 2,000 SNPs. These densities of markers were used for the TRN map. However,
the TST map contains only half the number of markers of the TRN map.

For the phenotypic model, we set the environmental variance σ2
e to 1. Besides, we considered

either (a) 25 QTLs with effects 0.45, or (b) 100 QTLs with effects 0.30. The QTLs were equally
spaced on the chromosome and were observed only in the TRN sample (i.e. not observed in the
TST sample). For simulations regarding the improved predictor, a slightly different TST map
and different QTLs locations were considered.

The prediction model was learnt using 500 TRN individuals and the prediction model was
evaluated on 100 TST (in all cases) produced in the last generation. Note also that all the
quantities presented in the different tables are averages based on 100 simulations. Since we
analyze the case where X and X? do not vary across replicates, one simulation consists (a) in
regenerating 100 TST individuals by random mating between individuals from the penultimate
generation, and (b) in regenerating new phenotypes (TRN+TST). To sum up, the genomes of
the 500 TRN individuals do not vary across simulations, whereas the phenotypes vary. Besides,
for the 100 TST individuals, the genomes and phenotypes are different for each simulation.

The empirical accuracy was computed with the R software, using the empirical correlation
between the predicted values and the true values. The regularization parameter λ was chosen by
Restricted Maximum Likelihood (Corbeil and Searle (1976)) using the matrix X and the rrBLUP
R package (Endelman (2011)).

In what follows, in order to make the reading easier, we will adopt the notation ρ̂ph(X?, β?)
for ρ̂ph. This will help for enumerating the nuisance parameters that have to be estimated.
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Table 1. Comparison among different estimators of the phenotypic accuracy, when the QTLs are
not observed in the TST sample. The TRN map contains 500 markers whereas the TST map
contains only 250 markers. 25 QTLs are located along the genome. Emp. Acc. refers to the
empirical phenotypic accuracy, whereas ρ̂pLD

ph and ρ̌pLD
ph refer to complete LD proxies from Rabier

et al. (2018). The Mean Squared Errors (MSE) with respect to the Empirical Accuracy are given in
brackets, and their average over the 3 numbers of generations is denoted MSE. For each genome
length T, the proxy with the smallest MSE is highlighted in gray.

T Method 50 generations 70 generations 100 generations MSE

1

Emp. Acc. 0.2925 0.2976 0.3224

ρ̂ph(X̂?, β̂?
LASSO) 0.1241 (0.0397) 0.1312 (0.0380) 0.1767 (0.0336) 0.0371

ρ̂ph(X̂?, β̂?
GPLASSO) 0.08366 (0.0561) 0.0998 (0.0501) 0.1393 (0.0464) 0.0509

ρ̂ph(X̂?, β̂?
ADLASSO) 0.2947 (0.0108) 0.3129 (0.0107) 0.3521 (0.0110) 0.0108

ρ̌pLD
ph (β̂ADLASSO) 0.1762 (0.0324) 0.2179 (0.0238) 0.2708 (0.0159) 0.0240

ρ̂pLD
ph (β̂ADLASSO) 0.1955 (0.0302) 0.2361 (0.0222) 0.3086 (0.0149) 0.0224

4

Emp. Acc. 0.3021 0.2671 0.2043

ρ̂ph(X̂?, β̂?
LASSO) 0.2848 (0.0102) 0.3042 (0.0111) 0.2591 (0.0114) 0.0109

ρ̂ph(X̂?, β̂?
GPLASSO) 0.2549 (0.0133) 0.2677 (0.0108) 0.2370 (0.0107) 0.0116

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4029 (0.0199) 0.4197 (0.0316) 0.3708 (0.0362) 0.0292

ρ̌pLD
ph (β̂ADLASSO) 0.1669 (0.0438) 0.1240 (0.0457) 0.0283 (0.0416) 0.0437

ρ̂pLD
ph (β̂ADLASSO) 0.1878 (0.0416) 0.1446 (0.0453) 0.0312 (0.0413) 0.0427

6

Emp. Acc. 0.2284 0.2441 0.2331

ρ̂ph(X̂?, β̂?
LASSO) 0.2832 (0.0141) 0.2870 (0.012) 0.2529 (0.0118) 0.0126

ρ̂ph(X̂?, β̂?
GPLASSO) 0.2624 (0.0127) 0.2600 (0.0126) 0.2336 (0.0121) 0.0125

ρ̂ph(X̂?, β̂?
ADLASSO) 0.3907 (0.0366) 0.4109 (0.0379) 0.3836 (0.0339) 0.0361

ρ̌pLD
ph (β̂ADLASSO) 0.0742 (0.0387) 0.0817 (0.0483) 0.0841 (0.0449) 0.0439

ρ̂pLD
ph (β̂ADLASSO) 0.0848 (0.0374) 0.0931 (0.0477) 0.0991 (0.0449) 0.0433

5.2. Imperfect LD proxies when TRN and TST do not share the same genetic map (Tables 1,
2, 3)

As previously said, we focus here on the prediction accuracy when the genetic map of TRN
differs from the one of TST. The dense TRN map will help for estimating nuisance parameters,
required to compute our imperfect LD proxies.

Recall that our imperfect LD proxies are built to estimate satisfactorily the accuracy of future
predictions based on the TST map. Recall also that our proxies rely only on phenotypes and
markers of TRN, but take into account the sparsity of the TST map. As a result, for a given
TST map (i.e. a chosen number of markers for TST), we can first compute our proxies without
having to genotype TST individuals, in order to evaluate the accuracy of future predictions based
on the TST map. Next, once a satisfactory accuracy has been found, we will need to genotype
TST individuals at the chosen density of markers, in order to perform predictions and to select
the most promising candidates for GS.

In this context, let us consider a more dense map for TRN than for TST. Since the estimation
ρ̂ph(X?, β?) depends on nuisance parameters X? and β?, we propose to estimate these parameters
using the dense TRN map. This concept relies on the expectation that QTLs will be in perfect
LD with markers under this dense TRN map, which is not the case for the TST map (imperfect
LD). The key point is that the dense TRN map is only used to estimate the nuisance parameters.

The predictor for the so-called new individual is still Ŷnew = x′newβ̂ = x′newX
′V −1Y , where X

denotes the design matrix (of size n × p) for TRN (the columns of X match exactly marker
locations of TST). In the same way, the estimation ρ̂ph(X?, β?), built on Theorem 2, relies on
the design matrix X. In this context, using the same number of generations for TRN and TST,
boths samples (TRN and TST) share the same probability distribution, and it is reasonable to
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Table 2. Same as Table 1 except that more markers are considered. The TRN map contains 1000
markers whereas the TST map contains only 500 markers.

T Method 50 generations 70 generations 100 generations MSE

1

Emp. Acc. 0.5287 0.5396 0.5173

ρ̂ph(X̂?, β̂?
LASSO) 0.4370 (0.0175) 0.4638 (0.0013) 0.4642 (0.0092) 0.0093

ρ̂ph(X̂?, β̂?
GPLASSO) 0.4033 (0.0239) 0.4469 (0.0163) 0.4471 (0.0115) 0.0172

ρ̂ph(X̂?, β̂?
ADLASSO) 0.5371 (0.0073) 0.5691 (0.0063) 0.5589 (0.0069) 0.0068

ρ̌pLD
ph (β̂ADLASSO) 0.5011 (0.0098) 0.5324 (0.0079) 0.5172 (0.0049) 0.0075

ρ̂pLD
ph (β̂ADLASSO) 0.5411 (0.0099) 0.5758 (0.0094) 0.5690 (0.0087) 0.0093

4

Emp. Acc. 0.3909 0.3772 0.3217

ρ̂ph(X̂?, β̂?
LASSO) 0.3397 (0.0112) 0.3436 (0.0132) 0.2629 (0.0146) 0.0130

ρ̂ph(X̂?, β̂?
GPLASSO) 0.2413 (0.0334) 0.3059 (0.0179) 0.2178 (0.0228) 0.0247

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4677 (0.01293) 0.4821 (0.0222) 0.4093 (0.0164) 0.0172

ρ̌pLD
ph (β̂ADLASSO) 0.2599 (0.0389) 0.2647 (0.0355) 0.0846 (0.0722) 0.0489

ρ̂pLD
ph (β̂ADLASSO) 0.2970 (0.0336) 0.3182 (0.0306) 0.0986 (0.0693) 0.0445

6

Emp. Acc. 0.3749 0.3319 0.3155

ρ̂ph(X̂?, β̂?
LASSO) 0.37 (0.0034) 0.3548 (0.0094) 0.3415 (0.0093) 0.0074

ρ̂ph(X̂?, β̂?
GPLASSO) 0.3395 (0.01132) 0.3259 (0.0093) 0.3048 (0.0094) 0.0100

ρ̂ph(X̂?, β̂?
ADLASSO) 0.5045 (0.02488) 0.4981 (0.0355) 0.4703 (0.0317) 0.0307

ρ̌pLD
ph (β̂ADLASSO) 0.2351 (0.0436) 0.2383 (0.0358) 0.2423 (0.0307) 0.0367

ρ̂pLD
ph (β̂ADLASSO) 0.1929 (0.0519) 0.1906 (0.0397) 0.2045 (0.0319) 0.0412

consider the estimation ρ̂ph(X̂?, β̂?) as a proxy for the predictive ability. In order to estimate β? in
a high-dimensional setting, we will concentrate on the LASSO (Tibshirani (1996)), the Adaptive
LASSO (Zou (2006)) and on the Group LASSO (Yuan and Lin (2006)) estimators, as in Rabier et
al. (2018). We refer to Hastie et al. (2009) for more details on these penalized likelihood methods.
Tables 1, 2 and 3 compare the performances of our new proxies, that handle imperfect LD, with
proxies suggested in Rabier et al. (2018) under perfect LD assumptions (using the Adaptive

LASSO as a substitute for β). In what follows, ρ̂pLDph (β̂ADLASSO) (resp. ρ̌pLDph (β̂ADLASSO)) will
refer to the “perfect LD” proxies available before (resp. after) genotyping TST individuals.

Tables 1, 2 and 3 deal respectively with 250 markers, 500 markers and 1000 markers, equally
spaced on a chromosome of length T. The dense TRN map contains twice the number of mark-
ers. According to Tables 1, 2 and 3, there is a clear advantage to handle explicitly imperfect
LD for T=4 and T=6, whatever the density of markers: the proxies ρ̂ph(X̂?, β̂?ADLASSO) and

ρ̂ph(X̂?, β̂?LASSO) gave always better performances than the quantities ρ̂pLDph (β̂ADLASSO) and

ρ̌pLDph (β̂ADLASSO) relying on perfect LD. Recall that perfect LD proxies assume that QTLs are
located on the TST map.

In contrast, when a chrosomome of length 1M was studied, ρ̂ph(X̂?, β̂?ADLASSO) was the
only proxy found to be more accurate than “perfect LD” proxies. Indeed, when p was set to
500 or 1000, ρ̂ph(X̂?, β̂?LASSO) was outperformed by “perfect LD” proxies. This result is not
so surprising, since this genetic map is close to mimick perfect LD situation, and the Adaptive
Lasso was the best substitute for β according to Rabier et al. (2018). Same conclusions hold for
the 100 QTLs scenario (cf. Tables 1 and 2 in Supplementary material).

To sum up, the best proxy (the one highlighted in gray in each table) for each simulation

setup, was found to be ρ̂ph(X̂?, β̂?ADLASSO) for T=1, and in most cases, ρ̂ph(X̂?, β̂?LASSO) for
T=4 and T=6.
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Table 3. Same as Table 1 except that more markers are considered. The TRN map contains 2000
markers whereas the TST map contains only 1000 markers.

