Olivier Faugeras 
  
Emilie Soret 
  
Etienne Tanré 
  
Émilie Soret 
  
Asymptotic behaviour of a network of neurons with random linear interactions

Keywords: AMS Subject of Classification (2020): 60F10, 60H10, 60K35, 82C44, 82C31, 82C22, 92B20

come    

Introduction

We revisit the problem of characterizing the limit of a network of Hopfield neurons. Hopfield [START_REF] Hopfield | Neural networks and physical systems with emergent collective computational abilities[END_REF] defined a large class of neuronal networks and characterized some of their computational properties [START_REF] Hopfield | Neurons with graded response have collective computational properties like those of two-state neurons[END_REF][START_REF] Hopfield | Computing with neural circuits-a model[END_REF], i.e. their ability to perform computations. Inspired by his work, Sompolinsky and co-workers studied the thermodynamic limit of these networks when the interaction term is linear [START_REF] Crisanti | Dynamics of spin systems with randomly asymmetric bonds: Langevin dynamics and a spherical model[END_REF] using the dynamic mean-field theory developed in [START_REF] Sompolinsky | Relaxational dynamics of the Edwards-Anderson model and the mean-field theory of spin-glasses[END_REF] for symmetric spin glasses. The method they use is a functional integral formalism used in particle physics and produces the self-consistent mean-field equations of the network. This was later extended to the case of a nonlinear interaction term, the nonlinearity being an odd sigmoidal function [START_REF] Sompolinsky | Chaos in Random Neural Networks[END_REF]. Using the same formalism the authors established the self-consistent mean-field equations of the network and the dynamics of its solutions which featured a chaotic behavior for some values of the network parameters. A little later the problem was picked up again by mathematicians. Ben Arous and Guionnet applied large deviation techniques to study the thermodynamic limit of a network of spins interacting linearly with i.i.d. centered Gaussian weights. The intrinsic spin dynamics (without interactions) is a stochastic differential equation. They prove that the annealed (averaged) law of the empirical measure satisfies a large deviation principle and that the good rate function of this large deviation principle achieves its minimum value at a unique non Markovian measure [START_REF] Guionnet | Dynamique de Langevin d'un verre de spins[END_REF][START_REF] Ben-Arous | Large deviations for Langevin spin glass dynamics[END_REF][START_REF] Guionnet | Averaged and quenched propagation of chaos for spin glass dynamics[END_REF]. They also prove averaged propagation of chaos results. Moynot and Samuelides [START_REF] Moynot | Large deviations and mean-field theory for asymmetric random recurrent neural networks[END_REF] adapt their work to the case of a network of Hopfield neurons with a nonlinear interaction term, the nonlinearity being a sigmoidal function, and prove similar results in the case of discrete time. The intrinsic neural dynamics is the gradient of a quadratic potential. Our work is in-between that of Ben Arous and Guionnet and Moynot and Samuelides: we consider a network of Hopfield neurons, hence the intrinsic dynamics is simpler than the one in Ben Arous and Guionnet's case, with linear interaction between the neurons, hence simpler than the one in Moynot and Samuelides' work. We do not make the hypothesis that the interaction (synaptic) weights are Gaussian unlike the previous authors. The equations of our network are linear and therefore their solutions can be expressed analytically. As a consequence of this, we are able to use variants of the CLT and the moments method to characterize in a simple way the thermodynamic limit of the network without the tools of the theory of large deviations. Our main result is that the solution to the network equations converges in law toward a non Markovian process, sum of the initial condition and a centered Gaussian process whose covariance is characterized by a modified Bessel function.

Plan of the paper

We introduce the precise model in Section 2. In Section 3, we state and prove our main result (Theorem 3.1) on the asymptotic behavior of the dynamics in the absence of additive white noise. Section 4 is devoted to the general case with additive white noise (Theorem 4.1). Our approach in establishing these results is "syntactic", based on Lemmas 3.3 and 3.8.

