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Abstract

The purpose of this paper is to extend the non-invasive global/local iterative coupling technique [15] to the
case of large structures undergoing nonlinear time-dependent evolutions at all scales. It appears that, due to the
use of legacy codes, the use of different time grids at the global and local levels is mandatory in order to reach a
satisfying level of precision. In this paper two strategies are proposed and compared for elastoviscoplastic models.

The questions of the precision and performance of those schemes with respect to a monolithic approach is
addressed. The methods are first exposed on a 2D example and then applied on a 3D part of industrial complexity.
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Introduction

The simulation of large structures where complex nonlinear local phenomena may occur is still a scientific and an
industrial challenge. One of the main difficulties comes from the difference of length scales between the global
response of the structure and the localized phenomena.

To deal with it in an effective manner, concurrent multiscale methods have been developed. They are often
based on domain decomposition techniques like, among others, the primal BDD method [27], the dual FETT method
[12] or the mixed Latin method [22].

These methods are not currently available in legacy codes, even though different attempts have been made.
This is due both to the heavy development associated with their implementation and to their lack of robustness with
respect to the variety of situations legacy codes have to deal with.

When the small wavelength phenomena are localized in space, i.e. concerning a relatively reduced part of
the whole body, multiscale computations may also be based on coupling techniques as for example the Arlequin
method [9]. The implementation of such methods in a legacy code is also not straightforward, mainly because
the creation of the coupling operators between the two models in the transition zone requires complex integration
operations.

A method often used by engineers to tackle such problems is the submodeling approach [8]]: after a global
computation, structural zooms are applied on the local critical zones, with details represented exactly. An advantage
of this approach is that it allows to easily connect research software and commercial code, as was done for example
to deal with the prediction of delamination under low velocity impacts [1]]. Unfortunately, it implies neglecting
the influence of the local zones on the whole structure. This may lead in turn to quite important local errors. The
problem becomes more crucial when plasticity initiated locally spreads over the whole structure.

To correct the drawback of submodeling while keeping its simplicity and flexibility, a non-invasive method
was proposed in order to allow exact local/global analysis embedding the same basic tools as those used in the
submodeling inside an iterative procedure.

The method relies on interface coupling; its formulation and its numerical optimization have first been derived
in the case of global linear models and local plasticity [[15} [14]. A number of other applications and extensions
have been proposed: use of XFEM at the local scale [[29]], the treatment of non-matching interfaces [25]], coupling
between a global plate model and 3D parts for bolted assemblies [18]], geometrically non conforming coupling



[19], multiscale time and space computation in explicit dynamic [3] with implementation in Abaqus Explicit for the
analysis of delamination under impact [4]], non-invasive domain decomposition approach [11]]. Mesh refinement
based on error estimation may also be cast in the proposed non-intrusive framework [10].

Alternative proposals exist, based on volume coupling. The volume coupling is performed either by means of
a noninvasive version of the Partition of Unity method [30, [13]], by using projection techniques between the local
and global models [33} 20] or by means of homogenization like techniques [21].

So far the proposed method was applied for global linear models with local nonlinearities and topological
changes. Safran Aircraft Engines was interested in exploring its potential for the detailed analysis of complex
structures undergoing viscoplastic strains that can spread all over the structure. This situation is nowadays encoun-
tered in the case of aircraft engines. Indeed engines have undergone important improvements of their performance
associated with the large increase of the working temperature and the use of optimized designs involving very thin
parts. For example, micro-perforations were added in order to improve the cooling of hot parts (submitted to an air
flux at 1500°C), like the combustion chambers and the high pressure turbine blades.

Our reference problem, see Section [5] for a full description, is an elastoviscoplastic turbine blade where two
zones of interest need particular mesh refinement in order to correctly represent a complex geometry. Even if in
that relatively simple case a monolithic model could be assembled and computed, our aim is to adapt to (or maybe
extend) the industrial practice and only make use of a global representation of the blade (with simplified geometry
in the zones of interest) and local refined representations of the zones of interest. In that case, even if they occupy
less than 10% of the volume of the blade, the local meshes for the zones of interest have significantly more nodes
than the global mesh (precisely three times more). We thus wish to derive an iterative coupling algorithm which
converges to the reference (monolithic) solution by alternating elastoviscoplastic global and local computations.

The quality of the integration of viscoplastic models is very sensitive to the size of the time steps. When
applying the non-intrusive framework with global spreading of the viscoplastic strains, several difficulties occurred
using legacy codes. They appeared to be related to the management of the precision of the integration of internal
variables on the different models. Indeed each model needed its own adapted time discretization, which is controlled
by some automatic procedures, called cutbacks [5].