T Method 50 generations 70 generations 100 generations MSE

1

Emp. Acc. 0.5239 0.5561 0.5907

ρ̂ph(X̂?, β̂?
LASSO) 0.4218 (0.0181) 0.4213 (0.0224) 0.4676 (0.0220) 0.0208

ρ̂ph(X̂?, β̂?
GPLASSO) 0.3856 (0.0269) 0.3949 (0.0309) 0.4546 (0.0247) 0.0275

ρ̂ph(X̂?, β̂?
ADLASSO) 0.5261 (0.0061) 0.5298 (0.0043) 0.5709 (0.0057) 0.0054

ρ̌pLD
ph (β̂ADLASSO) 0.4624 (0.0096) 0.4734 (0.0114) 0.5241 (0.0092) 0.0101

ρ̂pLD
ph (β̂ADLASSO) 0.5107 (0.0068) 0.5153 (0.0062) 0.5641 (0.0065) 0.0065

4

Emp. Acc. 0.4244 0.4027 0.4162

ρ̂ph(X̂?, β̂?
LASSO) 0.3614 (0.013) 0.3224 (0.0193) 0.3478 (0.0156) 0.0159

ρ̂ph(X̂?, β̂?
GPLASSO) 0.2974 (0.0260) 0.2521 (0.0403) 0.2929 (0.0256) 0.0306

ρ̂ph(X̂?, β̂?
ADLASSO) 0.5063 (0.0147) 0.4642 (0.0146) 0.5001 (0.0152) 0.0148

ρ̌pLD
ph (β̂ADLASSO) 0.3037 (0.0291) 0.2441 (0.0414) 0.2906 (0.0328) 0.0344

ρ̂pLD
ph (β̂ADLASSO) 0.3612 (0.0226) 0.3205 (0.0305) 0.3483 (0.0259) 0.0263

6

Emp. Acc. 0.3724 0.4037 0.3477

ρ̂ph(X̂?, β̂?
LASSO) 0.3215 (0.0127) 0.3325 (0.0135) 0.2709 (0.0167) 0.0143

ρ̂ph(X̂?, β̂?
GPLASSO) 0.2619 (0.0236) 0.2799 (0.0240) 0.2071 (0.0299) 0.0258

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4863 (0.0212) 0.4966 (0.0144) 0.4401 (0.0167) 0.0174

ρ̌pLD
ph (β̂ADLASSO) 0.2024 (0.0478) 0.2309 (0.0499) 0.1844 (0.0413) 0.0463

ρ̂pLD
ph (β̂ADLASSO) 0.2510 (0.0399) 0.2935 (0.0397) 0.2347 (0.0324) 0.0373

5.3. The quality of the prediction can be improved (Tables 4 and 5)
We propose to illustrate here the performances of the estimator β̃ that relies on the pro-
jection of Y on a well chosen subspace of Rrows(X). In order to find an appropriate sub-
space, we used the same kind of procedure as in Rabier et al. (2018). We choose σ(.) such as
d2σ(k)

d2
σ(k)

+λ

∥∥P (σ(k))P (σ(k))′X?β?
∥∥2

is the k-th largest term of the sequence
d2s

d2s+λ

∥∥P (s)P (s)′X?β?
∥∥2

s=1,...,r
.

The value of r̃ was chosen as the largest value satisfying the condition ˆ̃A1/Â1 ≤ υ, where υ de-
notes a tuning parameter. The corresponding accuracy was then computed for a given value
of υ. In order to choose the tuning parameter υ, we performed an optimization over the grid
{0.7, 0.8, 0.9, 0.925, 0.95, 0.975, 0.99} and kept the value giving the highest accuracy.

During this procedure, β? was estimated with the help of a penalized likelihood method. Table

4 compares the empirical correlations Ĉor
(
Ỹnew, Ynew

)
when subspaces were chosen according to

the Adaptive LASSO or according to the LASSO. The table reports also the empirical accuracy,
relying on the classical Ridge estimator.

In all the cases studied in Table 4, the empirical accuracy associated to the new estimator β̃
was always slightly greater than the classical empirical accuracy based on the Ridge estimator.
Moreover, for the choice of the r̃ subspaces, we could not establish the superiority of one penalized
likelihood method over another.

Last, Table 4 investigates the case where the vector β? belongs to Rrows(X
?). As expected,

we observe a significant increase in terms of accuracy when the “modified predictor” is adopted.

5.4. Real data: GS in rice
We propose to illustrate our theoretical results on real data of Spindel et al. (2015), regarding
GS in rice. An important research topic in GS is to determine the number of markers required
for implementing GS. We focused on the rice flowering time (days to 50% flowering) collected in
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Table 4. Illustration of the predictions based on β̃. Ĉor
(
Ŷnew, Ynew

)
refers to the empirical correlation

between Ŷnew and Ynew. Ĉor
(
Ỹ ADLASSO
new , Ynew

)
(resp. Ĉor

(
Ỹ LASSO
new , Ynew

)
) refers to the empirical

correlation between Ỹnew and Ynew, with the help of the Adaptive Lasso (resp. Lasso) for the choice of the
subspace. The genome is of length T and 2 QTLs are located at 3cM and 80cM with effects +2 and −4
respectively (σ2

e = 4). For TRN, p markers are equally spaced on the chromosome on [0,T], whereas for
TST p/(2T) markers are equally spaced on [0,1], and the same map (as TRN) is kept on [1,T]. The QTLs
are not observed in the TST sample.

(T, p) Generations Ĉor
(
Ŷnew, Ynew

)
Ĉor

(
Ỹ LASSO
new , Ynew

)
Ĉor

(
Ỹ ADLASSO
new , Ynew

)
(4, 4000)

50 0.4537 0.4625 0.4668
100 0.4051 0.4059 0.4126

(6, 6000)
50 0.3171 0.3174 0.3246
100 0.3468 0.3536 0.3527

(4, 8000)
50 0.2975 0.2985 0.3094
100 0.2642 0.2726 0.2741

(6, 12000)
50 0.3510 0.3578 0.3604
100 0.3563 0.3604 0.3655

Table 5. Same as Table 4 except that the vector β? belongs to Rrows(X
?). QTLs are located at marker

locations of the TRN map on [0,1] (σ2
e = 1) and the vector β? is such that β? = ωQ?(1) + ωQ?(2) + ωQ?(3).

(T, p) Generations ω Ĉor
(
Ŷnew, Ynew

)
Ĉor

(
Ỹ LASSO
new , Ynew

)
Ĉor

(
Ỹ ADLASSO
new , Ynew

)
(4, 8000)

50 0.3 0.5660 0.5791 0.5845
100 0.3 0.5561 0.5644 0.5691

(6, 12000)
50 0.3 0.4769 0.4815 0.4824
100 0.3 0.4649 0.4834 0.4834

(4, 8000)
50 0.6 0.7978 0.8115 0.8078
100 0.6 0.7912 0.8067 0.8019

(6, 12000)
50 0.6 0.7244 0.7371 0.7273
100 0.6 0.7127 0.7324 0.7247
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Los Banos, Philippines, during the dry season 2012.
Among the observations, 80% were chosen for the TRN set, and the remaining 20% were

affected to the TST set. According to the data, the number of TRN individuals was 252,
whereas the number of TST individuals was 63.

We considered 4 subset sizes (448, 781, 1553 and 3076) chosen by the authors from their
73147 SNPs. For each subset size, we considered exactly the 10 random sets provided by the
authors. Recall that these random sets contain SNPs located at random position along the rice
genome. Each computed accuracy relies on 100 data sets: for each of the 10 sets, 100 draws
were considered (with random individuals in TRN and TST sets). The nuisance parameters were
estimated thanks to the most dense TRN map, i.e. the one containing the 73147 SNPs.

For each subset size, Table 6 reports the average performance of different GS proxies over the
10 random sets. In contrast, Tables 7 and 8 are dedicated to the configuration with 448 SNPs
and 781 SNPs respectively, and provide results regarding each random set. Note that Tables 3
and 4 that handle 1553 and 3076 SNPs respectively, are included in Supplementary Material.

In order to compare our suggested proxies with existing proxies, two other proxies suitable
under imperfect LD are also present in the different tables. Indeed, we denote in the literature
only a few proxies appropriate under imperfect LD (cf. introduction). In particular, we consid-
ered the proxy of Lian et al. (2014) and a variant of this proxy proposed by our team in Rabier
et al. (2016). The work of Lian et al. (2014) relies on Daetwyler et al. (2008) seminal formula,
but the formula was adjusted by the authors to handle imperfect LD (cf. introduction). Our
study in Rabier et al. (2016) is based on Lian et al. (2014), but we slightly modified the proxy
in order to take into account the high dimensional setting.

To make the reading easier, let us recall the expression of the proxy of Lian et al. (2014):

ρ̂Lianph (ĥ2, r̂2, M̂eLJ) = r̂2ĥ

√
ĥ2/(1− ĥ2)

M̂eLJ/n+ r̂2ĥ2/(1− ĥ2)
(13)

where ĥ2, r̂2, M̂eLJ refer respectively to the estimated heritability, the estimated LD between
each QTL and its associated marker, the effective number of independent loci estimated by the
method of Li and Ji (2005). In our analyses, ĥ2 was set to 0.4378 (see Table 1 of Spindel et
al. (2015)). Besides, as mentioned in introduction, Lian et al. (2014) assumed a constant LD
between each QTL and its associated marker. As a result, since our rice data can be viewed
as a double haploid population, we used the relationship r̂2 =

√
r2
MM as advised by Lian et al.

(2014), where r2
MM denotes the average LD between consecutive markers. On the other hand,

the expression of our existing proxy is ρ̂Lianph (ĥ2, r̂2, F̂RM ) where F̂RM stands for an estimation

of the quantity E
(∥∥x′newX ′V −1

∥∥2
)

.

Let us now describe the performances of the different proxies on these rice data sets. To begin
with, we have to mention that in all cases studied, the two existing proxies were outperformed
by our new proxies. Besides, according to Table 6, ρ̂ph(X̂?, β̂?LASSO) was the most interesting
proxy (combining all SNPs scenarios). In particular, a small density of markers deteriorated
“perfect LD” proxies: the phenotypic accuracy was underestimated when p = 448 or p = 781.
For instance, for p = 448, ρ̂pLDph (β̂ADLASSO) and ρ̌pLDph (β̂ADLASSO) were equal on average to
0.3168 and 0.3662 respectively, instead of 0.4789 (see also results from sets 3, 6, 8 and 10 in

Table 7). In contrast, the imperfect LD proxy ρ̂ph(X̂?, β̂?LASSO) was satisfactory for all densities
of markers. This proxy did not suffer from the lack of markers, since the nuisance parameters
were learned using a TRN map based on 73147 SNPs. Moreover, as observed before (cf. our
simulation study, section 5.2), for such large genome size (T = 13.101M in rice), it seems that we
should choose the LASSO and not the Adaptive LASSO as a substitute for β? when computing
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our imperfect LD proxies. Last, as expected, the more markers there are, the more similar the
behavior of perfect and imperfect LD proxies is.

6. Discussion and Conclusion

In this manuscript, we tackle the problem of imperfect LD in GS. Nowadays, GS is an important
area of research in genetics that consists in selecting individuals on the basis of genomic predic-
tions. Imperfect LD usually refers to the situation where QTLs do not match marker locations.
In this case, the allele at a QTL usually differs from the alleles at its flanking markers. Imperfect
LD can be observed for instance in some species where the number of markers is too small to
cover the large genome size. More importantly, although genotyping costs have largely dropped
during the last decade, breeders want to know the number of markers required to implement GS,
in order to optimize their budget (see studies on eucalyptus, Tan et al. (2017), on coffea, Ferrao
et al. (2018), and on aquaculture species Kriaridou et al. (2020)).

In most of these applied papers in GS, researchers start by generating random subsets with
different numbers of markers. Then, for each density of markers, they evaluate the prediction
ability by cross validation. As a result, they can figure out the optimal number of markers, i.e.
the threshold from which no significant improvement is observed when adding extra markers.
However, this kind of approach requires the availability of a high density of markers, in order to
build subsets of different sizes.

In our present study, we propose to guide the experimenter prior to proceeding to high den-
sity genotyping. In particular, we introduce new imperfect LD proxies relying on a theoretical
analysis, which provide good estimates for accuracy of predictions on TST individuals. These
imperfect LD proxies will also help for determining the number of markers required for imple-
menting GS. For this purpose, we suggest to consider two different genetic maps: a dense map
for TRN and a sparse map for TST. The dense map only helps to estimate nuisance parameters
present in the expression of the proxies, such as the QTL effects β? and the QTL alleles X?. Note
that our imperfect LD proxies rely only on phenotypes and on markers of TRN. In that sense,
high density genotyping has to be performed only for the TRN set. Although the proxies do
not require genotyping and phenotyping of TST, they take into account the sparsity of the TST
map. So, in order to exploit our proxies in an efficient way, the breeders should first compute
the proxies with a very sparse TST map. Next, if the accuracy is too low, the breeders should
redensify the TST map and recompute the proxies. For instance, in our rice data analysis, we
considered successively 448, 781, 1553 and 3076 markers, and showed a good agreement between
our proxies and the empirical accuracy. Last, once a satisfactory accuracy has been found, we
have to genotype TST individuals at the chosen density of markers (e.g. 1553 markers), in order
to perform predictions and to select the most promising candidates for GS.