Network model

We consider a network of N neurons in interaction. Each neuron i ∈ {1, • • • , N } is characterized by its membrane potential (V i,(N ) (t)) t where t ∈ R + represents the time. The membrane potentials evolve according to the system of stochastic differential equations

       V i,(N ) (t) = V i 0 -λ t 0 V i,(N ) (s)ds + 1 √ N N j=1 t 0 J (N ) i,j V j,(N ) (s)ds + γB i (t), ∀i ∈ {1, • • • , N } L(V (N ) 0 ) = ν ⊗N 0 , (2.1) where V (N ) 0 = V 1 0 , • • • , V N 0
is the vector of initial conditions. The matrix J (N ) is a square matrix of size N and contains the synaptic weights. For i = j, the coefficient J (N ) i,j / √ N represents the synaptic weight for pre-synaptic neuron j to post-synaptic neuron i. The coefficient

J (N ) i,i / √
N can be seen as describing the interaction of the neuron i with itself. It turns out that it has no role in defining the mean field limit. The parameters λ and γ are constants. The (B i (t)) t , i ∈ {1, • • • , N } are N independent standard Brownian motions modelling the internal noise of each neuron. The initial condition is a random vector with i.i.d. coordinates, each of distribution ν 0 .

We denote by V (N ) (t) the vector (V 1,(N ) (t), • • • , V N,(N ) (t)). Hence, we can write the system (2.1) in matrix form:

       V (N ) (t) = V (N ) 0 - t 0 λV (N ) (s)ds + t 0 J (N ) √ N V (N ) (s)ds + γB(t) L V (N ) 0 = ν ⊗N 0 .
(2.2) System (2.2) can be solved explicitly and its solution V (N ) (t) is given by

V (N ) (t) = e -λt exp J (N ) √ N t V (N ) 0 + γ t 0 e λs exp J (N ) √ N (t -s) dB(s) , ∀t ∈ R + . (2.3)
For the rest of the paper, we make the following hypotheses on the distributions of V (N ) 0 and J (N ) .

(H1) ν 0 is of compact support and we note

µ 0 := R x dν 0 (x) and φ 0 = R x 2 dν 0 (x),
its first and second order moments.

(H2) The elements of the matrix J (N ) are i.i.d. centered and bounded random variables of variance σ 2 . They are independent of the initial condition.

3 Convergence of the particle system without additive Brownian noise (γ = 0)

In this section, we consider the model without any additive noise, that is γ = 0 in (2.1): The unique source of randomness in the dynamics comes from the random matrices (J (N ) ) describing the synaptic weights, and the initial condition.

Mean field limit

The following result describes the convergence when N → +∞ of the coordinates of the vector (V (N ) (t)) t∈R + to a Gaussian process whose covariance is determined by a Bessel function. Theorem 3.1 below can be seen as a kind of mean-field description of (2.1) as the number of neurons tends to infinity.

Theorem 3.1. Under the hypotheses (H1) and (H2), for each k ∈ N * , the process (V k,(N ) (t)) t∈R + converges in law to (V k,(∞) (t)) t∈R + where,

V k,(∞) (t) = e -λt V k 0 + Z k (t) , ∀t ∈ R + .
The process Z k (t) t∈R + is a centered Gaussian process starting from 0 ( Z k (0) = 0) such that

E Z k (t)Z k (s) = φ 0 I 0 (2σ √ st), where I 0 (z) = ≥1 z 2 /(2 2 ( !) 2 ). (3.1)
Moreover, for all

t ∈ R + , Z k (t) is independent of V k 0 .
Remark 3.2. The function I 0 is closely connected to the modified Bessel function of the first kind I 0 , defined as a solution of the ordinary differential equation z 2 y + zy -z 2 y = 0, y = dy/dz. This function is the sum of the series (z 2 /(2 2 ( !) 2 )) ≥0 which is absolutely convergent for all z ∈ C, i.e.: I 0 (z) = ≥0 (z/2) 2 /( !) 2 , so that we have

I 0 (z) = I 0 (z) -1.
The proof of Theorem 3.1 requires the following lemma.

Lemma 3.3. Let J be an infinite matrix such that its finite restrictions J (N ) satisfy (H2) and consider a sequence of bounded (not necessarily identically distributed) random variables (Y j ) j∈N * , independent of J.

