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Charles Bouton and the Navier-Stokes Global Regularity Conjecture

The present article examines the Lie group invariants of the Navier-Stokes equation for incompressible fluids. This is accomplished by applying the invariant theory of Charles Bouton. His analyis shows that since the solutions of the NSE are relative invariants of the scaling group, they must be isobaric polynomials of x, y, z, t and thus infinitely differentiable. Then, bounded energy follows from conservation law. The total angular momentum per unit mass is a scale-invariant vector; it is analyzed and conclusions are drawn about its role in turbulence.

INTRODUCTION

Global regularity of the incompressible Navier-Stokes equation (NSE) is subject of intense research and also a Clay Millennium problem [START_REF] Fefferman | Existence and smoothness of the Navier-Stokes Equation (The Millennium Prize Problems[END_REF]. The present article adds to this collective research effort a study of the symmetry properties of the NSE by following the example of a similar work on the general linear differential equation (GLDE, given below) by Charles L. Bouton [START_REF] Bouton | [END_REF]. We present in detail the work of Bouton on the GLDE and then apply his analysis to the NSE. Following the reasoning of Bouton, we examine the invariants of the NSE and draw conclusions about the solutions and their properties.

The NSE is given by

ρ ∂ u ∂t + ( u • ∇) u = ν∆ u -∇p ∇ • u = 0
u(x, y, z, 0) = u 0 (x, y, z)

with initial conditions u 0 in the Schwartz class [START_REF] Fefferman | Existence and smoothness of the Navier-Stokes Equation (The Millennium Prize Problems[END_REF]. Here u(x, y, z, t) = (u, v, w) is the velocity, ν is the kinematic viscosity, ρ = const is the fluid density and p(x, y, z, t) is the pressure. The NSE global regularity conjecture [START_REF] Fefferman | Existence and smoothness of the Navier-Stokes Equation (The Millennium Prize Problems[END_REF] is the assumption that the solution u(x, y, z, t), p(x, y, z, t) of the NSE is smooth of class C ∞ throughout IR 3 and for all t ≥ 0:

u(x, y, z, t), p(x, y, z, t)

∈ C ∞ (IR 3 × [0, ∞)), (2) 
as well as has bounded energy

IR 3
| u(x, y, z, t)| 2 dxdydz < C for all t ≥ 0.

(3)

To prove the conjecture, one needs to demonstrate the above existence, smoothness and bounded energy of the solution. This will require evidence that the solution and its derivatives do not diverge anywhere in IR 3 , ∀t ≥ 0. One difficulty lies in the fact that it is not known how to solve a nonlinear equation such as the NSE in the general case; it is not possible to solve the NSE starting from arbitrary initial and boundary conditions. However, the NSE regularity conjecture does not necessarily require derivation of the general solution. Rather, it requires evidence that given initial conditions that conform to eqs.

(2) and (3) the solutions of the NSE always retain the properties, shown by these same two equations, namely, it requires evidence that the solutions of the NSE always remain smooth and have bounded energy.

The need to seek such proof arises from the fact that the NSE assumes continuous fluid and thus its velocity exists at infinitely small points. This presents difficulty, because despite that total kinetic energy is conserved, the scaling properties of the NSE prevent it from being able to control the solution at very small scales. This opens the possibility for blow-up, that is, it opens the possibility that the solution may no longer be smooth after some finite time. However, if it can be demonstrated that the solution always stays smooth this will justify the choice of Navier and Stokes to model a fluid as a continuous medium and will show that the matematics of their equation always produces physically meaningful results.