In this paper, we have estimated the nuisance parameters β? by penalized regression because
of the high dimensional setting. Using extensive simulations, we have compared three estimators
for β?: the LASSO (Tibshirani (1996)), the Adaptive LASSO (Zou (2006)) and the Group LASSO
(Yuan and Lin (2006)). The LASSO is found to be the best substitute for β? when the TST
map is sparse, whereas the Adaptive LASSO is more appropriate when the TST map is dense.
As previously said, the superiority of the Adaptive LASSO was expected in presence of a large
number of markers for TST. Indeed, we are close to mimick a perfect LD situation and we have
already shown in a previous study (Rabier et al. (2018)) that we should use the Adaptive LASSO
under perfect LD. More importantly, in our theoretical analysis, we did not investigate the loss of
accuracy due to the estimation of β?. It would have made the mathematical treatment even more
complex. In the future, this aspect should be addressed in order to have a deep understanding
of the behavior of the LASSO and of the Adaptive LASSO, as a function of the sparsity of the
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TST map.
On the other hand, results on penalized regressions could have been exploited in a different

way. In Mangin et al. (2019), the authors assume perfect LD and only use the penalized regression
to locate QTLs. It is only during a second step that QTL effects are estimated thanks to the
putative causal genome. This extra step is supposed to avoid the bias of the estimator due to the
high dimensional setting. Under imperfect LD, this approach appears to be feasible and could
be interesting to study. On the other hand, The MutiLocus Mixed Model (MLMM) forward
selection of Segura et al. (2012) should also be investigated in the future under imperfect LD.
Indeed, it gave very satisfactory results on real data in Mangin et al. (2019).

A deep treatment of the imperfect LD scenario was necessary, since this topic is more complex
than the perfect LD, and there are only a few methodological papers in the literature. Our
mathematical study helps to understand this concept in detail, and to provide relevant proxies
to geneticists. From a theoretical point of view, we have shown that under imperfect LD, the
projection of the regression function X?β? on Rcol(X) plays a key role for the accuracy. Our
analytical treatment also highlights the presence of a loss factor (see Lemma 2), due to imperfect
LD, that does not allow to reach the oracle (i.e. optimal) accuracy. From a practical point of
view, we have shown on simulated data that the performances of perfect LD proxies deteriorate
heavily when the LD between QTLs and markers decreases. In contrast, our imperfect LD proxies
that model explicitly the fact that QTLs do not match exactly marker locations do not suffer
from this drawback. Besides, on real data, our suggested proxies outperformed existing proxies
based on the work of Lian et al. (2014) and devised for imperfect LD. This is not surprising,
since our proxies rely on more complex formulas than in Lian et al. (2014), whose proxies are
extended versions of Daetwyler et al. (2008) seminal formula that was derived assuming drastic
conditions.

To conclude, in this study we have introduced new imperfect LD proxies that give satisfactory
results on simulated and real data. These proxies should help breeders to figure out the number
of markers required for implementing GS. Although many proxies are already present in the
literature on perfect LD (see Morota (2017) for a review), only a few proxies have been devised
until now for imperfect LD. In this context, our work is intended to fill this gap and to provide
useful tools that were missing for the GS community. These tools could be interesting for
designing cost-effective SNP chips. Indeed, as mentioned in Wu et al. (2016), LD SNP chips can
be viewed as a good compromise between chip prices and increased prediction accuracies.

Supplementary Material: The online version of this article offers Supplementary Material
that gives the mathematical proofs of the results of the main manuscript.
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Table 6. Comparison among different estimators of the phenotypic accuracy on rice data from Spindel et al.
(2015). The trait considered is the flowering time during the dry season 2012. Different densities of markers for
the TST samples are studied. The Mean Squared Error (MSE) with respect to the Empirical Accuracy is given
in brackets. For each density of markers, the proxy with the tiniest MSE is highlighted in gray. MSE refers to the
average over the 4 densities of markers.

Method 448 SNPs 781 SNPs 1553 SNPs 3076 SNPs MSE

Emp. Acc. 0.4789 0.4919 0.5275 0.5242

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4269 (0.0355) 0.4379 (0.0376) 0.4520 (0.0419) 0.4461 (0.0430) 0.0395

ρ̂ph(X̂?, β̂?
LASSO) 0.4621 (0.0244) 0.4653 (0.0226) 0.4737 (0.0254) 0.4728 (0.0263) 0.0247

ρ̌pLD
ph (β̂ADLASSO) 0.3168 (0.0529) 0.3571 (0.0364) 0.4233 (0.0264) 0.4115 (0.0290) 0.0362

ρ̂pLD
ph (β̂ADLASSO) 0.3662 (0.0454) 0.4202 (0.0281) 0.4919 (0.0215) 0.4952 (0.0342) 0.0323

ρ̂Lian
ph (ĥ2, r̂2, M̂eLJ) 0.2147 (0.2790) 0.1941 (0.3065) 0.1669 (0.3685) 0.1409 (0.3915) 0.3364

ρ̂Lian
ph (ĥ2, r̂2, F̂RM ) 0.3771 (0.1370) 0.3877 (0.1356) 0.4006 (0.1485) 0.4187 (0.1342) 0.1388

Table 7. Same as Table 6 except that only 448 SNPs are used for the TST sample. Moreover, the results
according to each set Spindel et al. (2015) are fully described here.

Dataset ID Set 1 Set 2 Set 3 Set 4

Emp. Acc. 0.5993 0.5445 0.4117 0.5054

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4764 (0.0429) 0.4441 (0.0441) 0.4053 (0.0322) 0.4358 (0.0356)

ρ̂ph(X̂?, β̂?
LASSO) 0.5125 (0.0271) 0.4847 (0.02486) 0.4380 (0.0236) 0.4808 (0.0207)

ρ̌pLD
ph (β̂ADLASSO) 0.5065 (0.0171) 0.4712 (0.0154) 0.1580 (0.0959) 0.4222 (0.0176)

ρ̂pLD
ph (β̂ADLASSO) 0.5404 (0.0124) 0.5128 (0.0128) 0.2059 (0.0867) 0.4663 (0.0153)

ρ̂Lian
ph (ĥ2, r̂2, M̂eLJ) 0.2160 (0.3758) 0.2208 (0.3357) 0.2113 (0.2318) 0.2012 (0.3117)

ρ̂Lian
ph (ĥ2, r̂2, F̂RM ) 0.3658 (0.2297) 0.3708 (0.1914) 0.3806 (0.0961) 0.3538 (0.1658)

Dataset ID Set 5 Set 6 Set 7 Set 8

Emp. Acc. 0.4676 0.4081 0.4878 0.4455

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4309 (0.0353) 0.4070 (0.0348) 0.4362 (0.0373) 0.4214 (0.0348)

ρ̂ph(X̂?, β̂?
LASSO) 0.4653 (0.0233) 0.4207 (0.0232) 0.4676 (0.0227) 0.4508 (0.0244)

ρ̌pLD
ph (β̂ADLASSO) 0.3251 (0.0398) 0.1774 (0.0907) 0.3732 (0.0286) 0.2726 (0.0668)

ρ̂pLD
ph (β̂ADLASSO) 0.3953 (0.0298) 0.2179 (0.0823) 0.4343 (0.0211) 0.3274 (0.0586)

ρ̂Lian
ph (ĥ2, r̂2, M̂eLJ) 0.1964 (0.2928) 0.2195 (0.2256) 0.2182 (0.2772) 0.2239 (0.2463)

ρ̂Lian
ph (ĥ2, r̂2, F̂RM ) 0.3552 (0.1461) 0.3955 (0.0964) 0.3810 (0.1297) 0.3919 (0.1064)

Dataset ID Set 9 Set 10

Emp. Acc. 0.4427 0.4696

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4117 (0.0218) 0.4130 (0.0366)

ρ̂ph(X̂?, β̂?
LASSO) 0.4622 (0.0316) 0.4382 (0.0229)

ρ̌pLD
ph (β̂ADLASSO) 0.2789 (0.0404) 0.1829 (0.1179)

ρ̂pLD
ph (β̂ADLASSO) 0.3255 (0.0314) 0.2366 (0.1036)

ρ̂Lian
ph (ĥ2, r̂2, M̂eLJ) 0.2194 (0.2322) 0.2206 (0.2609)

ρ̂Lian
ph (ĥ2, r̂2, F̂RM ) 0.3864 (0.0976) 0.3897 (0.1110)
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Table 8. Same as Table 7, except that 781 SNPs are used for the TST sample.
Dataset ID Set 1 Set 2 Set 3 Set 4

Emp. Acc. 0.4289 0.4709 0.4753 0.5638

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4398 (0.0318) 0.4289 (0.0334) 0.4285 (0.0383) 0.4462 (0.0463)

ρ̂ph(X̂?, β̂?
LASSO) 0.4360 (0.0226) 0.4537 (0.0211) 0.4622 (0.0216) 0.4869 (0.0263)

ρ̌pLD
ph (β̂ADLASSO) 0.2349 (0.05634) 0.2664 (0.0619) 0.3380 (0.0329) 0.5296 (0.0105)

ρ̂pLD
ph (β̂ADLASSO) 0.3008 (0.0415) 0.3378 (0.0441) 0.4027 (0.0221) 0.6032 (0.0126)

ρ̂Lian
ph (ĥ2, r̂2, M̂eLJ) 0.1983 (0.2586) 0.1907 (0.2898) 0.2020 (0.2837) 0.1892 (0.3717)

ρ̂Lian
ph (ĥ2, r̂2, F̂RM ) 0.4085 (0.0929) 0.3931 (0.1116) 0.3962 (0.1121) 0.3608 (0.2047)

Dataset ID Set 5 Set 6 Set 7 Set 8

Emp. Acc. 0.5449 0.5161 0.4121 0.5078

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4458 (0.0414) 0.4447 (0.0382) 0.4184 (0.0331) 0.4451 (0.0397)

ρ̂ph(X̂?, β̂?
LASSO) 0.4737 (0.0247) 0.4771 (0.0220) 0.4324 (0.0230) 0.4811 (0.0234)

ρ̌pLD
ph (β̂ADLASSO) 0.4045 (0.0313) 0.3893 (0.0284) 0.1965 (0.0743) 0.4053 (0.0244)

ρ̂pLD
ph (β̂ADLASSO) 0.4691 (0.0201) 0.4502 (0.0192) 0.2298 (0.0684) 0.4629 (0.0187)

ρ̂Lian
ph (ĥ2, r̂2, M̂eLJ) 0.1953 (0.3537) 0.1867 (0.3386) 0.1876 (0.2474) 0.2020 (0.2831)

ρ̂Lian
ph (ĥ2, r̂2, F̂RM ) 0.3738 (0.1828) 0.3734 (0.1609) 0.4012 (0.0973) 0.3962 (0.1121)

Dataset ID Set 9 Set 10
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ph (ĥ2, r̂2, F̂RM ) 0.3931 (0.1292) 0.3809 (0.1525)
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1. Proof of Theorem 1 of the main manuscript

By definition,

A1 = β?′ E (x?newx
′
new)X ′V −1X?β?.

We set D = Diag
(

d1
d21+λ

, . . . , dr
d2r+λ

)
. With this notation, we have the relation:

X ′V −1 = QDP ′. (1)

Recall that X? = P ?D?Q?′. After easy calculations, we obtain

X ′V −1P ?D?Q?′β? =

r∑
s=1

ds
d2
s + λ

Q(s)P (s)′
r?∑
j=1

d?jP
?(j)Q?(j)′β?. (2)

Then,

A1 =

r∑
s=1

ds
d2
s + λ

β?′ E (x?newx
′
new) Q(s)P (s)′

r?∑
j=1

d?jP
?(j)Q?(j)′β?.

By definition,

A2 = σ2
eE
(∥∥x′newX ′V −1

∥∥2
)
.

According to Theorem 1 of [2], we also have

A2 = σ2
e

r∑
s=1

d2
s

(d2
s + λ)2

E
(∥∥∥Q(s)Q(s)′xnew

∥∥∥2
)
.

1
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By definition,

A3 = β?′X?′V −1XVar (xnew)X ′V −1X?β?.

According to formula (2), we obtain the desired result

A3 =

 r∑
s=1

ds
d2
s + λ

Q(s)P (s)′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

′ E (xnewx
′
new)

×

 r∑
s=1

ds
d2
s + λ

Q(s)P (s)′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

 .

Last, since A4 = σ2
G, we have the relationship

A4 = β?′E (x?newx
?′
new)β?.