Assume that, almost surely,

lim N →∞ 1 N N j=1 Y 2 j := φ < +∞. (3.2)
For all ∈ N * and for all 1 ≤ k ≤ N , define

U k,(N ) := t e k (J (N ) ) Y (N )
, where e k is the k-th vector of the standard basis of R N . Then, for all

1 ≤ 1 < • • • < m , m ∈ N * , the vector 1 √ N 1 U k,(N ) 1 , • • • , 1 √ N m U k,(N ) m
converges in law as N → +∞, to an m-dimensional Gaussian random vector of diagonal covariance matrix diag(σ 2 i φ) independent of any finite subset of the sequence (Y j ) j∈N * .

Remark 3.4. The hypothesis that the Y j s are bounded is not the only possible one. The Lemma is also true for independent Y j s with finite moments of all orders.

We give one corollary of this Lemma.

Corollary 3.5. Under the same assumptions as in Lemma 3.3, for all integers p > 1 and

1 ≤ k 1 < k 2 < • • • < k p the vector 1 √ N 1 U k 1 ,(N ) 1 , • • • , 1 √ N m U k 1 ,(N ) m , 1 √ N 1 U k 2 ,(N ) 1 , • • • , 1 √ N m U k 2 ,(N ) m , • • • , 1 √ N 1 U kp,(N ) 1 , • • • , 1 √ N m U kp,(N ) m
converges in law as N → +∞, to an mp-dimensional Gaussian random vector of diagonal covariance matrix diag(σ

2 i φ), i = 1, • • • , m repeated p times, independent of any finite subset of the sequence (Y j ) j∈N * .
Proof. It is easy to adapt the proof of Lemma 3.3.

Proof of Lemma 3.3. W.l.o.g, we consider the case k = 1 and do not show the index 1 in the proof, i.e. we write U (N ) for U 1,(N ) . We first prove by the method of moments that 1 N /2 U (N ) converges in law when N → ∞ toward a centered Gaussian random variable of variance σ 2 φ, i.e. the case m = 1 of the Lemma. We then sketch the generalization of the proof to the case m > 1.

To do this we expand U (N ) and write

1 N n /2 U (N ) n = 1 N n /2 j 1 ,••• ,j n J (N ) 1,j 1 1 J (N ) j 1 1 ,j 1 2 • • • J (N ) j 1 -1 ,j 1 • • • J (N ) 1,j n 1 J (N ) j n 1 ,j n 2 • • • J (N ) j n -1 ,j n Y j 1 • • • Y j n , where j 1 ,••• ,j n means N j 1 1 ,••• ,j 1 • j n 1 ,••• ,j n =1 =1 .
We follow and recall the notations of [START_REF] Anderson | An Introduction to Random Matrices (Cambridge Studies in Advanced Mathematics[END_REF]: we denote j r the sequence (word) of + 1 indexes (1, j r 1 , • • • , j r ). To each word j r we associate its length + 1, its support supp(j r ), the set of different integers in {1, • • • , N } in j r , and its weight wt(j r ), the cardinality of supp(j r ). We also associate the graph G j r = (V j r , E j r ) where V j r = supp(j r ) has by definition wt(j r ) vertices and the edges are constructed by walking through j r from left to right. Edges are oriented if they connect two different indexes. In detail we have

E j r = {(1, j r 1 ) ∪ (j r i , j r i+1 ), i = 1, • • • -1}
Each edge e ∈ E j r has a weight noted N j r e which is the number of times it is traversed by the sequence j r . We note j the sentence (j 1 , • • • , j n ) of n words j r , r = 1, • • • , n, of length + 1 and we associate to it the graph G j = (V j , E j ) obtained by piecing together the n graphs G j r . In detail, as with words, we define for a sentence j its support supp(j) = ∪ n r=1 supp(j r ) and its weight wt(j) as the cardinality of supp(j). We then set V j = supp(j) and E j the set of edges. Edges are directed if they connect two different vertices and we have

E j = {(1, j r 1 ) ∪ (j r i , j r i+1 ), i = 1, • • • -1, r = 1, • • • , n}
Two sentences j 1 and j 2 are equivalent, noted j 1 j 2 if there exists a bijection on {1, • • • , N } that maps one into the other.

