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Non-Stationary Thompson Sampling For Stochastic Bandits with Graph-Structured Feedback

 where the distributions of reward and feedback are non-stationary. We also propose an extension with two variants of the Global Switching Thompson Sampling proposed in [3] for the graph feedback setting. This extension is based on the aggregation of a growing number of experts seen as learners. Finally, we conduct experiments providing evidences that in practice our proposal compares favorably with the oracle that exactly knows the location of the environment changes.

Introduction

The Multi-Armed Bandit problem with graph feedback formalizes the fundamental explorationexploitation dilemma that appears in decision making problems facing partial information carried out by some unknown structure. Specifically, a set of K arms is available to the agent. At each turn, he chooses one arm and observes a reward corresponding to the played arm and also a feedback from the neighboring arms. This seeting has been efficiently studied in [START_REF] Aristide | Thompson sampling for stochastic bandits with graph feedback[END_REF] by extending the classical Thompson Sampling to the graph feedback setting. This algorithm is called TS-N policy. However, in such these settings, the distribution of rewards and feedback are assumed to be stationary. In this paper, we propose an extension of the bandit with graph feedback to the abrupt switching environment. Moreover, we propose an adaptation of TS-N policy for the switching environment.

The Non-Stationary Stochastic Bandit with Graph Feedback

Let us consider an agent facing a non-stationary stochastic multi-armed bandit with graph feedback characterized by a set K t1, ..., Ku of K independent arms and an undirected graph G pK, Eq. At each round t rr1, T ss, the agent chooses to observe one of the K possible actions. When playing the arm k t at time t, two events take place. First, a reward x t is received, where x t B pµ kt,t q is a random variable drawn from a Bernoulli distribution of expectation µ k,t . Then, the agent observes the feedback y k I ,t of all neighboring arms N kt tk I K|pk t , k I q Eu where y k I ,t B pµ k I ,t q is a random variable drawn from a Bernoulli distribution of expectation µ k I ,t . When the graph is empty (E r), the setting is equivalent to the classical bandit problem. Moreover, when the graph is fully connected, the problem is considered as a pure prediction. Therefore, the graph-structured feedback can be seen as an intermediate setting between the bandit and the pure prediction. To assess the quality of a strategy aiming at resolving the bandit with graph feedback, we simply use the classical regret. It takes the following form: R pTq °T t1 µ t ¡ °T t1 µ kt,t , where µ t max kK tµ k,t u denotes the best expected reward at round t and k t the action chosen by the decision-maker at the same time t.

Piece-wise stationary Bernoulli distributions We assume that there exists a parameter ρ p0, 1q such that the reward mean µ k,t of arm k at time t follows a global switching model:

µ k,t 4 µ k,t¡1
with probability 1 ¡ ρ µ new Up0, 1q with probability ρ When the environment is modeled by eq (1) for all k K, the problem setting is called a Global Switching Multi-Armed Bandit with Graph Feedback (GS-MAB-GF), i.e. when a switch occurs all arms change their expected rewards and expected feedbacks. There exists a more general setting where changes occur independently for each arm k (i.e. arms change points are independent from an arm to another). In this case, the problem setting is called a Per-arm Switching Multi-Armed Bandit with Graph Feedback. In this paper, we will focus more on the first setting (GS-MAB-GF).

Hidden sequence of change points From eq (1), we may characterize each GS-MAB-GF with an unknown change points sequence of length Γ T denoted by pτ κ q κrr1,Γ T 1ss N Γ T 1 where:

4 d κ rr1, Γ T ss, d t T κ rrτ κ 1, τ κ 1 ss, d k K, µ k,t µ k,rκs τ 1 0 τ 2 ... τ Γ T 1 T
3 Global Switching Thompson Sampling for Graph-Structured Feedback At each time, the agent takes a sample θ k,t from each π k,t and then plays the arm k t arg max k tθ k,t u. Formally, by denoting X t¡1 t¡1 i1 x i the history of past feedback we write: 

θ t pθ 1,t , ..., θ K,t q Ppθ t |X t¡1 q ± K k1 π k,t .

Decision-making based on a growing number of experts

Best achievable performance: TS-N oracle Let TS-N denotes the oracle that knows exactly the location of all the change points τ κ observed until time T . It simply restarts a new TS-N at each of these change points. Assuming that Γ T is the overall number of change points observed until the horizon T , then TS-N simply runs successively Γ T TS-N procedures starting at τ κ 1 and ending at τ κ 1 . Since TS-N has been analyzed with a matching regret bound [START_REF] Aristide | Thompson sampling for stochastic bandits with graph feedback[END_REF], TS-N represents the best achievable performance in the global switching MAB with graph feedback. Using the Bayesian Online changepoint detector Like in [START_REF] Alami | Memory Bandits: a Bayesian approach for the Switching Bandit Problem[END_REF][START_REF] Mellor | Thompson sampling in switching environments with bayesian online change point detection[END_REF], in order to detect the occurrence of the changepoints, we connect the well-known Bayesian online changepoint detector of [START_REF] Prescott | Bayesian online changepoint detection[END_REF] with the graph-structured version of the multi-armed bandit setting. Indeed, at each time step t, a new expert (i.e. TS-N procedure) is introduced. One can see the expert f i,t as an index used to get access to the memory saving the hyperparameters of the model created at time t. Thus, dealing with the expert distribution w i,t P pf i,t |X t¡1 q, the computation of the posterior distribution Ppθ t |X t¡1 q takes the following form:

Ppθ t |X t¡1 q t i1 Ppθ t |X t¡1 , f i,t qPpf i,t |X t¡1 q (2)
Building the expert distribution According to the work of [START_REF] Prescott | Bayesian online changepoint detection[END_REF], the computation of the expert distribution is done recursively such that:

P pf i,t |X t¡1 q loooooomoooooon Expert distribution at t ∝ t¡1 i1 change point prior hkkkkkkikkkkkkj Ppf i,t |f i,t¡1 q Ppx t |f i,t¡1 , X t¡2 q loooooooooomoooooooooon Instantaneous gain Expert distribution at t¡1 hkkkkkkkikkkkkkkj Ppf i,t¡1 |X t¡2 q (3)
The change point prior Ppf i,t |f i,t¡1 q is naturally computed following eq (1):

Ppf i,t |f i,t¡1 q p1 ¡ ρq 1 pi tq ρ1 pi tq (4)

Discussion Observing figure 1(b), one should notice that Global-STS-N is able to perfectly restart a TS-N at each change point. This behavior is possible thanks to the inference model of the experts presented in eq (5). In fact, when a switch occurs the instantaneous gain P px t |f i,t¡1 , X t¡2 q of all experts starting before the change point suddenly fall down because of their wrong estimation of the environment, giving the advantage to the experts newly created while annihilating the former ones. Then, the total mass of the expert distribution w i,t tends to focus around the optimal expert i.e. the expert starting at the most recent change point τ κ and corresponds to the most appropriate characterization of the environment. This gives us the impression that Global-STS-N restarts a new TS-N at each change point.

Conclusion and future works

We have proposed Global-STS-N: an extension with two variants of the 

( 1 )
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  Recently, in [4] TS-N has been shown to have a matching regret bound. Indeed, the authors have obtained a problem-independent bound of O ¡ χp ḠqT © , where χp Ḡq denotes the clique cover number of the graph G.

  3.1 Elemental expert: The TS-N policyThe TS-N policy is an adaptation of the classical Thompson Sampling for graph-structured feedback. It belongs to the Bayesian online learning family. It is leveraging Bayesian tools by maintaining a Beta posterior distribution π k,t Betapα k,t , β k,t q on the reward distribution of each arm k. Based on the reward received x t and the set of observed feedback ty

k I ,t : k I N kt u, the posterior distribution π k,t is updated such as: π k,t Beta p#pfeedback 1q #preward 1q α 0 , #pfeedback 0q #preward 0q β 0 q

  Thompson Sampling for the switching bandit problem with graph feedback. From the experiments, the proposed algorithm presents excellent performances. It is worth noting that Global-STS-N challenges the Thompson sampling with Graph Feedback oracle, an oracle which already knows the exact location of all the change points. These results arise from the fact that Global-STS-N is based on the Bayesian concept of tracking the best experts which allows us to catch efficiently the unknown change points. The proposed algorithm can naturally be extended to the Per-arm Switching Multi-Armed Bandit with Graph Feedback by maintaining an expert distribution per arm. The next step of this work is to analyze the Global-STS-N in term of pseudo cumulative regret.Algorithm 1 Global Switching Thompson Sampling for Graph Feedback1: procedure GLOBAL-STS-N(K, G, T, α 0 , β 0 , ρ) Ð 1, w 1,t Ð 1, and dk K α k,1,t Ð α 0 , β k,1,t Ð β 0 Initializations N kt y k I ,t B pµ k I ,t q Bernoulli trial of parameter µ k I ,t 15: return tyu kt 16: procedure UPDATEEXPERTDISTRIBUTION(twu t , tαu kt,t , tβu kt,t , x t , ρ) 17:l i,t Ð ¡x t log ¡ α k t ,i,t α k t ,i,t β k t ,i,t © ¡ p1 ¡ x t q log ¡ β k t ,i,t α k t ,i,t β k t ,i,t © d i rr1, tss 18: w i,t 1 Ð p1 ¡ ρq w i,t exp p¡l i,t q d i rr1, tssIncreasing the size of expert f i,t19:w t 1,t 1 Ð ρ °i w i,t exp p¡l i,t q Creating new expert starting at t 1 20: return twu t 1 21: procedure UPDATEARMMODEL(tαu t , tβu t , x t , tyu kt , k t , G) 22: α kt,i,t 1 Ð α kt,i,t 1 px t 1q d i rr1, tss 23: β kt,i,t 1 Ð β kt,i,t 1 px t 0q d i rr1, tss 24: α k I ,i,t 1 Ð α k I ,i,t 1 py k I ,t 1q d i rr1, tss d k I N kt 25: β k I ,i,t 1 Ð β k I ,i,t 1 py k I ,t 0q d i rr1, tss d k I N kt 26: α k,t 1,t 1 Ð α 0 , β k,t 1,t 1 Ð β 0 d k K