2. Proof of Theorem 2 of the main manuscript

Let us define Â1 in the following way:

Â1 =

r∑
s=1

ds
d2
s + λ

β?′ Σ̂ Q(s)P (s)′
r?∑
j=1

d?jP
?(j)Q?(j)′β?,

where Σ̂ := X?′X/n.
We have the relationship XQ(s) = dsP

(s). As a consequence, after some
straightforward matrix algebra, we obtain

X?′XQ(s) = ds

r?∑
`=1

Q?(`)d?`P
?(`)′P (s).

We deduce

Â1 =
1

n

r∑
s=1

β?′
d2
s

d2
s + λ

r?∑
`=1

Q?(`)d?`P
?(`)′P (s)P (s)′

r?∑
j=1

d?jP
?(j)Q?(j)′β?.

According to Theorem 2 of [2], a natural estimation of A2 is

Â2 =
σ2
e

n

r∑
s=1

d2
s

(d2
s + λ)2

n∑
i=1

∥∥∥Q(s)Q(s)′xi

∥∥∥2

,

and it leads to the following expression

Â2 =
σ2
e

n

r∑
s=1

d4
s

(d2
s + λ)2

.
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Let us consider the following estimation of A3

Â3 =
1

n

 r∑
s=1

ds
d2
s + λ

Q(s)P (s)′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

′ X ′X
×

 r∑
s=1

ds
d2
s + λ

Q(s)P (s)′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

 .

We have

Â3 =
1

n

 r∑
s=1

ds
d2
s + λ

XQ(s)
r?∑
j=1

d?jQ
?(j)′β?P (s)′P ?(j)

′

×

 r∑
s=1

ds
d2
s + λ

XQ(s)
r?∑
j=1

d?jQ
?(j)′β?P (s)′P ?(j)

 .

Note that

XQ(s)Q?(j)′β? = PDQ′Q(s)Q?(j)′β? = dsPesQ
?(j)′β? = dsP

(s)Q?(j)′β?

where es denotes the s-th vector of the canonical basis of Rr. As a consequence,

r∑
s=1

ds
d2
s + λ

XQ(s)
r?∑
j=1

d?jQ
?(j)′β?P (s)′P ?(j) =

r∑
s=1

d2
s

d2
s + λ

P (s)
r?∑
j=1

d?jP
(s)′P ?(j)Q?(j)′β?.

Last, we obtain

Â3 =
1

n

r∑
s=1

d4
s

(d2
s + λ)2

 r?∑
j=1

d?jP
(s)′P ?(j)Q?(j)′β?

2

.

Finally, let us consider the following estimation of A4:

Â4 =
1

n
β?′X?′X?β?.

We have

Â4 =
1

n
β?′Q?D?2Q?′β? =

1

n

r∑
s=1

d?2s β
?′Q?(s)Q?(s)′β?

=
1

n

r∑
s=1

d?2s β
?′Q?(s)Q?(s)′Q?(s)Q?(s)′β? =

1

n

r∑
s=1

d?2s

∥∥∥Q?(s)Q?(s)′β?∥∥∥2

.
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3. Proof of Lemma 1 of the main manuscript

To begin with, we have to notice that

‖PP ′β?‖2 =

r∑
s=1

∥∥∥P (s)P (s)′β?
∥∥∥2

.

Then, using the Cauchy-Schwartz inequality and the fact that X?β? belongs to
Span

(
P ?(1), . . . , P ?(r

?)
)
, we have

Â1 =
1

n

r∑
s=1

d2
s

d2
s + λ

∥∥∥P (s)P (s)′X?β?
∥∥∥2

=
1

n

r∑
s=1

(
d2
s

d2
s + λ

∥∥∥P (s)P (s)′X?β?
∥∥∥)(∥∥∥P (s)P (s)′X?β?

∥∥∥)

≤ 1

n

(
r∑
s=1

d4
s

(d2
s + λ)2

∥∥∥P (s)P (s)′X?β?
∥∥∥2
)1/2( r∑

s=1

∥∥∥P (s)P (s)′X?β?
∥∥∥2
)1/2

=
1

n

(
r∑
s=1

d4
s

(d2
s + λ)2

∥∥∥P (s)P (s)′X?β?
∥∥∥2
)1/2

‖PP ′X?β?‖

≤ 1

n

(
r∑
s=1

d4
s

(d2
s + λ)2

∥∥∥P (s)P (s)′X?β?
∥∥∥2
)1/2

‖P ?P ?′X?β?‖

= Â
1/2
3

(
r?∑
`=1

d?2`

∥∥∥Q?(`)Q?(`)′β?∥∥∥2
)1/2

= Â
1/2
3 Â

1/2
4 .

Besides, since Â2 ≥ 0 and ρoracleg = 1, we obtain

ρ̂g ≤
Â1

Â
1/2
3 Â

1/2
4

≤ ρoracleg .

In order to obtain the lower bound, we just have to notice that

nÂ1 =

r∑
s=1

d2
s

d2
s + λ

∥∥∥P (s)P (s)′X?β?
∥∥∥2

≥ ‖PP ′X?β?‖2 min
s

d2
s

d2
s + λ

,

nÂ3 =

r∑
s=1

d4
s

(d2
s + λ)2

∥∥∥P (s)P (s)′X?β?
∥∥∥2

≤ max
s

d4
s

(d2
s + λ)2

‖PP ′X?β?‖2 ,

nÂ4 =

r?∑
`=1

d?2`

∥∥∥Q?(`)Q?(`)′β?∥∥∥2

≤ ‖Q?Q?′β?‖2 max
`
d?2` .
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Since
d4s

(d2s+λ)2 ≤ 1, we also have nÂ2 = σ2
e

r∑
s=1

d4s
(d2s+λ)2 ≤ σ

2
er. As a consequence,

we have:

‖PP ′X?β?‖2 mins
d2s

d2s+λ√
σ2
e r + ‖PP ′X?β?‖2 maxs

d4s
(d2s+λ)2

√
‖Q?Q?′β?‖2 max` d?2`

≤ ρ̂g.

4. Some intuition on the different conditions and on the proof of
Lemma 2 of the main manuscript

First, we have to highlight the fact that the shrinkage will potentially have an
impact on the singular values ds of X (see e.g. the terms d2

s/(d
2
s + λ) in Â1). In

contrast, the singular values d?` of X? are not directly affected by the shrinkage.
Recall that the shrinkage parameter λ is necessary in order to handle the high
dimensional setting p >> n.

Let us consider a “`” that belongs to Ω?1. The key point is the following.
When “`” is tagged by a “s” that belongs to Ω1, the shrinkage does not have
any impact since λ is negligible compared to ds. As soon as “`” is tagged by a
“s” that belongs to either Ω2 or Ω3, there is a loss due to shrinkage, since λ is
not negligible compared to ds. Condition (C7?) (resp. (C8?)) will ensure that

the projection ξ
(`)
2 (resp. ξ

(`)
3 ) of P ?(`) on Span

s∈Ω`2

{
P (s)

}
(resp. Span

s∈Ω`3

{
P (s)

}
) is

small enough. In that sense, the loss due to the shrinkage will have no impact.

In contrast, the projection ξ
(`)
1 of P ?(`) on Span

s∈Ω`1

{
P (s)

}
has to be the largest

possible.
On the other hand, let us consider a “s” belonging to Ω1, that is to say

associated to large singular values of X. This “s”, not impacted by shrinkage,
may tag a “`” belonging to Ω?2 and Ω?3. However, the related terms will be
negligible because of conditions (C4?) and because of the order of d?` compared
to λ. We refer to the proof of Lemma 2 for more details (see below).

5. Proof of Lemma 2 of the main manuscript

According to the proof of Lemma 2 in Rabier et al. [2] (proof relying on Condi-
tion (C3)), we have:

nÂ2 ∼ σ2
e#Ω1 + σ2

e

∑
s∈Ω2

1

(1 + Cs)2
.

On the other hand, recall that Â3 = 1
n

r∑
s=1

d4s
(d2s+λ)2

(
r?∑̀
=1

d?`P
(s)′P ?(`)Q?(`)′β?

)2

.
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Then,

nÂ3 ∼
∑
s∈Ω1

(
r?∑
`=1

d?`P
(s)′P ?(`)Q?(`)′β?

)2

+
∑
s∈Ω2

1

(1 + Cs)2

(
r?∑
`=1

d?`P
(s)′P ?(`)Q?(`)′β?

)2

+
∑
s∈Ω3

d4
s

λ2

(
r?∑
`=1

d?`P
(s)′P ?(`)Q?(`)′β?

)2

.

Since each “s” is allowed to tag only one “`”, we have (cf. assumptions in Section
3.1.1 of the main manuscript)

nÂ3 ∼
∑
`∈Ω?1

∑
s∈Ω`1

d?2`

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

(3)

+
∑
`∈Ω?2

∑
s∈Ω`1

d?2`

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

+
∑
`∈Ω?3

∑
s∈Ω`1

d?2`

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

+
∑
`∈Ω?1

∑
s∈Ω`2

d?2`
(1 + Cs)2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

+
∑
`∈Ω?2

∑
s∈Ω`2

d?2`
(1 + Cs)2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

+
∑
`∈Ω?3

∑
s∈Ω`2

d?2`
(1 + Cs)2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

+
∑
`∈Ω?1

∑
s∈Ω`3

d?2`
d4
s

λ2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

+
∑
`∈Ω?2

∑
s∈Ω`3

d?2`
d4
s

λ2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

+
∑
`∈Ω?3

∑
s∈Ω`3

d?2`
d4
s

λ2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

.

From now on, let us set ξ
(`)
1 = ξ(n), ∀` ∈ Ω?1, with 0 < b < ξ(n) ≤ 1 and

0 < b < 1. To begin with, let us focus on the first term of formula (3). We have:∑
`∈Ω?1

∑
s∈Ω`1

d?2`

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

∼
∑
`∈Ω?1

∑
s∈Ω`1

d?2`
ξ(n)

#Ω`1

n2τ

r?

∼
∑
`∈Ω?1

d?2` ξ(n)
n2τ

r?
.
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Let us now focus on the second term of formula (3). We have the relationship

∑
`∈Ω?2

∑
s∈Ω`1

d?2`

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

∼
∑
`∈Ω?2

∑
s∈Ω`1

d?2`
n2τ

r?
ξ

(`)
1

#Ω`1

∼
∑
`∈Ω?2

d?2`
n2τ

r?
ξ

(`)
1 .

Besides,
∑
`∈Ω?2

d?2`
n2τ

r? ξ
(`)
1 ≤

∑
`∈Ω?2

d?2`
n2τ

r? . Since by definition the cardinality of Ω?2

is bounded, and since λn
2τ

r? = o(1) (Condition (C4?)), we have
∑
`∈Ω?2

d?2`
n2τ

r? =

o(1), that implies
∑
`∈Ω?2

d?2`
n2τ

r? ξ
(`)
1 = o(1).

Let us further consider the third term of formula (3):

∑
`∈Ω?3

∑
s∈Ω`1

d?2`

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

∼
∑
`∈Ω?3

∑
s∈Ω`1

d?2`
ξ

(`)
1

#Ω`1

n2τ

r?

∼
∑
`∈Ω?3

d?2`
n2τ

r?
ξ

(`)
1 .

We have
∑
`∈Ω?3

d?2`
n2τ

r? ξ
(`)
1 ≤

∑
`∈Ω?3

d?2`
n2τ

r? . Since Ω?3 is bounded,
∑
`∈Ω?3

d?2` = o(λ).

Then, according to (C4?),
∑
`∈Ω?3

d?2`
n2τ

r? = o(1). As a consequence,
∑
`∈Ω?3

d?2`
n2τ

r? ξ
(`)
1 =

o(1).
Let us move on to the fourth term of formula (3):

∑
`∈Ω?1

∑
s∈Ω`2

d?2`
(1 + Cs)2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

∼
∑
`∈Ω?1

∑
s∈Ω`2

d?2`
(1 + Cs)2

ξ
(`)
2

#Ω`2

n2τ

r?
.

We have:

∑
`∈Ω?1

∑
s∈Ω`2

d?2`
(1 + Cs)2

ξ
(`)
2

#Ω`2

n2τ

r?
≤
∑
`∈Ω?1

ξ
(`)
2 d?2`

n2τ

r?
.

According to Condition (C7?), n2τ

r?