Cutbacks correspond to the subdiscretization of a given time increment when convergence difficulties or
precision issues are encountered. As the Global/Local coupling relies on different models and independent
computations, cutbacks are likely to generate different increment histories, i.e. different time discretizations, for
the global and local models. It is thus of importance to control the precision of all computations and to provide
sufficient synchronization of the adapted time grids in order to preserve the coherence of the coupling.

Based on this experience, the motivation of this paper is to propose and study different coupling strategies
allowing to preserve the accuracy of the global/local coupling, making use of Abaqus’ most advanced precision
controls.

The paper is organized as follow. In Section [I]the viscoplastic model is presented. A criteria for the definition
of the time steps is proposed, based on the control of the increment of a sensitive variable. Then the reference
model is presented in Section 2] with focus on the chosen procedure for the determination of the time discretization.
In Section 3| the bases of the noninvasive global/local method are presented without addressing the problem of the
coupling in time. In Section 4| two strategies for the global/local coupling in time are proposed. Those strategies
are compared on the basis of a 2D example. A verification of the whole procedure on a realistic 3D industrial
model involving non-matching interfaces is performed in Section 3]

1 About the elastoviscoplastic model and its sensitivity to time integration

1.1 Material model

The material model is the one proposed in [26]], adapted from the Marquis-Chaboche’s behavior [6]. It is devoted to

the description of a variety of phenomena which are characteristic of the elastoviscoplastic response under cycling

loading. The elasticity itself is linear and isotropic, characterized by Young’s modulus E and Poisson’s ratio v.
The nonlinear part of the model is ruled by the yield function based on von Mises criterion:

f=Jh(op-Xs)-R ey

where J is the equivalent von Mises stress with op the deviatoric stress. The isotropic hardening is considered to
be saturated at a value Ry, so that R = Ry +0, where Ry is an offset added to the elastic yield stress o,. Nevertheless,
it is possible to use an exponential law in order to accurately represent the monotonic traction behavior or the cyclic
stabilization.



€P is the plastic strain tensor and p is the accumulated plasticity. These latter are split in a fast part (f) and a

slow part (s):
t
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The kinematic hardening X = Xy follows the classic Armstrong-Frederick’s formulation, only related to the fast
potential:

.2
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where C and D are two material parameters. The fast elastoviscoplastic and slow viscoplastic potentials follow
Norton-Hoff’s laws:

J- —X¢f)—-R\'Y
pr = <%> @
J ts
Ps =< 2§?D)> (5)

Remark 1. Even if the slow potential has no elastic threshold, it is a viscoplastic potential in its own right: it leads
to plastic strains which remain after a loading/unloading cycle contrary to the case of a viscoelastic potential.

These constitutive relations allow for phenomena related to high temperature such as creep, strain rate effect,
mean stress relaxation, and for all asymptotic behaviors to be represented.

The fast potential (4) dominates for strain rates in the range [10_5, 10‘2] s~ whereas the slow one (5)) governs
in the range [107°, 107°] s~'. The material of interest being confidential, we illustrate the type of constitutive
response using the parameters given in [24] for a nickel based superalloy IN100 evolving at 800°C which is the
mean temperature value during a flight. The corresponding values are reported in table

E[MPa] | v |C[MPa] | D | R[MPal | n; | Ky | ny K,
154,000 | 0.28 | 615,000 | 1,870 80 14 [ 630 [ 17.2 | 1,300

Table 1: Material parameters (800°) from [24]

In this study, the variation of temperature is taken into account only by making use of the adapted values of
the material parameters. Nevertheless, some additional works were carried out with more complex laws involving
thermal strains, without any trouble. For confidentiality reasons, we use classical values for the fast potential
parameters, while the values for the parameters of the slow potential are chosen in order to balance the two plastic
potentials for a strain rate of 10>s~!. The slow potential having no threshold, nonlinearity occurs as soon as the
structure is loaded.

This law is incorporated in Abaqus Standard by the Zmat tool from Zset software [2].

1.2 Sensitivity to the time step: choice of a control parameter

The reference solver for this kind of nonlinear problem is the incremental Newton-Raphson method. Given a
curve of load amplitude as Figure [2b] it is thus important to determine the load increment which ensures a
good compromise between precision and CPU time. Engineering rules often permit to determine an efficient
prediscretization. Anyhow it is convenient to adapt the next increment to the current properties of the computation,
in particular if the solver has trouble to converge; this procedure is called cutback.