Proving infinite differentiability or smoothness of the solutions throughout space and for all time is therefore the key in proving the Navier-Stokes global existence and regularity conjecture. We set about to work towards this goal by studying the symmetry properties of the NSE. Parallel work was completed on the GLDE by Charles L. Bouton as early as 1899 [START_REF] Bouton | [END_REF]. Bouton examines in detail the Lie groups admitted by the GLDE, their infinitesimal operators and invariants. His is one of the earliest works where a differential equation is thoroughly studied with the Lie theory of continuous groups. Due to its comprehensive analysis, Bouton's article is considered foundational in invariant theory [3]. Note that Bouton's article has the objective of deriving all the invariants and does not examine the regularity of the GLDE. We repeat Bouton's analysis in finding the invariants of the NSE and take them only one step further in which the invariant properties of the NSE are used to establish its regularity. That is, we follow the idea of Bouton and examine the Lie groups admitted by the NSE, their infinitesimal generators and invariants. We show that the NSE invariants must be isobaric polynomials, much like the invariants of the GLDE are shown by Bouton to be isobaric polynomials. We also show, that the solutions of the NSE are invariants and therefore must be isobaric polynomials themselves. Through this reasoning, we establish that the scaling invariance of the NSE requires the solutions to be smooth. This article is organized as follows: in the first section, we present the work of Bouton on the GLDE and his first theorem on the properties of invariants and isobaric polynomials. In the next section, we apply his analysis to the NSE -we find its invariants and write Bouton's first theorem for the NSE. Once regularity is established, we devote some space to discuss bounded energy of the NSE solutions. At the end, we examine the absolute covariants of the NSE in a separate section and study their role in turbulence.

Historically, the theory of point transformations and Lie groups has been a well-known tool for the study of differential equations [START_REF] Cohen | An Introduction to the Lie Theory of Oneparameter Groups[END_REF]. The invariant properties of the NSE itself have been already extensively studied for the purpose of finding invariant solutions, see e.g. [START_REF] Boisvert | [END_REF]. These techniques are now widely used in the analysis of PDEs and are found in the textbooks [START_REF] Olver | Applications of Lie Groups to Differential Equations[END_REF]. To the author's best knowledge, they have not been applied previously to study existence and smoothness of the solutions of differential equations and are used to this end here for the first time.

BOUTON'S WORK

Charles Leonard Bouton is an American mathematician who has conducted a detailed study of the group and symmetry properties of the GLDE [START_REF] Bouton | [END_REF]. In this section, we present his analysis of the GLDE since it is highly relevant to the NSE. We point out the important terminology, the concept of isobaric polynomial and the first theorem of Bouton, needed to describe the invariants of the differential equation. For a detailed introduction to Lie's theory of point transformations and one-parameter groups, the reader is referred to [START_REF] Cohen | An Introduction to the Lie Theory of Oneparameter Groups[END_REF].

In the text that follows, we quote chapters, paragraphs and theorems from Bouton's article on the GLDE [START_REF] Bouton | [END_REF]. Since it is not possible to list all of Bouton's results, we present only those that are of the highest relevance to the NSE.

The GLDE is given by

n s=0 n s a s y (n-s) = 0
where a s and y are functions of x alone and a 0 ≡ 1. Also given is the point transformation

x 1 = χ(x), y 1 = yψ(x). (4) 
The transformation ( 4) is known as finite transformation. Following Bouton's notation, x 1 and y 1 are the trans-formed variables; χ and ψ are arbitrary analytical functions. Starting here, we will denote the steps or stages in Bouton's analysis of the GLDE with capital letters: (A) §13: A differential equation is said to admit a point transformation, if this transformation leaves the equation unchanged, or transforms it into an equation of the same form. The transformation (4) is the most general point transformation the GLDE is known to admit.

(B) Introduce the following definitions: Definition 1: an absolute invariant I of the GLDE is a function of the coefficients a s and their derivatives. The absolute invariant is such that upon transformation (4) I remains unchanged, I 1 = I. The absolute invariant does not involve the independent variable y or its derivatives (as per §26). I may contain the independent variable x.

Definition 2: an absolute covariant I of the GLDE depends on a s , y and their derivatives (as per §26). Again, it transforms as I 1 = I. Bouton probably introduces the term covariant, since the dependent variable y co-varies with a s . I may also contain the independent variable x.

Definition 3: a relative invariant R (as per §38) of the GLDE is a function of the coefficients a s and their derivatives. The relative invariant is such that upon transformation (4) it transforms according to the rule R 1 = f R. f is known as the factor of finite transformation. The relative invariant does not involve the independent variable y or its derivatives (as per §26). R may contain the independent variable x.