∑
`∈Ω?1

ξ
(`)
2 d?2` = o(1), that implies∑

`∈Ω?1

∑
s∈Ω`2

d?2`
(1+Cs)2

ξ
(`)
2

#Ω`2

n2τ

r? = o(1).
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Let us focus on the fifth term of formula (3):∑
`∈Ω?2

∑
s∈Ω`2

d?2`
(1 + Cs)2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

∼
∑
`∈Ω?2

∑
s∈Ω`2

d?2`
(1 + Cs)2

ξ
(`)
2

#Ω`2

n2τ

r?

∼
∑
`∈Ω?2

ξ
(`)
2 d?2`
#Ω`2

n2τ

r?

∑
s∈Ω`2

1

(1 + Cs)2
.

We have
∑
`∈Ω?2

ξ
(`)
2 d?2`
#Ω`2

n2τ

r?

∑
s∈Ω`2

1
(1+Cs)2

≤
∑
`∈Ω?2

ξ
(`)
2 d?2`

n2τ

r? ≤
∑
`∈Ω?2

d?2`
n2τ

r? . Since

#Ω?2 = O(1) and λn
2τ

r? = o(1) (Condition (C4?)) , we have
∑
`∈Ω?2

d?2`
n2τ

r? = o(1).

As a consequence,
∑
`∈Ω?2

∑
s∈Ω`2

d?2`
(1+Cs)2

ξ
(`)
2

#Ω`2

n2τ

r? = o(1).

Let us consider the sixth term of formula (3):∑
`∈Ω?3

∑
s∈Ω`2

d?2`
(1 + Cs)2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

∼
∑
`∈Ω?3

∑
s∈Ω`2

d?2`
(1 + Cs)2

ξ
(`)
2

#Ω`2

n2τ

r?
.

We have ∑
`∈Ω?3

∑
s∈Ω`2

d?2`
(1 + Cs)2

ξ
(`)
2

#Ω`2

n2τ

r?
≤ n2τ

r?

∑
`∈Ω?3

d?2` .

Since Ω?3 is bounded,
∑
`∈Ω?3

d?2` = o(λ). Then, according to (C4?), we have

n2τ

r?

∑
`∈Ω?3

d?2` = o(1). It implies
∑
`∈Ω?3

∑
s∈Ω`2

d?2`
(1+Cs)2

ξ
(`)
2

#Ω`2

n2τ

r? = o(1).

Let us study the seventh term of formula (3):∑
`∈Ω?1

∑
s∈Ω`3

d?2`
d4
s

λ2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

∼ n2τ

r?

∑
`∈Ω?1

d?2`
∑
s∈Ω`3

d4
s

λ2

ξ
(`)
3

#Ω`3
.

We have,

n2τ

r?

∑
`∈Ω?1

d?2`
∑
s∈Ω`3

d4
s

λ2

ξ
(`)
3

#Ω`3
≤ n2τ

r?

∑
`∈Ω?1

ξ
(`)
3 d?2`

(∑
s∈Ω3

d4
s

λ2

)
.

According to (C3) and (C8?), the right is term is equal to o(1). As a result, the
left term is also negligible.

Let us focus on the eighth term of formula (3):∑
`∈Ω?2

∑
s∈Ω`3

d?2`
d4
s

λ2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

∼ n2τ

r?

∑
`∈Ω?2

∑
s∈Ω`3

d?2`
d4
s

λ2

ξ
(`)
3

#Ω`3

∼ n2τ

r?

∑
`∈Ω?2

∑
s∈Ω`3

λ

C?`

d4
s

λ2

ξ
(`)
3

#Ω`3
.
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We have

n2τ

r?

∑
`∈Ω?2

∑
s∈Ω`3

1

C?`

d4
s

λ

ξ
(`)
3

#Ω`3
≤ n2τ

r?

∑
`∈Ω?2

1

λ C?` #Ω`3

∑
s∈Ω`3

d4
s

≤ n2τ

r?

∑
`∈Ω?2

1

λ C?` #Ω`3

(∑
s∈Ω3

d4
s

)
.

Using (C4?), (C3) and the fact that #Ω?2 is bounded, we obtain that the right
term of the inequality is equal to o(1). Then, the left term is negligible.

Last, let us study the last (i.e. ninth) term of formula (3):∑
`∈Ω?3

∑
s∈Ω`3

d?2`
d4
s

λ2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

.

We have:∑
`∈Ω?3

∑
s∈Ω`3

d?2`
d4
s

λ2

∥∥∥P (s)P (s)′P ?(`)
∥∥∥2 ∥∥∥Q?(`)Q?(`)′β?∥∥∥2

∼ n2τ

r?

∑
`∈Ω?3

d?2`
ξ

(`)
3

#Ω`3

∑
s∈Ω`3

d4
s

λ2
.

Besides,

n2τ

r?

∑
`∈Ω?3

d?2`
ξ

(`)
3

#Ω`3

∑
s∈Ω`3

d4
s

λ2
≤ n2τ

r?

∑
`∈Ω?3

d?2`

(∑
s∈Ω3

d4
s

λ2

)
.

We have already proved that n2τ

r?

(∑
`∈Ω?3

d?2`

)
= o(1). So, using (C3), the right

term is equal to o(1). Then,

n2τ

r?

∑
`∈Ω?3

d?2`
ξ

(`)
3

#Ω`3

∑
s∈Ω`3

d4
s

λ2
= o(1).

As a result, all the terms of formula (3) are negligible except the first one. It
leads to the relationship:

nÂ3 ∼ ξ(n)
∑
`∈Ω?1

d?2`
n2τ

r?
.

Conditions (C5), (C6), and (C1?) and the fact that ξ(n) is bounded away from
zero, ensure that

nÂ2 + nÂ3 ∼ σ2
e#Ω1 + σ2

e

∑
s∈Ω2

1

(1 + Cs)2
+ ξ(n)

∑
`∈Ω?1

d?2`
n2τ

r?

∼ ξ(n)
∑
`∈Ω?1

d?2`
n2τ

r?
. (4)
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On the other hand, recall that

Â1 =
1

n

r∑
s=1

β?′
d2
s

d2
s + λ

r?∑
`=1

Q?(`)d?`P
?(`)′P (s)

r?∑
j=1

d?jP
(s)′P ?(j)Q?(j)′β? .

Since each “s” is allowed to tag only one “`”, we have:

nÂ1 ∼
∑
`∈Ω?1

∑
s∈Ω`1

d?2`
ξ(n)

#Ω`1

n2τ

r?
+
∑
`∈Ω?2

∑
s∈Ω`1

d?2`
ξ

(`)
1

#Ω`1

n2τ

r?
+
∑
`∈Ω?3

∑
s∈Ω`1

d?2`
ξ

(`)
1

#Ω`1

n2τ

r?

+
∑
`∈Ω?1

∑
s∈Ω`2

d?2`
1 + Cs

ξ
(`)
2

#Ω`2

n2τ

r?
+
∑
`∈Ω?2

∑
s∈Ω`2

d?2`
1 + Cs

ξ
(`)
2

#Ω`2

n2τ

r?
+
∑
`∈Ω?3

∑
s∈Ω`2

d?2`
1 + Cs

ξ
(`)
2

#Ω`2

n2τ

r?

+
∑
`∈Ω?1

∑
s∈Ω`3

d?2`
d2
s

λ

ξ
(`)
3

#Ω`3

n2τ

r?
+
∑
`∈Ω?2

∑
s∈Ω`3

d?2`
d2
s

λ

ξ
(`)
3

#Ω`3

n2τ

r?
+
∑
`∈Ω?3

∑
s∈Ω`3

d?2`
d2
s

λ

ξ
(`)
3

#Ω`3

n2τ

r?
.

(5)

Let us study the first term of formula (5):∑
`∈Ω?1

∑
s∈Ω`1

d?2`
ξ(n)

#Ω`1

n2τ

r?
∼ ξ(n)

∑
`∈Ω?1

d?2`
n2τ

r?
.

Let us focus on the second term of formula (5):

∑
`∈Ω?2

∑
s∈Ω`1

d?2`
ξ

(`)
1

#Ω`1

n2τ

r?
∼
∑
`∈Ω?2

d?2` ξ
(`)
1

n2τ

r?
.

Besides,
∑
`∈Ω?2

d?2` ξ
(`)
1

n2τ

r? ≤
n2τ

r?

∑
`∈Ω?2

d?2` . Since #Ω?2 = O(1) and using (C4?), we

have
∑
`∈Ω?2

d?2`
n2τ

r? = o(1). Then, we have
∑
`∈Ω?2

d?2`
n2τ

r? ξ
(`)
1 = o(1).

Let us focus on the third term of formula (5):

∑
`∈Ω?3

∑
s∈Ω`1

d?2`
ξ

(`)
1

#Ω`1

n2τ

r?
∼ n2τ

r?

∑
`∈Ω?3

d?2` ξ
(`)
1 .

We have n2τ

r?

∑
`∈Ω?3

d?2` ξ
(`)
1 ≤ n2τ

r?

∑
`∈Ω?3

d?2` . Recall that we have already proved that

n2τ

r?

∑
`∈Ω?3

d?2` = o(1).

Let us handle the fourth term of formula (5):

∑
`∈Ω?1

∑
s∈Ω`2

d?2`
1 + Cs

ξ
(`)
2

#Ω`2

n2τ

r?
≤ n2τ

r?

∑
`∈Ω?1

ξ
(`)
2 d?2` .
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According to (C7?), the right term is equal to o(1).
Let us study the fifth term of formula (5):

∑
`∈Ω?2

∑
s∈Ω`2

d?2`
1 + Cs

ξ
(`)
2

#Ω`2

n2τ

r?
∼
∑
`∈Ω?2

d?2`
ξ

(`)
2

#Ω`2

n2τ

r?

∑
s∈Ω`2

1

1 + Cs
.

We have : ∑
`∈Ω?2

d?2`
ξ

(`)
2

#Ω`2

n2τ

r?

∑
s∈Ω`2

1

1 + Cs
≤
∑
`∈Ω?2

d?2`
n2τ

r?
.

Since #Ω?2 = O(1) and λn
2τ

r? = o(1), we have
∑
`∈Ω?2

d?2`
n2τ

r? = o(1). As a conse-

quence,
∑
`∈Ω?2

∑
s∈Ω`2

d?2`
1+Cs

ξ
(`)
2

#Ω`2

n2τ

r? = o(1).

Let us study the sixth term of formula (5). We have

n2τ

r?

∑
`∈Ω?3

d?2`
ξ

(`)
2

#Ω`2

∑
s∈Ω`2

1

1 + Cs
≤ n2τ

r?

∑
`∈Ω?3

d?2` .

Recall that we have already proved that n2τ

r?

∑
`∈Ω?3

d?2` = o(1).

Let us consider the seventh term of formula (5), that is to say

∑
`∈Ω?1

∑
s∈Ω`3

d?2`
d2
s

λ

ξ
(`)
3

#Ω`3

n2τ

r?
.

We have

n2τ

r?

∑
`∈Ω?1

d?2`
∑
s∈Ω`3

d2
s

λ

ξ
(`)
3

#Ω`3
≤ n2τ

r?

∑
`∈Ω?1

ξ
(`)
3 d?2`

(∑
s∈Ω3

d2
s

λ

)
.

According to (C2) and (C8?), the right term is equal to o(1).
Let us consider the eighth term of formula (5). We have:

∑
`∈Ω?2

∑
s∈Ω`3

d?2`
d2
s

λ

ξ
(`)
3

#Ω`3

n2τ

r?
∼ n2τ

r?

∑
`∈Ω?2

1

C?`

ξ
(`)
3

#Ω`3

∑
s∈Ω`3

d2
s .

Besides,

n2τ

r?

∑
`∈Ω?2

1

C?`

ξ
(`)
3

#Ω`3

∑
s∈Ω`3

d2
s ≤

n2τ

r?

∑
`∈Ω?2

1

C?`

ξ
(`)
3

#Ω`3

(∑
s∈Ω3

d2
s

)
.

Using (C4?), (C2), and the fact that #Ω?2 = O(1), the right term equals o(1).
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Let us study the ninth term of formula (5):

∑
`∈Ω?3

∑
s∈Ω`3

d?2`
d2
s

λ

ξ
(`)
3

#Ω`3

n2τ

r?
≤ n2τ

r?

∑
`∈Ω?3

d?2`

(∑
s∈Ω3

d2
s

λ

)
.

Since n2τ

r?

(∑
`∈Ω?3

d?2`

)
= o(1), the last term is equal to o(1) using (C2).