By default, Abaqus adapts the increments based on the monitoring of the speed of convergence, estimated by
the evolution of the norm of the residual, compared to theoretical results and heuristics. The current increment
being given, if divergence occurs then the computation is restarted with a 4 time smaller increment; if after a certain
number of iterations the residual decreases too slowly, the computation is restarted with a 2 time smaller increment.
If convergence is fast for two consecutive time steps, the next increment is enlarged by 50%. Abaqus also monitors
the precision of the computation. In implicit dynamics analysis, the relevance of the integration is estimated by
evaluating the residual in an interpolated mid-increment configuration. In quasi-static analysis, which is our case
of interest, it proposes to adapt the time step in order not to allow too large evolution of internal variables. Note
that the cutback procedure is highly customizable, but this process is highly dependent on the model especially for
complex structures and it is difficult to set it up a priori with efficiency.

For our problem of interest, it appears that with default settings, cutbacks are only triggered out of convergence
issues, and in fact accuracy is not sufficiently monitored. This is particularly problematic since it is crucial to have
comparable levels of precision in the estimation of the inelastic evolution of several models.



It is thus critical to carefully tune the precision control of Abaqus which is also available through the Zmat
tool of the Zset software [2]: any variable of the constitutive law can be used to master the time refinement based
on a given increment of the chosen variable. After some trials, the fast accumulated plasticity was chosen as
control variable since it appeared that small increments were correlated with high precision. In what follows, Apmax
denotes the associated plastic increment threshold: if a given increment leads to an increase of the accumulated
plastic strain Ap larger than App,x at any Gauss point then a cutback is applied: the computation is restarted with
an increment of size reduced in proportion with Apn.x/Ap. Please note that this process is totally automatic for
the user, making it very simple to use and to calibrate on an elementary test as explained below. Such time steps
added because of accuracy consideration will be called “additional time steps” (we reserve the name cutbacks to
time steps added based on convergence consideration).

Sensible ranges for Apn,x can be determined on a tension test on a single cubic element for different strain
rates, see Figure [T} In Table [2] the results for different thresholds are compared to an overkill solution obtained
with the increment Apy.x = 107>, The results obtained using the default cutback procedure of Abaqus, starting
from a single initial time increment are also displayed. Note that in practice for Appa < 107 no cutbacks were
triggered out of convergence issues.
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(a) Strain rate of 1075 (b) Strain rate of 1078

Figure 1: Integration: influence of the time step for IN100

Strain rates [s‘l] Abaqus default cutbacks | Apmax = 107 | Appax = 1074
1073 8.81% (2) 1.84% (9) 0.20 % (65)
107 30.40% (2) 12.36% (6) 1.80% (36)
1078 30.46% (2) 30.46 % (2) 3.28% (17)

Table 2: Error levels for different strain rates: influence of the threshold and results obtained with Abaqus default
cutback procedure (with number of time steps) to reach 1% deformation.

We observe that the solution obtained with Appax = 10~ is very close to the reference obtained with Apyax =
1073, at a much lower computational cost (65 time steps instead of 500, in the case of fast loading). Note that, all
errors are measured for a strain of 1%, which is unlikely to be reached in practice at low strain rates, so that the
lower precision observed with low strain rates (3.3% for & = 107857 vs 0.2% for & = 1073s~!) does not lead to
loss of accuracy on structural applications.

2 Application to the reference 2D model

Before considering local/global coupling, we analyze how the increment adaptation procedure behaves on a reference
2D problem which is sufficiently small to be solved in a reasonable time using both monolithic and global/local
approaches.



2.1 Reference monolithic model

The reference monolithic model is the target of the analysis; it is computed in order to evaluate the accuracy of
the global/local method. It represents the structure with all the geometrical details, see Figure The normal
displacement of the foot of the part is prescribed to be zero, the air flux on the leading edge is modeled by a constant
pressure and the rotation of the blade is taken into account by a centrifugal body force. The intensity of these
external loads evolves in time according to the cycle of Figure [2] which mimics the main phases experienced by
an engine during one flight. Note that all geometric nonlinearities are being neglected; in particular, the loads are
evaluated in the initial configuration.

—_—
Blocked Normal QC’ 1.0
displacements
Pressure 081
« 5}
Centrifugal forces E 0.6
=
1S
< 0.4
I 0.2
0.0
O 1 1000 12000 3000 4000 5000 GOOO 700D
b Time [s] |
Taxiing  Take-off Cruise Landing
(a) Mesh, external loads and boundary conditions (b) Cycle definition

Figure 2: Reference 2D model

2.2 Time prediscretization over the cycle

Clearly, the definition of the load cycle by 8 time increments of Figure [2] is far from what is needed to ensure
convergence and precision, or in other terms, it is far from the final time discretization resulting from cutbacks and
additional time steps. In order to build a fair comparison with the global/local coupling, we propose to incorporate
in the initial time discretization all the additional time steps that are deemed necessary for the resolution of the
simplified model that will serve as the global model of the coupling with given Apmax (see Subsection [3.1)). In our
case, the simplified model has the same behavior as the reference, but it bears no geometrical details, it is presented
on Figure

The time discretization resulting from this prior analysis is called prediscretization. 1t is then used for the
reference monolithic solution (with the same Apmax).