Definition 4: a relative covariant R (see §26) of the GLDE depends on a s , y and their derivatives. It transforms as R 1 = f R and may contain the independent variable x.

Definition 5: weights are defined as follows ( §15): [y (µ) ] ν has weight µν; [a (j) i ] l has weight (i + j)l. (C) Bouton begins deriving the invariants of the GLDE as early as chapter 2 and continues in chapters 4 and 5. He uses the method of infinitesimal transformations by solving the equation

XI = 0, ( 5 
)
where X is the symbol/operator of infinitesimal transformation, corresponding to the finite transformation (4). Equation ( 5) represents the necessary and sufficient condition for I to be an absolute invariant/covariant of the GLDE. In (5), X is not only an operator of the geometric transformation (4), but is also extended to include terms from the GLDE in itself: X = X(x, y, χ, ψ, a s , a

i , y (µ) ). In this way, the infinitesimal transformation X shows not only how the point (x, y) is transformed, but how all terms of the GLDE are transformed. The operator X shows how a s , a (j) i , y (µ) are transformed when the point transformation (4) takes place.

(D) §15: Write the arguments of the absolute covariant I (they are the same for the relative covariant R): I = I(x, y, y , y , ..., y (µ) , a 1 , a 2 , ..., a (j) i , ...).

(E) §14, §15: Now consider the scaling transformations

x 1 = x, y 1 = Cy, C = const x 1 = Cx, y 1 = y, C = const (6)
Since these are included in (4) they determine the properties of all relative invariants and covariants R of the GLDE. When R transforms, it must be according to the law R 1 = f R. Therefore, R must be an isobaric polynomial of weight w and also homogeneous of degree λ.

(F) §14, §15: The scaling transformations (6) also determine the properties of all absolute invariants and covariants I of the GLDE. In order to have I transform as I 1 = I, it follows that I must be an isobaric polynomial of weight zero and also homogeneous of degree zero.

Bouton thus arrives at the following theorem: Theorem 1 (of Bouton) (T1): Any absolute invariant/covariant of the GLDE for the group of transformations (4) must be homogeneous in the y (µ) 's of degree zero and isobaric in the y (µ) 's and a (j) i 's of weight zero. Any relative invariant/covariant R must be homogeneous in the y (µ) 's of degree λ and isobaric in the y (µ) 's and a (j) i 's of weight W . We write this as R (λ,W ) .

Corollary 1 (C1): In the most general case, the factor of the relatve invariants/covariants of the GLDE is f = ψ λ /χ W .

INVARIANTS OF THE NSE

In this section, we apply the analysis of Bouton to the NSE. The steps in his work as well as the theorem from the previous section are duplicated here, now for the case of the NSE.

(A ) The finite transformations and their corresponding infinitesimal group operators which leave the NSE invariant have been studied and published extensively in the literature. They were derived by Pukhnachev in 2D [START_REF] Pukhnachev | [END_REF] and in 3-dimensional space by Bytev [8] and Lloyd [9], where the latter results were additionally corroborated by Olver [10]. According to Lloyd [9], the NSE admits the scaling transformation

(x , y , z ) = k(x, y, z) t = k 2 t (u , v , w ) = (1/k)(u, v, w) p = (1/k 2 )p, 0 < k < ∞, (7) 
where primed quantities are transformed quantities; we no longer use the index "1" to denote transformation. We omit the admitted groups that are not Lie groups. Also omitted is the group of rotations as it did not yield invariants. The time translation group is trivial and is not considered here. The NSE does not admit any other groups [9]. The scaling transformation above is a oneparameter Lie group.

(B ) We now introduce the following definitions: Definition 1 : an absolute invariant I of the NSE is a function of the independent variables x, y, z, t. The absolute invariant is such that upon transformation (7) I remains unchanged, I = I. The absolute invariant does not involve the dependent variables u, v, w, p or their derivatives.