	2: 3:	for t ¤ T do		Interaction with environment
	4:			
	11:	d k K ϑ k,t Ð	5	°irr1,tss θ k,i ,t pi arg max i w i,t q Picking the best expert wi,t °jr r1,tss wj,t θ k,i,t Bayesian aggregation
	12:	return arg max k ϑ k,t
	13: procedure GETNEIGHBORHOODFEEDBACK(N kt ) 14: d k I Initializing new expert
	27:			

t k t Ð CHOOSEARM ptwu t , tαu t , tβu t q 5: x t Ð PLAYARMpk t q

Bernoulli trial of parameter µ kt,t 6:

tyu kt Ð GETNEIGHBORHOODFEEDBACKpN kt q 7: twu t 1 Ð UPDATEEXPERTDISTRIBUTION ptwu t ,

tαu kt,t , tβu kt,t , x t , ρq 8: tαu t 1 , tβu t 1 Ð UPDATEARMMODELptαu t , tβu t , x t , tyu kt , G, k t q 9: procedure CHOOSEARM(twu t , tαu t , tβu t ) 10: d k K d i rr1, tss θ k,i,t Beta pα k,i,t , β k,i,t q return tαu t 1 , tβu t 1

Growth probability:

Ppf i,t |X t¡1 q ∝ p1 ¡ ρq ¤ Ppx t |f i,t¡1 , X t¡2 q ¤ Ppf i,t¡1 |X t¡2 q Change point probability: Ppf t,t |X t¡1 q ∝ ρ °t¡1 i1 Ppx t |f i,t¡1 , X t¡2 q ¤ Ppf i,t¡1 |X t¡2 q (5) Where Ppx t |f i,t¡1 , X t¡2 q corresponds to the likelihood of the Bernoulli distribution parametrized with α k t ,i,t¡1 α k t ,i,t¡1 β k t ,i,t¡1 , where α kt,i,t¡1 and β kt,i,t¡1 are the hyper-parameters of the arm k t learned by the expert f i,t¡1 . Then, the quantity Ppx t |f i,t¡1 , X t¡2 q takes the following form: Ppx t |f i,t¡1 , X t¡2 q exp p¡l i,t¡1 q where l i,t¡1 denotes the instantaneous logarithmic loss incurred by the forecaster f i,t¡1 at time t ¡ 1.

Moreover, in order to build the index ϑ k,t of arm k at time t, we propose two alternative definitions for the indices: Bayesian Aggregation of experts Like in [START_REF] Alami | Memory Bandits: a Bayesian approach for the Switching Bandit Problem[END_REF], one can interpret eq (2) as a Bayesian aggregation of a growing number of experts seen as learning. Thus, at each time step t, instead of having only one characterization for each arm k, a set Θ k,t tθ k,i,t : θ k,i,t Beta pα k,i,t , β k,i,t q d i rr1, tssu of t characterizations is available. Each element of Θ k,t is a sampling from the Beta distribution associated to the model launched at time i. Finally, combining the Bayesian aggregation with the structured model of the environment leads us to build the index of each arm k as follows: ϑ k,t °t i1 θ k,i,t wi,t °t j1 wj,t

Picking the best estimated expert The easiest way to deal with a growing number of experts is to take at each time step the "best" expert in term of weight. Indeed, the Bayesian online change point detection tends to give to the expert starting at the last change point the highest weight. Thus, by letting i arg max i w i,t be the best estimated expert at time t, the index of each arm k is built as follows:

Finally, by plugging one of the previous way to build the arm index ϑ k,t into the formalism of [START_REF] Mellor | Thompson sampling in switching environments with bayesian online change point detection[END_REF], we get the Global Switching Thompson Sampling with Graph Feedback (Global-STS-N) described in algorithm 1. It should be noted that Global-STS-N presents two variants according to the way of computing the arm index (Bayesian aggregation of experts and picking the best estimated expert).

Experiments

In all the experiments, we consider a GS-MAB-GF of eight arms observing three change points occurring at each 1000 rounds. We compare the two versions of the Global-STS-N with the TS-N Oracle. Experiments are run 60 times. This means that Global-STS-N is able to perfectly deal with the switching environment. Then, using the Bayesian aggregation allows us to make performances challenging those of the oracle.