Table [3] presents the number of time steps of the prediscretization and in the reference computation, for the
Abaqus default cutback strategy and for different values of Appax. It also gives the time spent for the reference
computation. We observe that Abaqus default cutbacks introduce no new time step in the prediscretization and only
4 more for the reference computation. The control on plasticity increment leads to introducing more time steps
in the prediscretization (up to 36 added time steps for Apmax = 10~ or 107°), the value of Apmax is much more
influent during the reference computation where, roughly, one order of magnitude gained in precision corresponds
to the increase by one order of magnitude of the number of time steps (and of the CPU time).

| Integration technique || Prediscr. #steps | Final #steps | Total time |
Abaqus default cutbacks 8 12 Im 11s
APmax = 1073 12 27 1m 33s
Apmax = 107 44 173 Tm 11s
APmax = 107 44 1501 1h 1m 29s

Table 3: Influence of time integration on the computation (2D monolithic model)



Figure [3] presents the grids resulting from the prediscretization and from the reference computation. Not
surprisingly, we observe that added time steps are mostly located in the phase of strongly increasing load, and to a
lesser extent in the strongly unloading phase.

10 -~ Init. Discr. 10,
/\ Prediscretization
% 0.8- A % 0.8l
=} -]
= >
206 206/
€ €
© ©
© 1 ]
S 04 8 04
(@] o
- -
027 027 -5~ Init. dsicretization
X Reference ATS
004 & 004 A& /\ Prediscretization
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Time (s) Time (s)
(a) Prediscretization (global computation) (b) Reference time grid

Figure 3: Time grids for the global and reference models (Apmax = 107

2.3 Accuracy of the computations

Apmax =107 | Abaqus default cutbacks | Apmax =107 [ Apmax =102
Ref. Values Error [%] Error [%] Error [%]
Mises || 650.9 MPa 10.9 1.64 0.159
Py 1.051072 18.4 5.05 0.871
Ds 1.271072 3.97 1.90 0.277

Table 4: Error levels on the most loaded element at the end of the cycle (2D monolithic model)

The results obtained for several thresholds are compared both in term of accuracy and cost. Due to the results
of Section |1, Apnax = 107 serves to compute the reference solution and to measure errors. Two indicators are
used, the von Mises stress and the cumulated plasticity.

As observed in Section |1} we see in Table E] that the results obtained with Apmax = 10~ are very close to the
ones obtained with Apnax = 1075. Table shows that using Apmax = 10~* leads to a much shorter computational
time. A duration of one hour for such a simple case would correspond to very long computation time on relevant
3D industrial examples, as the one treated at the end of the paper. That is why we consider Appa = 107 as a
sensible compromise between accuracy and computational time.

Let us note that the error indicators are lower than the one obtained in the homogeneous case of Section 1] see
Table[2] As said earlier, the strain rate heterogeneity (see Figure[d) leads to strain heterogeneity, so that error prone
situations of large strain reached at low strain rate are never met in practice.

3 Non-invasive global/local method for local and global nonlinear models

In this section, the basic aspects of the global/local coupling are presented as if the local and global time grids were
identical. The treatment of different time discretizations is discussed in Section @l

The strategy makes use of three computational models based on the decomposition of the reference problem
as explained in [17] in details for such nonlinear framework. The global model (index G) represents the whole
structure and may bear a rough description of the zone of interest. The restriction of the global model on the zone
of interest is what we call an auxiliary model (index A), the complement to the auxiliary model in the global model
is written with the index C. The local model (index L) bears all the complexity of the zone of interest. Figure [3]
illustrates the models used to set up the algorithm.
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The global/local (GL) solution is defined on the reference model (Qg = Q; U Q¢) as the replacement of the
global solution by the local one in the zone of interest:

(MGL, O_GL) _ (uL’ O-L) in £y 6)
(uG, O'G) in Q¢

Auxiliary

Global Local Non-Conforming mesh

Prescribed
displacements  Interface nodes

L

.
Centrifugal forces  Pressure  Corrective load

MNormal Displacements
blocked

Figure 5: Models and external loads set up

3.1 Global model

The global model matches the reference model on the complementary zone, that is to say everywhere except in the
zone of interest where a coarser representation (named auxiliary model) can be used. The principle of the algorithm
is to find an extra load P to be applied on the interface I" of the global model between the complement and the
auxiliary zones, such that the local and complement models are in balance at the interface. This is done iteratively
by correcting P knowing the difference between the nodal reactions of the complement and local models. For a



current value of P the finite element global problem can be written as:

G
fmt Cg/t Gl G ext C
Given P, find u® (uc, ”r , uA) such that fmt rud, uF SUL |+ ext rtPl=0 @)
W€, uS) 1,
mt,A T’ ext,A

For the determination of the different nodal reactions on the interface some codes allow the shape function on
one subdomain to be integrated, leading to the following formula for the nodal reaction AX at one node n € I seen
from domain Qx (X € {C, A, L}):

- [@niecwn-sonda- [ Foo,as ©

OF Qx

where oy, denotes the finite element approximation of o, f is the given body force and F the given traction on
0rQx; ¢, is the shape function associated with node n.