For e ∈ E j we note N j e the number of times e is traversed by the union of the sequences j r . By independence of the elements of the matrix J, the independence of the Js and the Y s, and by construction of the graph G j we have

E 1 N n /2 U (N ) n = j 1 N n /2 e∈E j E J (N ) 1,1 N j e E[Y j 1 • • • Y j n ] := j T j (3.3)
In order for T j to be non zero we need to enforce N j e ≥ 2 for all e ∈ E j . This implies

n = e∈E j N j e ≥ 2 |E j | ≥ 2(wt(j) -1), i.e. wt(j) ≤ n /2 + 1.
We now make the following definitions: Definition 3.6. Let W ,n,t be the set of representatives of equivalent classes of sentences j, j = (j 1 , • • • , j n ) of n words of length + 1 starting with 1, such that t = wt(j) and N j e ≥ 2 for all e ∈ E j . Definition 3.7. Let A ,n,t be the set of sentences j, j = (j 1 , • • • , j n ) of n words of length + 1 starting with 1, such that t = wt(j) and N j e ≥ 2 for all e ∈ E j .

We now rewrite (3.3)

E 1 N n /2 U (N ) n = 1 N n /2 n /2 +1 t=1 j∈A ,n,t e∈E j E J (N ) 1,1 N j e E[Y j 1 • • • Y j n ] = n /2 +1 t=1 j ∈W ,n,t j j 1 N n /2 e∈E j E J (N ) 1,1 N j e E[Y j 1 • • • Y j n ]. (3.4)
Our assumption on Y ensures that

E[Y j 1 • • • Y j n ] ≤ K
for a constant K independent of j and N . In addition, for j j , we have

e∈E j E (J 1,1 ) N j e = e∈E j E (J 1,1 ) N j e .
We deduce that for any j ∈ W ,n,t hence such that wt(j ) = t,

j j 1 N n /2 e∈E j E (J 1,1 ) N j e E[Y j 1 • • • Y j n ] ≤ K C N,t N n /2 e∈E j E (J 1,1 ) N j e ,
where

C N,t = (N -1)(N -2) • • • (N -t + 1) N t-1 (3.5)
is the number of sentences that are equivalent to a given sentence j , with weight t (remember that the first element of each word is equal to 1). Since the cardinality of W ,n,t is independent of N , we conclude that each term in the right hand side of (3.4) is upper bounded by a constant independent of N times the ratio C N,t /N n /2 . According to (3.5), this is equivalent to N t-n /2-1 . Therefore, asymptotically in N , the only relevant term in the right hand side of (3.4) is the one corresponding to t = n /2 + 1.

In order to proceed we use the following Lemma whose proof is postponed.

Lemma 3.8. If W ,n,t = ∅ and n is odd, then t ≤ n /2 .
We are ready to complete the proof of Lemma 3.3.

If n is odd, Lemma 3.8 shows that t ≤ n /2 , so that the maximum value of C N,t in (3.4) is O(N n /2 -1 ) and we have lim

N →∞ 1 N n /2 E[(U (N ) ) n ] = 0. If n = 2p is even, (3.4) commands E 1 N n /2 U (N ) n 1 N p j∈A ,2p,p +1 e∈E j E J (N ) 1,1 N j e E[Y j 1 • • • Y j 2p ] (3.6) 
An element of A ,2p,p +1 is a set of p pairs of identical words of length + 1. Each word in a pair contains + 1 different symbols and the intersection of their p supports is equal to {1}. Thus

we have E (J 1,1 ) N j e = σ 2p for all j ∈ A ,2p,p +1 .

We have

E 1 N n /2 U (N ) n σ 2p N p j∈A ,2p,p +1 E[Y j 1 • • • Y j 2p ]
There are (2p -1)!!(= 1.3. • • • (2p -1)) ways to group the 2p words in pairs. Indeed, given a sequence of p + 1 different symbols, we set q 1 = 1 and pick the first symbols in the sequence to obtain j q 1 . We then choose one, say j r 1 , r 1 = q 1 , among the n -1 = 2p -1 remaining words to form the first pair of identical words. We next go to the first unpaired word after j q 1 , say j q 2 , q 2 / ∈ {q 1 , r 1 } and choose one among the n -3 = 2p -3 remaining words to form the second pair of identical words (with the next symbols in the sequence). And this goes on until we reach the end, having exhausted the sequence of p + 1 different symbols. It follows that there are (2p -1)!! ways to group the 2p indexes in pairs.