Definition 2 : an absolute covariant I of the NSE depends on both the independent and dependent variables x, y, z, t, u, v, w, p. Again, it transforms as I = I.

Definition 3 : a relative invariant R of the NSE is a function of the independent variables x, y, z, t. The relative invariant is such that upon transformation [START_REF] Pukhnachev | [END_REF] it transforms according to the rule R = f R. f is the factor of finite transformation. The relative invariant does not involve the dependent variables u, v, w, p or their derivatives.

Definition 4 : a relative covariant R of the NSE depends on x, y, z, t, u, v, w, p. It transforms as R = f R.

Definition 5 : weights are defined as follows:

W (u α ) = W (v α ) = W (w α ) = -α; W (x β ) = W (y β ) = W (z β ) = β; W (p γ ) = -2γ; W (t δ ) = 2δ.
When variables are multiplied, their weights are added.

(C ) Next, consider the necessary and sufficient condition (5) that the absolute invariants/covariants of the NSE must satisfy. In XI = 0, substitute the symbol of infinitesimal transformation for the group of scalings [START_REF] Pukhnachev | [END_REF] for the NSE as given by Lloyd [9]:

X = x ∂ ∂x + y ∂ ∂y + z ∂ ∂z + 2t ∂ ∂t -u ∂ ∂u -v ∂ ∂v -w ∂ ∂w -2p ∂ ∂p .
This form of X comes directly from the NSE itself. Chapter 5 in Lloyd's article [9] gives the derivation of X and the process of embedding in it the momentum equation of the NSE as well as the one for conservation of mass. The X given here is the second extension of the infinitesimal scaling transformation. This is necessary since the NSE is a second-order PDE. (D ) We solve XI = 0 with Maple [11] and obtain all absolute covariants

I( y x , z x , ux, vx, wx, px 2 , t x 2 ), (8) 
(uy, wz etc. are covariants also) where I is an arbitrary function of the listed arguments. Because X does not depend on partial derivatives, the arguments of all absolute invariants/covariants of the NSE contain only u, v, w, x, y, z, t, p. Since the regularity analysis of the NSE critically depends only on these variables, we will study only those relative invariants/covariants who depend on u, v, w, x, y, z, t, p alone. (E ) The relative invariants and covariants R of the NSE must transform according to the law R = f R. Now, consider the scaling transformations [START_REF] Pukhnachev | [END_REF]. It follows that R must be an isobaric polynomial of weight W .

(F ) The scaling transformations (7) also determine the properties of all absolute invariants and covariants I of the NSE. In order to have I transform as I = I, it follows that I must be an isobaric polynomial of weight zero. This is confirmed by the result in eq. ( 8).

The presented reasoning in this section therefore sums up in the following theorem:

Theorem 1 (of Bouton) (T1 ): Any absolute invariant/covariant I of the NSE for the group of transformations [START_REF] Pukhnachev | [END_REF] must be isobaric in the {x, y, z, t, u, v, w, p}'s of weight zero. Any relative invariant/covariant R must be isobaric in the {x, y, z, t, u, v, w, p}'s of weight W . We write this as R (W ) .

Corollary 1 (C1 ): In the most general case, the factor of the relatve invariants/covariants of the NSE is f = k ν , by virtue of [START_REF] Pukhnachev | [END_REF].

Absolute covariants of the NSE have the form (8). Absolute invariants must have the form I(y/x, z/x, t/x 2 ). Relative covariant is e.g. R (-1) = u 2 x + p 3/2 x 2 . Relative invariant is e.g. R (3) = xt + yz 2 .