To conclude, we obtain:

nÂ1 ∼
∑
`∈Ω?1

d?2` ξ(n)
n2τ

r?
. (6)

Last,

nÂ4 ∼
∑
`∈Ω?1

d?2`
n2τ

r?
+
∑
`∈Ω?2

d?2`
n2τ

r?
+
∑
`∈Ω?3

d?2`
n2τ

r?
.

We have already shown that
∑
`∈Ω?2

d?2`
n2τ

r? = o(1) and
∑
`∈Ω?3

d?2`
n2τ

r? = o(1).

Then

nÂ4 ∼
∑
`∈Ω?1

d?2`
n2τ

r?
. (7)

Finally, using formulae (4), (6) and (7), we have for large n, ρ̂g ∼
√
ξ(n). This

concludes the proof of the first item of Lemma 2 of the main manuscript.
Let us prove the second statement of Lemma 2 of the manuscript.
Since p → +∞ when n → +∞, the distance between markers and QTLs

tends to zero. As a consequence, QTLs locations will match a few marker
locations (i.e. perfect LD), and each column of X? will be included in X.
Then, we have Rcol(X

?) ⊂ Rcol(X). As a consequence, ∀` ∈ Ω?1 ∪ Ω?2 ∪ Ω?3,

we have PP ′P ?` = P ?` and since
∥∥P ?(`)∥∥2

= 1, we have the relationship

ξ
(`)
1 + ξ

(`)
2 + ξ

(`)
3 = 1.

Let us recall condition (C7?): n
2τ

r?

∑
`∈Ω?1

ξ
(`)
2 d?2` = o(1). We have

∑
`∈Ω?1

ξ
(`)
2 d?2` ≤

(#Ω?1) d?21 max`∈Ω?1
ξ

(`)
2 and by definition, d?21 ∼ nψ with 0 < ψ ≤ 1. In this

context, let us set ∀` ∈ Ω?1 ξ
(`)
2 = 1/nθ1 with θ1 > ψ. Since d?21 max`∈Ω?1

ξ
(`)
2 ∼

nψ−θ1 and #Ω?1 = O(1), it is clear that condition (C7?) is fulfilled.

In the same way, if we set ∀` ∈ Ω?1 ξ
(`)
3 = 1/nθ2 with θ2 > ψ, condition

(C8?) is fulfilled. Then, using the new expressions of ξ
(`)
2 and ξ

(`)
3 , we have

ξ
(`)
1 = 1− ξ(`)

2 − ξ
(`)
3 = 1−1/nθ1 −1/nθ2 . Moreover, since ξ

(`)
2 → 0 and ξ

(`)
3 → 0,

we can deduce that ξ
(`)
1 → 1. As a result, using the notation ξ(n) for ξ

(`)
1 , we

obtain that ξ(n) −→ 1 and ρ̂g −→ ρoracleg . This concludes the proof.



CE. Rabier and S. Grusea/Prediction in high dimensional linear models 13

6. Some extreme cases

Let us come back to the assumptions given at the beginning of Section 3.1 of
the main manuscript (before paragraph 3.1.1). We propose to study here the
asymptotic behavior of our estimate ρ̂g when the projected signal belongs only
to one component. In this context, we present two lemmas.

6.1. The projected signal belongs only to Span
{
Q?(1)

}
Lemma 6.1. Let us consider same assumptions as in Theorem 2. Besides, let
us suppose that the projected signal belongs only to Span

{
Q?(1)

}
that is to say∥∥∥Q?(1)Q?(1)′β?

∥∥∥2

∼ n2τ ,
∥∥∥Q?(`)Q?(`)′β?∥∥∥2

= 0, for 1 < ` ≤ r?.

Moreover, let us assume that ` = 1 is tagged only by one s, i.e.
∥∥P (s)P (s)′P ?(1)

∥∥2 ∼
ξ(n) with 0 < b < ξ(n) ≤ 1, and

∥∥P (u)P (u)′P ?(1)
∥∥2

= 0 ∀u 6= s. Then

• For s ∈ Ω1 ∪ Ω2

– if 2τ + ψ > 1, then ρ̂g ∼
√
ξ(n) ρoracleg .

– if 2τ + ψ < 1, then

∗ if
∑r
u=1

d4u
(d2u+λ)2

= o
(
n2τ+ψ

)
, then ρ̂g ∼

√
ξ(n) ρoracleg

∗ if n2τ+ψ = o
(∑r

u=1
d4u

(d2u+λ)2

)
, then ρ̂g → 0.

• For s ∈ Ω3, λ ∼ Cnκ+η, ds ∼ nγ with C > 0, κ > max(0,−η), γ <
(κ+ η)/2

– if 4γ − 2κ− 2η + 2τ + ψ > 1, then ρ̂g ∼
√
ξ(n) ρoracleg

– if 4γ − 2κ− 2η + 2τ + ψ < 1, then

∗ if
∑r
u=1

d4u
(d2u+λ)2

= o
(
n4γ−2κ−2η+2τ+ψ

)
, then ρ̂g ∼

√
ξ(n) ρoracleg

∗ if n4γ−2κ−2η+2τ+ψ = o
(∑r

u=1
d4u

(d2u+λ)2

)
, then ρ̂g → 0.

Proof. The proof is divided in three parts, called a), b) and c).

a) The projected signal belongs only to Span
{
Q?(1)

}
, and is tagged

by one s ∈ Ω1

Let us suppose that the projected signal belongs only to Span
{
Q?(1)

}
, that is

to say ∥∥∥Q?(1)Q?(1)′β?
∥∥∥2

∼ n2τ ,
∥∥∥Q?(`)Q?(`)′β?∥∥∥2

= 0, for 1 < ` ≤ r? .
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Let us consider that ` = 1 is tagged by only one “s” that belongs to Ω1, i.e.∥∥P (s)P (s)′P ?(1)
∥∥2 ∼ ξ(n) only for that s, with 0 < b < ξ(n) ≤ 1.

Using Theorem 2, we have:

ρ̂g =

d2sd
?
1

d2s+λ

∥∥P (s)P (s)′P ?(1)
∥∥2 ∥∥Q?(1)Q?(1)′β?

∥∥(
σ2
e

r∑
u=1

d4u
(d2u+λ)2 +

d4sd
?2
1

(d2s+λ)2

∥∥P (s)P (s)′P ?(1)
∥∥2 ∥∥Q?(1)Q(1)′β?

∥∥2
)1/2

. (8)

Using further the fact that d?21 ∼ nψ and λ = o(d2
s) (since s ∈ Ω1), we obtain

d2
sd
?
1

d2
s + λ

∥∥∥P (s)P (s)′P ?(1)
∥∥∥2 ∥∥∥Q?(1)Q?(1)′β?

∥∥∥ ∼ ξ(n) nτ+ψ/2,

d4
sd
?2
1

(d2
s + λ)2

∥∥∥P (s)P (s)′P ?(1)
∥∥∥2 ∥∥∥Q?(1)Q?(1)′β?

∥∥∥2

∼ ξ(n) n2τ+ψ .

If 2τ + ψ > 1, then n = o(n2τ+ψ). As a consequence, since
r∑

u=1

d4u
(d2u+λ)2 ≤ r ≤ n

and 0 < b < ξ(n), we have ρ̂g ∼
√
ξ(n).

Let us now consider the case 2τ +ψ < 1. Then, it is obvious from expression

(8), that we need to assume
∑r
u=1

d4u
(d2u+λ)2

= o
(
n2τ+ψ

)
in order to obtain ρ̂g ∼√

ξ(n).

b) The projected signal belongs only to Span
{
Q?(1)

}
, and is tagged

by one s ∈ Ω2

Recall that

ρ̂g =

d2sd
?
1

d2s+λ

∥∥P (s)P (s)′P ?(1)
∥∥2 ∥∥Q?(1)Q?(1)′β?

∥∥(
σ2
e

r∑
u=1

d4u
(d2u+λ)2 +

d4sd
?2
1

(d2s+λ)2

∥∥P (s)P (s)′P ?(1)
∥∥2 ∥∥Q?(1)Q(1)′β?

∥∥2
)1/2

. (9)

Using further the fact that d?21 ∼ nψ, we obtain

d2
sd
?
1

d2
s + λ

∥∥∥P (s)P (s)′P ?(1)
∥∥∥2 ∥∥∥Q?(1)Q?(1)′β?

∥∥∥ ∼ ξ(n) nτ+ψ/2

1 + Cs
.

Besides,

d4
sd
?2
1

(d2
s + λ)2

∥∥∥P (s)P (s)′P ?(1)
∥∥∥2 ∥∥∥Q?(1)Q?(1)′β?

∥∥∥2

∼ ξ(n) n2τ+ψ

(1 + Cs)2
.

If 2τ+ψ > 1, then n = o(n2τ+ψ). As a consequence, since
r∑

u=1

d4u
(d2u+λ)2 ≤ r ≤ n

and 0 < b < ξ(n), we have ρ̂g ∼
√
ξ(n).

Let us now consider the case 2τ +ψ < 1. Then, it is obvious from expression

(10), that we need to assume
∑r
u=1

d4u
(d2u+λ)2

= o
(
n2τ+ψ

)
in order to have ρ̂g ∼√

ξ(n).
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c) The projected signal belongs only to Span
{
Q?(1)

}
, and is tagged

by one s ∈ Ω3

Recall that

ρ̂g =

d2sd
?
1

d2s+λ

∥∥P (s)P (s)′P ?(1)
∥∥2 ∥∥Q?(1)Q?(1)′β?

∥∥(
σ2
e

r∑
u=1

d4u
(d2u+λ)2 +

d4sd
?2
1

(d2s+λ)2

∥∥P (s)P (s)′P ?(1)
∥∥2 ∥∥Q?(1)Q(1)′β?

∥∥2
)1/2

. (10)

Let us suppose that λ ∼ Cnκ+η with κ > max(0,−η). Besides, we set ds ∼
nγ , with γ < (κ+ η)/2. Using further the fact that d?21 ∼ nψ, we obtain

d2
sd
?
1

d2
s + λ

∥∥∥P (s)P (s)′P ?(1)
∥∥∥2 ∥∥∥Q?(1)Q?(1)′β?

∥∥∥ ∼ ξ(n)

C
n2γ+τ+ψ/2−κ−η.

At the denominator in formula (10), we have:

d4
sd
?2
1

(d2
s + λ)2

∥∥∥P (s)P (s)′P ?(1)
∥∥∥2 ∥∥∥Q?(1)Q(1)′β?

∥∥∥2

∼ ξ(n)

C2
n4γ−2κ−2η+2τ+Ψ .

If 4γ − 2κ− 2η + 2τ + ψ > 1, then n = o(n4γ−2κ−2η+2τ+ψ). As a consequence,

since
r∑

u=1

d4u
(d2u+λ)2 ≤ r ≤ n and 0 < b < ξ(n), we have ρ̂g ∼

√
ξ(n). When

4γ−2κ−2η+2τ+ψ < 1, we need to impose
∑r
u=1

d4u
(d2u+λ)2

= o
(
n4γ−2κ−2η+2τ+ψ

)
in order to obtain ρ̂g ∼

√
ξ(n). This concludes the proof.

6.2. The projected signal belongs only to Span
{
Q?(r?)

}
Lemma 6.2. Let us consider same assumptions as in Theorem 2 of the main
manuscript. Besides, let us suppose that the projected signal belongs only to
Span

{
Q?(r

?)
}

, that is to say∥∥∥Q?(r?)Q?(r
?)′β?

∥∥∥2

∼ n2τ ,
∥∥∥Q?(s)Q?(s)′β?∥∥∥2

= 0, for 1 ≤ s < r?.

Moreover, let us assume that ` = r? is tagged only by one s such as
∥∥P (s)P (s)′P ?(r

?)
∥∥2 ∼

ξ(n) with 0 < b < ξ(n) ≤ 1, and
∥∥P (u)P (u)′P ?(r

?)
∥∥2

= 0, ∀u 6= s. Then

• If s ∈ Ω1 ∪ Ω2:

– if 2τ + η > 1, then ρ̂g ∼
√
ξ(n) ρoracleg .

– if 2τ + η < 1, then

∗ if
∑r
u=1

d4u
(d2u+λ)2

= o
(
n2τ+η

)
, then ρ̂g ∼

√
ξ(n) ρoracleg

∗ if n2τ+η = o
(∑r

u=1
d4u

(d2u+λ)2

)
, then ρ̂g → 0.
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• If s ∈ Ω3, λ ∼ Cnκ+η, ds ∼ nγ with C > 0, κ > max(0,−η), γ < (κ+η)/2:

– if 4γ − 2κ− 2η + 2τ + η > 1, then ρ̂g ∼
√
ξ(n) ρoracleg

– if 4γ − 2κ− 2η + 2τ + η < 1, then

∗ if
∑r
u=1

d4u
(d2u+λ)2

= o
(
n4γ−2κ−2η+2τ+η

)
, then ρ̂g ∼

√
ξ(n) ρoracleg .