For each such grouping and for each p-tuple of different indexes (j 1 , • • • , j p ) there are (N -

(p + 1))(N -(2p + 1)) • • • (N -(( -1)p + 1)) ways of choosing the remaining -1 p-tuples of different indexes (j 1 k , • • • , j p k ), k = 1, • • • , -1.
Putting all this together we obtain

E 1 N n /2 U (N ) n (2p -1)!! σ 2p 1 N p N j 1 ,••• ,j p =2, all indexes different E[Y 2 j 1 • • • Y 2 j p ] (2p -1)!!σ 2p 1 N p N j 1 ,••• ,j p =1 E[Y 2 j 1 • • • Y 2 j p ] (2p -1)!! σ 2p E     1 N N j=1 Y 2 j   p   .
By (3.2) and dominated convergence we obtain lim

N →∞ E 1 N n /2 U (N ) n = 0 if n odd σ 2 p (2p -1)!!φ p if n = 2p.
At this point we have proved that 1 N /2 U (N ) converges in law when N → ∞ to a centered Gaussian of variance σ 2l φ.

We go on to sketch the proof that for all m ∈ N * and integers 1

≤ 1 < 2 < • • • < m , the m-dimensional vector ( 1 N 1 /2 U (N ) 1 , 1 N 2 /2 U ) 2 , • • • , 1 N m/2 U (N )
m ) converges in law toward an m-dimensional centered Gaussian vector with covariance matrix diag(σ 2 k φ).

The proof is essentially the same as in the case m = 1 but the notations become much heavier. The major ingredients are 1. To each U (N ), k , 1 ≤ k ≤ m we associate the graphs G j k , with j k = (j k,1 , • • • , j k,n k ) and

j k,r = {1, j k,r 1 , • • • , j k,r k }, r = 1, • • • , n k . 2.
We piece these graphs together to obtain the graph G j 1 ,••• ,j m . This allows us to write a formula similar to (3.3) for E 1

N (n 1 1 +•••+nm m)/2 U (N ) 1 n 1 • • • U (N ) m nm .
3. We enforce the condition that edges in G j 1 ,••• ,j m must have a weight larger than or equal to 2.

4. We generalize the definition 3.6 to the set noted W 1 ,n 1 ,••• , m,nm,t and prove an analog to Lemma 3.8.

5. These last two steps allow us to write a formula analog to (3.4).

6. Lemma 3.8 can be easily generalized to the following Lemma 3.9.

If W 1 ,n 1 ,••• , m,nm,t = ∅ and if any of n 1 , • • • , n m is odd, then t ≤ (n 1 1 + • • • + n m m )/2 .
7. Combining all this yields the result lim

N →∞ E 1 N (n 1 1 +•••+nm m)/2 U (N ) 1 n 1 • • • U (N ) m nm = 0 if any of n 1 , • • • , n m is odd m k=1 σ 2 k p k (2p k -1)!!φ p k if n 1 = 2p 1 , • • • , n m = 2p m
which shows that the m-dimensional vector ( 1

N 1 /2 U (N ) 1 , 1 N 2 /2 U (N ), 2 • • • , 1 N m/2 U (N )
m ) converges in law toward an m-dimensional centered Gaussian vector with covariance matrix diag(σ 2 k φ).

This ends the proof of Lemma 3.3. It is central to our approach and allows us to establish Theorems 3.1 and 4.1 in a "syntactic" manner by connecting the stochastic properties of the matrices J (N ) and the structure of the sequences of indexes that appear when raising them to integer powers.

Note that the proof also shows that this Gaussian vector is independent of any finite subset of the sequence (Y j ) j∈N * . Indeed, given k distinct integers j 1 , • • • , j k , if we eliminate from the previous construction all words ending with any of these integers, the limits will not change and will be, by construction, independent of

Y j 1 , • • • , Y j k .
Proof of Lemma 3.8. For any r ∈ 1, • • • , n, consider the number of times the letter j r 1 appears at this position in the set of n words

c r := n s=1 1 {j s 1 =j r 1 } .
Since the number n of words is odd, at least one of the c r is also odd. Indeed, assume c 1 = 2k 1 is even. Consider the n -2k 1 indexes which are not equal to j 1 1 and assume w.l.o.g. that one of them is j 2k 1 +1 1 . If c 2k 1 +1 is odd, we are done, else let c 2k 1 +1 = 2k 2 and consider the n -2k 1 -2k 2 indexes which are not equal to j 2k 1 +1 1 and to j 1 1 . This process terminates in a finite number of steps and since n is odd we must necessarily either find an odd c r or end up with a single remaining element corresponding also to an odd c r . Assume ( w.l.o.g,) c 1 is odd.