When such a computation is not possible or too difficult (as it is the case using Abaqus), we make use of
the auxiliary model. A4 is then post-processed from a computation on Q4 with imposed Dirichlet conditions
corresponding to the value of the current global displacement on I':

. G A A ‘, (s ) z A
Given up, find (17, u”) such that " (u A ) ext, =0 )
mt A ext,A

3.2 Local model

The local model is the restriction of the reference on the zone of interest. The model is computed with the current
global displacement prescribed on T, ulé = u? . The local system thus can be written as:

L L
[fextr +4 :| =0 (10)

ext L

L L
f;nt F( M
f;m‘ L

The operation performed here consists in computing the local solution submitted to global displacements (Dirichlet
condition) and then extracting corresponding reaction forces A~ .

Given u?, find (/IL, uL) such that

3.3 Non-matching interfaces

Handling non-matching interfaces provides flexibility for non-invasive approaches. It facilitates the meshing of the
zone of interest (c¢f Figure[5). This procedure appears important especially for complex 3D meshes. Indeed two
configurations can be encountered:

» The zone of interest is detected after a first global computation and then it is defined by a selection of global
elements.

* The zone of interest can be defined at the level of the CAD. In that case, the local, the complement and
the auxiliary models can be meshed independently so that the reference is defined with a TIE coupling
[32] between the master complement and slave local models. The slave nodes are bound to the follow the
kinematics of the interface of the complement domain.

In both cases the interface is well defined in all meshes and the coupling can be done on a surface, so that complex
integration techniques [16}131]] are avoided.
In case of non conforming meshes the coupling equations take the following form:

TuC —uk =0
G oroL (1)
AV +T 27 =0

where T is the (global to local) transfer matrix. In previous studies in the global/local framework, the transfer
matrix 7 was computed with techniques derived from the mortar method [[11}25]. Here a simpler solution is used:
T is the interpolation matrix which is processed using a Python script, before the computation.



3.4 Iterations

The formulation of the algorithm presented in [15] with a linear global problem is here extended to the case where
both the global and local models are nonlinear. For one increment, we have:

0. Initialization. Seti =0, P; = 0.
1. Global computation. Computation with the interface load P;, the interface displacements u?i are deduced.

2. Local analysis. (Descent step) Computation with given external loads under prescribed interface displace-
ments TurG ;- The reaction forces /liL are deduced.

3. Auxiliary analysis. Computation with given external loads and prescribed displacements uFG ; appliedon T

The reaction forces /ll‘.‘x are deduced.
4. Computation of the interface equilibrium residual.

ri=—(TTAF +29) = ~(@TAF - a2 + P) (12)

5. Update of P:
Py =Pi+rp=a0,-T" A" (13)

Theni « (i + 1) and goto 1.

The local and auxiliary analysis are computed in parallel thus the use of the auxiliary model does not add
computational time to the general algorithm. The algorithm is a stationary iteration; its convergence can be proved
under very general hypothesis (see [28]] for a proof with weak hypothesis and [[17] for the registration of the method
amongst Schwarz alternating methods for which many convergence results exist). In the general case, relaxation
may have to be used to ensure convergence by modifying (I3) as follows: P;+; = P; + wr;, with w small enough.
Relaxation is needed only if the auxiliary model is more compliant than the local model, which is not the case in
the studied examples.

The relative norm of the residual ||r;||2/]|rol]> is used to monitor the convergence of the method over the
iterations. In practice, the tolerance to stop the iterations is set to 107>. Figure |6| presents the evolution of the
residual and of the true error compared to the monolithic computation, for different acceleration techniques. As
usual Aitken’s 62 leads to significant acceleration at almost null extra cost.