∗ if n4γ−2κ−2η+2τ+η = o
(∑r

u=1
d4u

(d2u+λ)2

)
, then ρ̂g → 0.

The proof is largely inspired from the one of Lemma 6.1 above, as soon as
we replace ψ by η.

7. Explicit formula for the accuracy ρ̃g of the improved predictor

Lemma 7.1. Let us consider same hypotheses as in Theorem 1 of the main
manuscript. Then, the quantity ρ̃g defined in Section 4 of the main manuscript
has the following expression

ρ̃g =
Ã1(

Ã2 + Ã3

)1/2 (
Ã4

)1/2
,

where

Ã1 =

r̃∑
s=1

dσ(s)

d2
σ(s) + λ

β?′ E (x?newx
′
new) Q(σ(s)P (σ(s))′

r?∑
j=1

d?jP
?(j)Q?(j)′β? ,

Ã2 = σ2
e

r̃∑
s=1

d2
σ(s)

(d2
s + λ)2

E
(∥∥∥Q(σ(s))Q(σ(s))′xnew

∥∥∥2
)

,

Ã3 =

 r̃∑
s=1

dσ(s)

d2
σ(s) + λ

Q(σ(s))P (σ(s))′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

′ E (xnewx
′
new)

×

 r̃∑
s=1

dσ(s)

d2
σ(s) + λ

Q(σ(s))P (σ(s))′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

 ,

Ã4 = A4.

Proof. After having replaced the quantity X ′V −1 by X ′V −1P̃ P̃ ′, formula (5) of
Rabier et al. [1] becomes

ρg =
β?′ E (x?newx

′
new)X ′V −1P̃ P̃ ′X?β?(

σ2
eE
(∥∥∥x′newX ′V −1P̃ P̃ ′

∥∥∥2
)

+ β?′X?′P̃ P̃ ′V −1XVar (xnew)X ′V −1P̃ P̃ ′X?β?
)1/2

σG

.

As a result, let us define

Ã1 := β?′ E (x?newx
′
new)X ′V −1P̃ P̃ ′X?β? , Ã2 := σ2

eE
(∥∥∥x′newX ′V −1P̃ P̃ ′

∥∥∥2
)
,

Ã3 := β?′X?′P̃ P̃ ′V −1XVar (xnew)X ′V −1P̃ P̃ ′X?β? , Ã4 := A4.
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Using the fact that X ′V −1 = QDP ′, we have

Ã1 = β?′ E (x?newx
′
new)QDP ′P̃ P̃ ′X?β?.

After some simple algebra, we obtain

QDP ′P̃ =

(
dσ(1)

d2
σ(1) + λ

Q(σ(1)), . . . ,
dσ(r̃)

d2
σ(r̃) + λ

Q(σ(r̃))

)
. (11)

Then,

Ã1 = β?′ E (x?newx
′
new)

(
r̃∑
s=1

dσ(s)

d2
σ(s) + λ

Q(σ(s))P (σ(s))′

)(
r?∑
s=1

d?sP
?(s)Q?(s)′

)
β?.

Let us now consider Ã2. According to Rabier et al. [2], we have

Ã2 = σ2
e

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

E
(∥∥∥Q(σ(s))Q(σ(s))′xnew

∥∥∥2
)
.

Furthermore, recall that

Ã3 = β?′X?′P̃ P̃ ′V −1XVar (xnew)X ′V −1P̃ P̃ ′X?β?.

Since the expression of X ′V −1P̃ P̃ ′X?β? is also present in Ã1, we easily obtain

Ã3 =

 r̃∑
s=1

dσ(s)

d2
σ(s) + λ

Q(σ(s))P (σ(s))′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

′ E (xnewx
′
new)

×

 r̃∑
s=1

dσ(s)

d2
σ(s) + λ

Q(σ(s))P (σ(s))′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

 .

8. Proof of Lemma 3 of the main manuscript

To begin with, let us recall the expression Ã1 given in Lemma 7.1 above:

Ã1 =

r̃∑
s=1

dσ(s)

d2
σ(s) + λ

β?′ E (x?newx
′
new) Q(σ(s)P (σ(s))′

r?∑
j=1

d?jP
?(j)Q?(j)′β? . (12)

Let us consider the following natural estimation ˆ̃A1:

ˆ̃A1 :=
1

n

r̃∑
s=1

dσ(s)

d2
σ(s) + λ

β?′ X?′X Q(σ(s)P (σ(s))′
r?∑
j=1

d?jP
?(j)Q?(j)′β?.
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We have the relationship XQ(σ(s)) = dσ(s)P
(σ(s)). As a consequence, after some

straightforward matrix algebra, we obtain:

X?′XQ(σ(s)) = dσ(s)

r?∑
`=1

d?`Q
?(`)P ?(`)′P (σ(s)).

Then,

ˆ̃A1 =
1

n

r̃∑
s=1

β?′
d2
σ(s)

d2
σ(s) + λ

r?∑
`=1

Q?(`)d?`P
?(`)′P (σ(s))

r?∑
j=1

d?jP
(σ(s))′P ?(j)Q?(j)′β?.

According to [2],

ˆ̃A2 =
σ2
e

n

r∑
s=1

d4
σ(s)

(d2
σ(s) + λ)2

.

An estimation for the quantity Ã3 is the following

ˆ̃A3 =
1

n

 r̃∑
s=1

X
dσ(s)

d2
σ(s) + λ

Q(σ(s))P (σ(s))′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

′

×

 r̃∑
s=1

X
dσ(s)

d2
σ(s) + λ

Q(σ(s))P (σ(s))′
r?∑
j=1

d?jP
?(j)Q?(j)′β?

 .

Using the fact that XQ(σ(s)) = dσ(s)P
(σ(s)) and after some straightforward

matrix algebra, we obtain:

ˆ̃A3 =
1

n

r̃∑
s=1

d4
σ(s)

(d2
σ(s) + λ)2

(
r?∑
`=1

d?`P
(σ(s))′P ?(`)Q?(`)′β?

)2

.

9. Some extreme cases using the improved predictor

Let us now introduce a new result dealing with an extreme case:

Lemma 9.1. Let us consider same assumptions as in Theorem 2 of the main
manuscript. Besides, let us suppose that the projected signal belongs only to
Span

{
Q?(1)

}
, that is to say∥∥∥Q?(1)Q?(1)′β

∥∥∥2

∼ n2τ ,
∥∥∥Q?(s)Q?(s)′β∥∥∥2

= 0, for 1 < s ≤ r?.

Moreover, let us assume that ` = 1 is tagged only by one s ∈ {σ(1), . . . , σ(r̃)}
such as

∥∥P (s)P (s)′P ?(1)
∥∥2 ∼ ξ(n) with 0 < b < ξ(n) ≤ 1, and

∥∥P (u)P (u)′P ?(1)
∥∥2

=
0 ∀u 6= s. Then
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1. If s ∈ Ω1 ∪ Ω2, 2τ + ψ < 1 and the following two conditions hold

•
∑r̃
u=1

d4σ(u)(
d2
σ(u)

+λ
)2 = o

(
n2τ+ψ

)
,

• n2τ+ψ = o
(∑r

u=1
d4u

(d2u+λ)2

)
,

we have ˆ̃ρg ∼
√
ξ(n)ρoracleg , whereas ρ̂g −→ 0.

2. If s ∈ Ω3, λ ∼ Cnκ+η, ds ∼ nγ with C > 0, κ > max(0,−η), γ < (κ+η)/2,
4γ − 2κ− 2η + 2τ + ψ < 1, and the following two conditions hold

•
∑r̃
u=1

d4σ(u)(
d2
σ(u)

+λ
)2 = o

(
n4γ−2κ−2η+2τ+ψ

)
;

• n4γ−2κ−2η+2τ+ψ = o
(∑r

u=1
d4u

(d2u+λ)2

)
,

we have ˆ̃ρg ∼
√
ξ(n)ρoracleg , whereas ρ̂g −→ 0.

The proof is largely inspired from the proof of Lemma 6.1 of this Supple-
mentary Material. According to this lemma, there are some cases where, at the
same time, the new accuracy ˆ̃ρg is not negligible (asymptotically equivalent to√
ξ(n)ρoracleg ) and the classical accuracy ρ̂g is null.
Note that the analogue of this lemma, for a projected signal belonging only

to Span
{
Q?(r

?)
}

can be easily deduced.

10. Some results regarding the L2 prediction loss

We first prove the Remark 2 of the main manuscript in which we give an ex-
pression for the L2 prediction loss.

10.1. Proof of Remark 2 of the main manuscript

We have

E
{

(x′newβ̂ − x?′newβ?)2 | xnew , x?new
}

= E
{

(x′newX
′V −1Y − x′newX ′V −1X?β? + x′newX

′V −1X?β? − x?′newβ?)2 | xnew , x?new
}

= E
[{
x′newX

′V −1(Y −X?β?)
}2 | xnew

]
+ E

[{
x′newX

′V −1X?β? − x?′newβ?
}2 | xnew , x?new

]
+ 2 (x′newX

′V −1X?β? − x?′newβ?) E
[
x′newX

′V −1(Y −X?β?) | xnew
]

= σ2
e

∥∥x′newX ′V −1
∥∥2

+ β?′X?′V −1Xxnewx
′
newX

′V −1X?β?

+ β?′x?newx
?′
newβ

? − 2β?′x?newx
′
newX

′V −1X?β?.
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As a result,

E
{

(x′newβ̂ − x?′newβ?)2
}

= σ2
eE
{∥∥x′newX ′V −1

∥∥2
}

+ β?′X?′V −1XVar (xnew)X ′V −1X?β? + σ2
G

− 2β?′ E (x?newx
′
new)X ′V −1X?β?

= A2 +A3 +A4 − 2A1 .

This gives the expression of the L2 prediction loss.

10.2. Estimation of the L2 prediction loss, when TRN and TST
samples come from the same probability distribution

A natural estimation is the following

Ê
{

(x′newβ̂ − x?′newβ?)2
}

= Â2 + Â3 + Â4 − 2Â1 .

According to formulae (4), (6) and (7),

nÂ4 ∼
∑
`∈Ω?1

d?2`
n2τ

r?

nÂ2 + nÂ3 ∼ ξ(n)
∑
`∈Ω?1

d?2`
n2τ

r?

nÂ1 ∼
∑
`∈Ω?1

d?2` ξ(n)
n2τ

r?
.

As a result, we have:

Â2 + Â3 + Â4 − 2Â1 ∼
1− ξ(n)

n

∑
`∈Ω?1

d?2`
n2τ

r?
.

By definition, the loss coefficient 1 − ξ(n) is bounded by 0 and 1. In order to

ensure that the quantity Ê
{

(x′newβ̂ − x?′newβ?)2
}

tends to 0, it suffices to have

∑
`∈Ω?1

d?2`
n2τ

r?
= o(n) .

Indeed, recall that under condition (C1?), we have
n2τ

r?

∑
`∈Ω?1

d?2` → +∞.

As a result, it is sufficient that
n2τ

r?

∑
`∈Ω?1

d?2` diverges to +∞ at a rate slower

than n.
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10.3. How to improve the quality of the prediction

The L2 prediction loss, associated to the new estimator β̃ is

E
{

(x′newβ̃ − x?′newβ?)2
}

= Ã2 + Ã3 + Ã4 − 2Ã1 .

Assuming that TRN and TST samples come from the same probability distri-
bution, an estimation of this quantity is the following

Ê
{

(x′newβ̃ − x?′newβ?)2
}

= ˆ̃A2 + ˆ̃A3 + ˆ̃A4 − 2 ˆ̃A1

where ˆ̃A2, ˆ̃A3, ˆ̃A4 and ˆ̃A1 are given in Lemma 3 of the main manuscript.

Remark 10.1. Note that the prediction is improved if

Ê
{

(x′newβ̃ − x?′newβ?)2
}
< Ê

{
(x′newβ̂ − x?′newβ?)2

}
,

i.e.

Â2 − ˆ̃A2 + Â3 − ˆ̃A3 + 2( ˆ̃A1 − Â1) > 0 .