EXISTENCE AND SMOOTHNESS

At this time, we will need additional information about invariant theory, which we find in Ref. [START_REF] Bluman | Symmetry and Integration Methods for Differential Equations[END_REF]. The variables u, v, w, x, y, z, t, p form the so-called jet space, or extended space (see definition of jet space on p. 97 in [START_REF] Bluman | Symmetry and Integration Methods for Differential Equations[END_REF]), where they are considered independent. By definition I ∈ C ∞ in jet space (see Definition 2.3.4.-1 in [START_REF] Bluman | Symmetry and Integration Methods for Differential Equations[END_REF]). However, the fractions y/x, z/x, t/x 2 in (8) leave I undefined along the y-axis and the z-axis where x = 0. For this reason we can claim that the fractions y/x, z/x, t/x 2 in (8) must have the form y/x 0 , z/x 0 , t/x 2 0 etc., where x 0 is a dimensional constant. Upon rescaling, these fractions remain invariant and thus I remains invariant and infinitely differentiable. Division by a variable must not be allowed in I. The requirement I ∈ C ∞ is imposed by definition because every point transformation must also be expressed in exponential form (p. 44, 45 in [START_REF] Bluman | Symmetry and Integration Methods for Differential Equations[END_REF]) such that any absolute invariant I must be able to withstand infinite differentiation.

All this is confirmed by (T1 ): any invariant/covariant is an isobaric polynomial, and thus infinitely differentiable. Just as in the work of Bouton, polynomials are the only functions which arise in this study. If closedform functions (or, elementary functions) are present in an invariant/covariant of the NSE, their argument is always dimensionless, that is, isobaric of weight zero. Such functions can be expressed as (truncated) Taylor series to take the form of a polynomial. E.g. suppose I = x/y 0 + (x 0 /y 0 ) sin(x/y 0 ); x 0 , y 0 = const. I is still considered polynomial since sin(x/y 0 ) can be expressed as Taylor series.

Let us now examine the differentiability of relative invariants and covariants. Any relative invariant R = k ν R (from (C1 )) can be multiplied by a dimensional constant with the needed scaling properties and thus yield an absolute invariant I. For example, suppose a 0 is a dimensional constant such that a 0 = k -ν a 0 . Then a 0 R = k -ν a 0 k ν R = a 0 R, this transforms as an absolute invariant. But absolute invariants are infinitely differentiable, therefore a 0 R is infinitely differentiable, which means R ∈ C ∞ in jet space and therefore R, just like I, cannot contain division by a variable. Again, this is confirmed by (T1 ): any invariant/covariant is an isobaric polynomial, and thus infinitely differentiable.

We are now in position to prove infinite differentiability of the solutions of the NSE. By virtue of ( 7), u, v, w and p are relative covariants and thus smooth of class C ∞ in jet space. Let's consider R (-2) = p. In jet space, this is a polynomial of only one term and thus R is smooth. Here one needs to strictly distinguish between p as an independent jet space variable and the solution of the NSE p(x, y, z, t) -an expression containing the variables x, y, z, t. By virtue of Definition 3 and Definition 4 , R (-2) = p is a relative covariant while the expression p(x, y, z, t) is a relative invariant. Both must transform with the same factor according to [START_REF] Pukhnachev | [END_REF]; according to (T1 ) both are isobaric polynomials of weight W = -2 and consequently both are infinitely differentiable in jet space. But since it contains only independent variables, the infinite differentiability of the relative invariant p(x, y, z, t) in jet space means the function p(x, y, z, t) is infinitely differentiable in (IR 3 × [0, ∞)).

Analogous arguments apply to all relative covariants u, v, w, p with weights -1, -1, -1, -2 accordingly. Their corresponding relative invariants u(x, y, z, t), v(x, y, z, t), w(x, y, z, t), p(x, y, z, t) are the solutions of the NSE and according to (T1 ), are isobaric polynomials in x, y, z, t of weights -1, -1, -1, -2 accordingly and are consequently infinitely differentiable in jet space. Therefore, the solutions of the NSE u(x, y, z, t), v(x, y, z, t), w(x, y, z, t), p(x, y, z, t) are isobaric polynomials in x, y, z, t of weights -1, -1, -1, -2 accordingly and are infinitely differentiable in (IR 3 × [0, ∞)). Thus, the solutions of the NSE exist globally and are smooth of class C ∞ and condition (2) holds. Blow-up in the NSE solutions can therefore be ruled out, since the scaling properties of the NSE require the solutions to be smooth isobaric polynomials.