100 1 —S— Without acceleration —— Without acceleration
— Aitkens 62 %102 Aitkeng 02
< -1 —— SR1 = —— SR1
= 10 ) 5
'._g —%— Conjugate gradient iz A\ —%— Conjugate gradient
) =
= —92 = )
= 10 5 1073
g 5
5 10 o
— — A
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= 104 )
2 10 E
< +—
= <
21070 <10

= 10
10-6 v : v . " r . r . . . .
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Global/local iterations Global/local iterations
(a) Global/local residual (b) True error levels

Figure 6: Convergence and acceleration of nonlinear global/local algorithm

Remark 2. The algorithm was presented for one increment of time. In order to compute a loading cycle involving
many time steps, one has to reuse the current converged state to initialize the next computation. This is made using
the *Restart function of Abaqus.

Remark 3. Stagnation occurs when observing the true error (with respect to a monolithic computation), as can be
seen on Figure[6b] This is problem very commonly encountered when using Abaqus/Standard. A probable cause
is that our implementation makes use of output database (odb) files in order to extract the data necessary for the
computation of the corrective load to be applied on the global model; and these database truncate nodal reaction to
single precision reals in order to limit the size of the files.



4 Time coupling for the Global/Local method

The main issue, for the considered application, is that the global and local models require, in order for them to be
properly integrated, different time steps that are not known in advance. The retained principle here is to make use of
the automatic adaptive time stepping control method presented in Subsection|[T.2). As explained in Subsection[2.2}
we start from the prediscretization which correspond to the grid adapted to the global computation with given
threshold Appmax. The remaining question is when to apply global/local coupling iterations, in other words at which
time steps the models have to be coupled.

Let (17,17, ..., 1) be the initial set of time steps resulting from the prediscretization. They define the initial
G 19,

v

set of time increments Atl.G =17 -

4.1 Couplings strategies

In what follows two possible coupling strategies are presented. They are compared to the monolithic solution and
to the sub-modeling procedure in terms of accuracy and cost.

* For the first strategy, called “weak time coupling”, the coupling is made only at the global additional time
steps inserted during the local/global iterations.

* For the second strategy, called “full time coupling”, the coupling is ensured at each global and local additional
time steps inserted during the iterations.
4.1.1 Weak time coupling

This approach corresponds to the coupling of the global and local models at all time steps of the global discretization,
expecting that the additional time steps, required by the local model, are not of interest for the complementary area.
A schematic view of the weak coupling is proposed on Figure[7]

¢ Initial cycle definition (blue points)
* Global prediscretization (green triangles (t))

* Additional global time steps (orange triangles) which are necessary because the global/local coupling intro-
duces the extra load P; which increases the level of plasticity.

» Additional local time steps (red diamonds) are purely internal to the local computation.

. Initial discretization
A Global prediscretization ' : : . A . . . Pre-discretization
Added global time steps
’ Local time steps
Final time grids obtained

Yy v Global grid

@ AA A
Global/local < I I I I I
iterations
J on 9. Local grid

Figure 7: Scheme of weak coupling

The weak coupling is summed up in Algorithm [T} The principle is to try to enforce the coupling at a given
time step t, = t. + At. where ¢, is the aimed time step, . is current converged time step and Af. is current
value of the increment. If at any iteration of the global/local coupling a precision issue is triggered at the global
level (ApG > Apmax for some global computation) then the increment is reduced and 7, redefined; the coupling is
restarted. On the contrary, if a difficulty is encountered at the local level, then the local time steps are adapted until
t, is reached; the coupling is not restarted.

We observed a difference, between loading and unloading phases, regarding the need to insert additional time
steps (ATS) at the local scale, depending on the convergence of the coupling, this is illustrated on Figure[§] Indeed,
during the loading phase, the global model tends to converge “from below” and the load transmitted to the local
is underestimated in the first coupling iterations, this results in no local ATS in the first two iterations and up to
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2 ATS in the following. On the contrary during the unloading phases, plasticity level is overestimated in the first
iterations and requires temporarily up to four local ATS whereas once the coupling has almost converged, and P;
is close to the solution, no local ATS are required.
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Figure 8: Evolution of local additional time steps during global/local iterations in weak coupling

Algorithm 1: Weak coupling algorithm

/* Let t$ be the last converge step in the initial grid */

/¥ Lettl <t. < tnG+1 be last converged step */

/* Let At be current time increment */
G

11 Aim at 7, = min(t. + Ate, 1,

1.2 Initialize Global/local iterations counter: i = 0, Load P,
13 while ||r;]l2/|Iroll, < 107 do

14 begin Global resolution with extra load P, ;
15 if Ap® > Apmax then
1.6 Reduce time increment Az,
17 Set Additional Time Step 7, « t. + At,
1.8 Goto
1.9 end
1.10 end
111 begin Local and auxiliary resolutions with bc uaGJ
112 If needed insert internal local Additional Time steps and interpolate bc
113 end
1.14 Evaluate residual ||7;,||, Update P, ;.
115 Incrementi =i + 1
1.16 end

1.17 New converged state 7. «— 1,
118 Goto

4.1.2 Full time coupling

The full time coupling consists in performing global/local iterations for all the additional time steps required from
both global and local models. It is expected to lead to high level of accuracy at a large computational cost. In
Figure[7]the full time coupling would somehow correspond to backporting the local added time steps (red diamonds)
to the global grid. Algorithm [2]recaps the full coupling.