According to the main text (below Lemma 5),

Â1 − ˆ̃A1 = Ĉov(~Ynew, Ynew) ,

Â2 + Â3 − ( ˆ̃A2 + ˆ̃A3) = V̂ar(~Ynew).

As a result, this condition can be rewritten

V̂ar(~Ynew) > 2Ĉov(~Ynew, Ynew) .
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Table 1
Same as Table 1 of the main manuscript except that 100 QTLs are now considered on [0,T].

Recall that the TRN map contains 1000 markers whereas the TST map contains only 500
markers.

Method 50 generations 70 generations 100 generations MSE

Emp. Acc. 0.6489 0.6499 0.6872

ρ̂ph(X̂?, β̂?
LASSO) 0.6102 (0.0059) 0.6793 (0.0050) 0.6978 (0.0027) 0.0045

T=1 ρ̂ph(X̂?, β̂?
GPLASSO) 0.5909 (0.0075) 0.6451 (0.0044) 0.6916 (0.0026) 0.0048

ρ̂ph(X̂?, β̂?
ADLASSO) 0.6433 (0.0039) 0.6793 (0.0050) 0.7069 (0.0027) 0.0039

ρ̌pLD
ph (β̂ADLASSO) 0.6578 (0.0044) 0.6667 (0.0044) 0.7156 (0.0029) 0.0039

ρ̂pLD
ph (β̂ADLASSO) 0.6839 (0.0058) 0.7163 (0.0092) 0.7598 (0.0074) 0.0075

Emp. Acc. 0.4451 0.4821 0.4053

ρ̂ph(X̂?, β̂?
LASSO) 0.4652 (0.0094) 0.4234 (0.0138) 0.4326 (0.0136) 0.0123

T=4 ρ̂ph(X̂?, β̂?
GPLASSO) 0.4264 (0.0118) 0.3610 (0.0257) 0.3872 (0.0152) 0.0176

ρ̂ph(X̂?, β̂?
ADLASSO) 0.5551 (0.0192) 0.5103 (0.0108) 0.5273 (0.0252) 0.0184

ρ̌pLD
ph (β̂ADLASSO) 0.3603 (0.0245) 0.3602 (0.0326) 0.2866 (0.04651) 0.0345

ρ̂pLD
ph (β̂ADLASSO) 0.4414 (0.0212) 0.4104 (0.0243) 0.3371 (0.0419) 0.0291

Emp. Acc. 0.3895 0.3666 0.3599

ρ̂ph(X̂?, β̂?
LASSO) 0.3983 (0.0123) 0.4171 (0.0131) 0.3774 (0.0121) 0.0125

T=6 ρ̂ph(X̂?, β̂?
GPLASSO) 0.3403 (0.01824) 0.3575 (0.0116) 0.3312 (0.0137) 0.0145

ρ̂ph(X̂?, β̂?
ADLASSO) 0.5007 (0.0233) 0.5085 (0.0294) 0.4894 (0.0247) 0.0258

ρ̌pLD
ph (β̂ADLASSO) 0.1124 (0.0995) 0.2016 (0.0569) 0.1847 (0.0545) 0.0703

ρ̂pLD
ph (β̂ADLASSO) 0.1415 (0.0926) 0.2556 (0.0546) 0.2293 (0.0493) 0.0655

Table 2
Same as Table 1 except that more markers are considered. The TRN map contains 2000

markers whereas the TST map contains only 1000 markers.

Method 50 generations 70 generations 100 generations MSE

Emp. Acc. 0.6612 0.6484 0.6831

ρ̂ph(X̂?, β̂?
LASSO) 0.5935 (0.0098) 0.5855 (0.0079) 0.6333 (0.0066) 0.0081

T=1 ρ̂ph(X̂?, β̂?
GPLASSO) 0.5722 (0.0131) 0.5665 (0.0115) 0.6180 (0.0082) 0.0109

ρ̂ph(X̂?, β̂?
ADLASSO) 0.6477 (0.0033) 0.6213 (0.0042) 0.6676 (0.0035) 0.0037

ρ̌pLD
ph (β̂ADLASSO) 0.6149 (0.0054) 0.5825 (0.0077) 0.6676 (0.0035) 0.0055

ρ̂pLD
ph (β̂ADLASSO) 0.6449 (0.0037) 0.6291 (0.0037) 0.6636 (0.0036) 0.0037

Emp. Acc. 0.5047 0.4723 0.4760

ρ̂ph(X̂?, β̂?
LASSO) 0.5157 (0.0083) 0.4574 (0.0122) 0.4201 (0.0153) 0.0119

T=4 ρ̂ph(X̂?, β̂?
GPLASSO) 0.4547 (0.0123) 0.4078 (0.0189) 0.3663 (0.0227) 0.0179

ρ̂ph(X̂?, β̂?
ADLASSO) 0.5986 (0.0163) 0.5477 (0.0180) 0.5420 (0.0128) 0.0157

ρ̌pLD
ph (β̂ADLASSO) 0.4366 (0.0166) 0.3639 (0.0294) 0.3416 (0.0409) 0.0289

ρ̂pLD
ph (β̂ADLASSO) 0.5206 (0.0197) 0.4567 (0.0219) 0.4171 (0.0327) 0.0247

Emp. Acc. 0.4306 0.4870 0.4384

ρ̂ph(X̂?, β̂?
LASSO) 0.4205 (0.0173) 0.4529 (0.0155) 0.3733 (0.0194) 0.0174

T=6 ρ̂ph(X̂?, β̂?
GPLASSO) 0.3429 (0.0229) 0.4009 (0.0192) 0.3279 (0.0267) 0.0229

ρ̂ph(X̂?, β̂?
ADLASSO) 0.5307 (0.0241) 0.5582 (0.0146) 0.4994 (0.0178) 0.0188

ρ̌pLD
ph (β̂ADLASSO) 0.2890 (0.0476) 0.3424 (0.0419) 0.2581 (0.0650) 0.0515

ρ̂pLD
ph (β̂ADLASSO) 0.3611 (0.0415) 0.4269 (0.0313) 0.3156 (0.0597) 0.0442
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Table 3
Same as Table 7 of the main manuscript, except that 1553 SNPs are used for the TST

sample.

Dataset ID Set 1 Set 2 Set 3 Set 4
Emp. Acc. 0.5668 0.5151 0.4889 0.5089

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4535 (0.0403) 0.4489 (0.0422) 0.4438 (0.0379) 0.4379 (0.0394)

ρ̂ph(X̂?, β̂?
LASSO) 0.4823 (0.0273) 0.4778 (0.0258) 0.4722 (0.0235) 0.4594 (0.0241)

ρ̌pLD
ph (β̂ADLASSO) 0.5072 (0.0143) 0.4267 (0.0205) 0.3497 (0.0322) 0.2822 (0.0814)

ρ̂pLD
ph (β̂ADLASSO) 0.5526 (0.0121) 0.5081 (0.0156) 0.4205 (0.0203) 0.3587 (0.0625)

ρ̂Lian
ph (ĥ2, r̂2, M̂eLJ ) 0.1702 (0.3974) 0.1620 (0.3680) 0.1700 (0.3374) 0.1732 (0.3496)

ρ̂Lian
ph (ĥ2, r̂2, F̂RM ) 0.3977 (0.1772) 0.3970 (0.1462) 0.4141 (0.1197) 0.4109 (0.1279)

Dataset ID Set 5 Set 6 Set 7 Set 8
Emp. Acc. 0.5730 0.5091 0.5142 0.5242

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4909 (0.0511) 0.4456 (0.0391) 0.4497 (0.0369) 0.4520 (0.0429)

ρ̂ph(X̂?, β̂?
LASSO) 0.4579 (0.0288) 0.4686 (0.0244) 0.4825 (0.0222) 0.4805 (0.0259)

ρ̌pLD
ph (β̂ADLASSO) 0.4816 (0.0209) 0.4134 (0.0227) 0.4830 (0.0099) 0.4293 (0.0233)

ρ̂pLD
ph (β̂ADLASSO) 0.5314 (0.0166) 0.4977 (0.0164) 0.5714 (0.0149) 0.4922 (0.0179)

ρ̂Lian
ph (ĥ2, r̂2, M̂eLJ ) 0.1650 (0.4110) 0.1634 (0.3525) 0.1652 (0.3561) 0.1660 (0.3588)

ρ̂Lian
ph (ĥ2, r̂2, F̂RM ) 0.3951 (0.1880) 0.3955 (0.1354) 0.4022 (0.1347) 0.4021 (0.1457)

Dataset ID Set 9 Set 10
Emp. Acc. 0.5590 0.5156

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4496 (0.0483) 0.4409 (0.0407)

ρ̂ph(X̂?, β̂?
LASSO) 0.4831 (0.0276) 0.4723 (0.0245)

ρ̌pLD
ph (β̂ADLASSO) 0.4936 (0.0176) 0.3664 (0.0357)

ρ̂pLD
ph (β̂ADLASSO) 0.5403 (0.01615) 0.4461 (0.0227)

ρ̂Lian
ph (ĥ2, r̂2, M̂eLJ ) 0.1664 (0.3899) 0.1675 (0.3544)

ρ̂Lian
ph (ĥ2, r̂2, F̂RM ) 0.3921 (0.1723) 0.3999 (0.1379)

Table 4
Same as Table 7 of the main manuscript, except that 3076 SNPs are used for the TST

sample.

Dataset ID Set 1 Set 2 Set 3 Set 4
Emp. Acc. 0.5288 0.5639 0.4662 0.4851

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4417 (0.0449) 0.4494 (0.0478) 0.4351 (0.0364) 0.4456 (0.0377)

ρ̂ph(X̂?, β̂?
LASSO) 0.4692 (0.0281) 0.4813 (0.0288) 0.4587 (0.0241) 0.4684 (0.0237)

ρ̌pLD
ph (β̂ADLASSO) 0.4387 (0.0213) 0.5304 (0.0111) 0.2552 (0.0758) 0.3152 (0.0415)

ρ̂pLD
ph (β̂ADLASSO) 0.5372 (0.0151) 0.6094 (0.1449) 0.3328 (0.0607) 0.4079 (0.0210)

ρ̂Lian
ph (ĥ2, r̂2, M̂eLJ ) 0.1419 (0.3964) 0.1384 (0.4270) 0.1406 (0.2416) 0.1412 (0.3531)

ρ̂Lian
ph (ĥ2, r̂2, F̂RM ) 0.4152 (0.1380) 0.4078 (0.1676) 0.4253 (0.0950) 0.4266 (0.1026)

Dataset ID Set 5 Set 6 Set 7 Set 8
Emp. Acc. 0.5581 0.5096 0.5349 0.5717

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4526 (0.04282) 0.4411 (0.0403) 0.4481 (0.0449) 0.4521 (0.0499)

ρ̂ph(X̂?, β̂?
LASSO) 0.4806 (0.0293) 0.4648 (0.0253) 0.4762 (0.0263) 0.4856 (0.0288)

ρ̌pLD
ph (β̂ADLASSO) 0.4818 (0.0191) 0.4002 (0.0249) 0.4237 (0.0269) 0.5277 (0.0148)

ρ̂pLD
ph (β̂ADLASSO) 0.5469 (0.0145) 0.4784 (0.0167) 0.4832 (0.0206) 0.6113 (0.0148)

ρ̂Lian
ph (ĥ2, r̂2, M̂eLJ ) 0.1392 (0.4270) 0.1414 (0.3803) 0.1426 (0.3989) 0.1393 (0.4319)

ρ̂Lian
ph (ĥ2, r̂2, F̂RM ) 0.4150 (0.1616) 0.4185 (0.1247) 0.4208 (0.1369) 0.4093 (0.1707)

Dataset ID Set 9 Set 10
Emp. Acc. 0.4969 0.5266

ρ̂ph(X̂?, β̂?
ADLASSO) 0.4421 (0.0389) 0.4533 (0.0410)

ρ̂ph(X̂?, β̂?
LASSO) 0.4637 (0.0242) 0.4798 (0.0244)

ρ̌pLD
ph (β̂ADLASSO) 0.3419 (0.0354) 0.4439 (0.0201)

ρ̂pLD
ph (β̂ADLASSO) 0.4312 (0.0354) 0.5138 (0.0148)

ρ̂Lian
ph (ĥ2, r̂2, M̂eLJ ) 0.1433 (0.3633) 0.1414 (0.3952)

ρ̂Lian
ph (ĥ2, r̂2, F̂RM ) 0.4281 (0.1106) 0.4205 (0.1341)