One can also examine the partial derivatives ∆ u, ∂ u/∂t, ∇p and look at their transformation properties. By applying Bouton's third and fourth theorem [START_REF] Bouton | [END_REF], this can also be done for any higher derivative of the solutions and show that they are isobaric polynomials. However, nothing new will be achieved besides the already proven result that the solutions are smooth and thus have partial derivatives to any order.

If one is to assume that the solution is not smooth and is discontinuous then this would mean that there must be an inconsistency within the operator X (see (C ) above). Smoothness of the solutions is required by definition, because they are covariants. If they are not smooth, the definition of X as a representative of the infinitesimal scaling transformation becomes invalid. Since the form of X stems directly form the NSE, an inconsistence in X must come from the NSE itself, which is a contradiction, because the mathematical form of the NSE is not subject to changes.

Let us examine the energy of the fluid. At the initial moment, its kinetic energy is

E = 1 2 IR 3 | u 0 | 2 dxdydz.
According to conservation law, the total kinetic energy of the fluid at any moment (3) is bounded by the finite initial energy E. Breakdown of conservation law can only occur if the velocity diverges somewhere in IR 3 at a certain moment, however this was already ruled out since scaling symmetry of the NSE guarantees that the solutions are always smooth. The regularity conjecture (1) -( 3) assumes an isothermal fluid of constant density; it contains only mass and momentum equations while the temperature is neglected. This implies that once set in motion, the fluid will remain in motion perpetually since mechanical energy is not converted into heat. Note also, that there is no forcing term in the NSE and thus the motion energy comes solely from the initial velocity of the fluid u 0 . Under these circumstances, viscosity will cause the momentum to be transferred from fast moving regions towards slow moving regions, resulting in "diffusion of momentum". The total energy (3) will remain constant throughout the process.

TURBULENCE

When examining [START_REF] Pukhnachev | [END_REF] and (8), it is seen at once that | u| 2 r 2 is an absolute covariant

(r = | r | = x 2 + y 2 + z 2 ); so are ( u • r) 2 , ( r × u) i and ( r × u) 2 etc. Write I as | r × u| + 1 ν pr 2 . (9) 
This is a scale-invariant quantity in which | r × u| is the modulus of the angular momentum per unit mass for fluid at position r; the pressure-viscosity term (1/ν)pr 2 has the same units and can be considered to account for viscous transfer of angular momentum. Next, consider the total angular momentum of the fluid per unit mass:

H tot m 0 = IR 3 ( r × u) = const. ( 10 
)
The RHS is scale-invariant vector because X( r × u) i = 0; then the total angular momentum per unit mass is a scale-invariant and is a conserved quantity as well (recall that m 0 = const is the unit mass of the fluid particle at position r as fluid density is the same everywhere). It may be argued, that the above mentioned scaleinvariants as well as eqs. ( 9) and (10) suggest collective fluid behavior and turbulence: the scaling invariance of r × u and r • u means that if at some scale | u| decreases yet at a different scale | r × u| will remain invariant if the angle between r and u changes. This opens wide the possibility for local changes in the direction of fluid motion. The invariant behavior of r • u suggests the same: the change of | u| at one scale may trigger changes of the direction of fluid motion at other scales. While the regions with large velocities may maintain their direction of motion, even small changes in | u| there can set off large changes in the directions of motion at other scales where | u| is small. Nonetheless, all such collective momentum exchanges between scales can only take place in different moments because time is scaled as well.

However, (10) represents a conserved quantity. Its value stays constant in time and therefore, any changes in r× u on a large scale will trigger instantaneous changes in the small scales, where intense rotation can take place. The vortexing in the small scales is not due to a change in the angular momentum per unit mass, as this quantity stays the same; rather, it is affected by the small radius of curvature while keeping r × u scale-invariant. This truly is a simultaneous, collective behavior throughout the fluid volume, made possible by viscous transfer of momentum (e.g. the second term in (9)) and ultimately due to the scaling invariance of the NSE.