For the full coupling, the unloading phases are particularly critical. Indeed, for the first iterations, the global
model provides particularly inadequate boundary condition, resulting in the need of additional time steps for the
local model which are no more needed when convergence improves, as evoked for the weak coupling in Figure [8b]
In the full coupling, each additional local time step is transfered on the global time grid and the coupling iteration
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is restarted. This result in a much increased computational time without practical interest from a precision point of
view.

Algorithm 2: Full coupling algorithm

/* Let t¥ be the last converge step in the initial grid */
I# Let 1 <t < 1€ | be last converged step */
/* Let At be current time increment */

21 Aim at 7, = min(re + At 1€

2.2 Initialize Global/local iterations counter: i = 0, Load P,
23 while ||7;]l»/]lroll < 107 do

24 Global resolution with extra load P, ;
25 if Ap® > Apmax then
2.6 Reduce time increment Az,
2.7 Set Additional Time Step 7, « t. + At
2.8 Goto
2.9 end
2.10 Local and auxiliary resolutions
211 if ApT > Apmax then
2.12 Reduce time increment Az,
2.13 Set Additional Time Step 7, « t. + At
2.14 Goto
215 end
2.16 Evaluate residual ||r;4;||, Update P, ;|
2.17 Incrementi =i + 1
218 end

219 New converged state 7. < ¢,

2.20 Goto

4.2 Comparison of the different methods in 2D

In this section, submodeling and global/local couplings are compared.

Table[5|quantifies the additional time steps (ATS) and their impact on CPU time. Global and Local ATS specify
which computation did not respect the Apn,x criterion and required the insertion of a time step. As explained
earlier, the prediscretization was designed so that the global computation of the submodeling approach needs no
additional time steps. In the full coupling, the common time discretization is always driven by the local model,
which experiences the most severe plastic evolution. In the weak coupling, both global and local models trigger
ATS on their own grid, but much less than the full coupling. Regarding the computational time, the full coupling
is much too expensive for the objective precision of Appa = 1074,

Approaches APmas Global | Local . G/L Tptal

ATS ATS | iterations time

. 1073 0 11 - 4min
Submodeling | 5= 0 76 - 15.5min
Weak coupling 10;31 0 12 163 1h20m%n
10 30 122 994 7h33min
Full coupling 10;31 0 13 344 1h53mip
10 0 381 5659 27h27min

Table 5: Time integration in the whole cycle according to the coupling approach (ATS: additional time steps)

Regarding the precision, according to the elementary tests of Subsection [I.2] and those presented in Subsec-
tion the threshold Appax = 107 is used. The couplings are assessed with respect to the reference monolithic
solution integrated with Apya = 1072, Table@ summarizes the results obtained for the different coupling methods.
Of course the submodeling approach is attractive in term of CPU but it underestimates the level of plastic strains
by 38%, whereas the coupling strategies maintain an error level below 1%. The weak coupling leads to what is
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considered in practice as an acceptable level of accuracy compared to the overkill solution. Figure[9|shows that, as
expected, largest differences are located near the corner and near the most loaded holes.

| Submodeling | Weak coupl. | Full coupl. [|  Reference |
error [%] error [%] error [%] (Apmax = 107)
Mises 6.3 0.16 0.12 650.9 MPa
pr 38 0.8 0.08 1.05 1072
’ Total time H 15min \ 7h33min \ 27h27min H 1h11min ‘

Table 6: True error on the most loaded element at the end of the cycle and CPU time for various coupling strategies

Te

+1.103e-02 pwea’k c750se05 P ] _ pweak
+101le-02 f +7.154e-06 f f
+9.195e-03 +6503e-06
+8276e-03 +5.853e-06
+7.3568-03 +5203e-06
+6437e-03 +3552e-06

E) 3.902e-06
317805 +3252e-06

+4.598e-03
+3678e-03
+275%e-03
+1.83%e-03
+9.195e-04
+0 000e+00
-1.153e-05

+2.601e-06
+1.951e-06
+1.301e-06
+1.000e-06
+1.000e-07
+1.000e-058
+0.000e+00

(a) Solution obtained by weak coupling. (b) Difference with monolithic solution.

Figure 9: Weak coupling: distribution of fast plastic strain and comparison with monolithic solution in the zone of
interest (Apmax = 10_4).

4.3 Improvement of performance

In order to reduce the computational cost of the global/local analysis, the number of iterations performed on each
time step may be reduced. As seen on Figure [6b] the accuracy is not improved after 5 iterations even if the
equilibrium residual could still be decreased. The stagnation grossly corresponds to a relative residual of 1073
which will be used (instead of 107>) in the following computations. Furthermore, Aitken’s 62 is applied. In this
configuration, the total computational time is reduced by a factor 3 (2 hours and 44 minutes for the weak coupling
strategy) without significantly altering the accuracy.

Remark 4 (Cost issue). Presently the performance of the method is strongly penalized by the fact that, for each
resolution (global or local) a new independent computation of Abaqus needs to be launched. This implies three
additional stages compared to the monolithic solution (apart from the first time step): verification of input data,
building of the geometry, assembly of the problem. Those stages are very costly. Abaqus development team is
considering evolutions to mitigate these costs.

5 Application on a 3D example of industrial complexity

5.1 Model definition

The method is now applied on a 3D model representing a high pressure turbine blade close to actual industrial
problems. Figure [I0] presents the meshes and gives the associated number of degrees of freedom.

Two local areas are introduced: one on the leading edge (LE) and another on the trailing edge (EE). In these
two zooms, micro-perforations are added; they require meshes about ten times finer than the global one. Because
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Figure 10: Meshes related to 3D test case

the models remain of reasonable size (5.63 10° degrees of freedom), a monolithic approach can be computed, with
15 processors and 70Gb of memory, and be used as a reference.

In 3D, the relative size of the interfaces, which characterizes the cost of exchanges, is quite small. On this
example they correspond only to 2580 and 2520 nodes (cf. Figure[TT) and the cost of the exchanges at the interfaces
becomes very cheap compared to the cost of the resolution of the different models. The local and complementary
areas present non matching meshes, so the method presented in Section [3.3]is applied. The reference model itself
makes use the TIE coupling of Abagqus.

The material model, external loads and boundary conditions are similar to the 2D example: the blade is
subjected to a pressure on the leading edge, centrifugal forces on all models and the normal component of the blade
foot displacement is set to zero.

5.2 Numerical results

In order to evaluate the performance of the algorithm, the optimized settings are used and the number of coupling
iterations is limited to 5. Figure[I3]displays the time steps added at the local and global levels for the threshold of
Apmax = 5107*. The local model of the leading edge requires 62 additional times steps whereas the local model
on the trailing edge does not demand any time refinement. A large plastic area, which connects all local models is
obtained, see Figure[T2]

The convergence rate plotted on Figure [[3b]is comparable to the one obtained on 2D test case. Indeed the
problem might appear more complex from a domain decomposition point of view because of the complex shape of
the interface, but this difficulty is largely compensated by the lesser redistribution of nonlinearity compared to the
2D case.

5.2.1 Accuracy aspects

A satisfying level of accuracy is obtained everywhere. Figure[T4]reports error levels for the most loaded element.
Once again the error of the submodeling approach is high, although smaller than in the 2D case. This is because
the global to local redistributions are less important in this case.
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Figure 11: Interfaces between 3D models

5.2.2 Performance

The reference (monolithic) model is computed in 7 hours and 27 minutes and the submodeling provides a solution
on the cycle in only 4 hours and 37 minutes. The weak coupling applied in its optimal configuration solves the
model in 31 hours and 15 minutes, representing a ratio of 4 with the reference. As a reminder the ratio was about
24 on the 2D test case. But, as already discussed in Subsection[d.3] a fair comparison will be possible only when
the issue of the model reconstruction at each time step will be solved.

Conclusion

The global/local non invasive method has been extended to allow a proper integration of the constitutive relation
on each domain to be coupled. The use of different time grids over the iterations and depending on the domains
seems mandatory. Two strategies have been compared and in practice the lighter one, called weak coupling, seems
to offer a good compromise between cost and precision. Still, in a 3D case where a monolithic reference could
be computed, the coupling strategy was 4 times slower. Let us recall here that one of the motivation is to allow
the engineer to easily modify some local details without having to reconstruct the whole mesh. In fact the later
operation is really cumbersome for complex industrial parts and is more and more often externalized. Moreover it
will be possible to properly assess the performance of the method on Abaqus only when it will allow to construct
the different models only once, a possibility offered by codes like Code_Aster for example. Departing from the
context of this paper, it is also clear that using some guaranteed error estimation techniques would be a real asset to
the method. It would allow to adapt the choice of the integration threshold Apax and the choice of the convergence
criterion for the global/local iterations, for a given target accuracy. A huge literature devoted to error estimation
is of interest here [7, 23], in particular regarding quantities of interest, but it should be ported to the context of
non-invasive tools.
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