Case 1 If c 1 = 1, there must be another oriented edge (1, j 1 1 ) in the sentence and it cannot be the first edge of any of the remaining n -1 words. It means that at least one of the j s k is equal to 1. Hence there is an oriented edge (j, 1), and it has to appear at least twice so that there are at least two j s k equal to 1. The total number of letters is n( + 1) and we have shown that the letter 1 appeared at least n + 2 times. Now, since supp(j) = {1} ∪ (supp(j)\{1}), and every letter in supp(j)\{1} has to appear at least twice, we conclude that 2|supp(j)\{1}| ≤ n -2, and therefore wt(j) -1 ≤ (n -2)/2. Case 2 If c 1 = 3, w.l.o.g, we assume that j

1 1 = j 2 1 = j 3 1 2a If j 1 2 = j 2 2 = j 3 2 , then we have 2|supp(j)\{1, j 1 1 , j 1 2 }| ≤ n( + 1) -n 1 -3 j 1 1 -3 j 1 2 ,
and hence wt(j) -3 ≤ (n -6)/2.

2b Otherwise, w.l.o.g., j 1 2 = j 2 2 and j 1 2 = j 3 2 . The edge (j 1 1 , j 1 2 ) must appear twice and hence the letter j 1 1 appears at least 4 times, i.e.

2(wt

(j) -2) ≤ n -4 Case 3 If c 1 ≥ 5, then 2(wt(j) -2) ≤ n -5.
This ends the proof of Lemma 3.8. It is a good example of the use of our "syntactic" approach: it provides an upper bound on the number of different symbols in a sentence of n words of indexes when n is odd which is key in establishing the convergence properties of the powers of the matrices J (N ) when N → ∞.

Proof of Theorem 3.1. Without loss of generality we assume k = 1. We first expand the exponential of the matrix J (N ) in (2.3) (with γ = 0) and express the first coordinate of V (N ) (t) as

V 1,(N ) (t) = e -λt   V 1 0 + ≥1 t ! 1 √ N N j 1 ,••• ,j =1 J (N ) 1,j 1 J (N ) j 1 ,j 2 • • • J (N ) j -1 ,j V j 0   . (3.7) 
The main idea of the proof is to truncate the infinite sum in the right hand side of (3.7) to order n, establish the limit of the truncated term when N → ∞, obtain the limit of the result when n → ∞, and show that it is the limit of the non truncated term when N → ∞.

Let n ∈ N * and define the partial sum Z (N ) n (t) of order n of (3.7)

Z (N ) n (t) = n =1 t ! 1 √ N U (N ) with U (N ) = t e 1 J (N ) V 0 . (3.8) 
Lemma 3.3 with Y = V 0 dictates the convergence in law, for all n ∈ N * , of the vector

1 √ N U (N ) 1 , • • • , 1 √ N n U (N ) n N ∈N *
to an n-dimensional centered Gaussian random vector, independent of V 1 0 , with a diagonal covariance matrix Σ, such that ∀1 ≤ i ≤ n, Σ i,i = σ 2i φ 0 . It follows that we have the independence between the limits in law of each 1 √ N U (N ) , 1 ≤ ≤ n and also the convergence in law of the sum

Z (N ) n (t) to a centered Gaussian random variable Z n (t), independent of V 1 0 , of variance φ 0 n =1 (σt) 2 ( !) 2 =: I 0,n (2σt).
Moreover, since the function I 0,n converges pointwise to I 0 as n goes to infinity, the Kolmogorov-Khinchin Theorem (see e.g. [11, Th. 1 p.6]) gives the convergence of Z n (t).

Z n (t) L -→ n→+∞ Z 1 (t) ∼ N (0, φ 0 I 0 (2σt)) It is clear that Z (N ) n (t) L -→ n→+∞ Z (N ) (t) where Z (N ) (t) = ≥1 t ! U (N )
, so that we have

Z (N ) n (t) Z n (t) Z 1 (t) Z (N ) (t) L N → ∞ L n → ∞ L n → ∞ It remains to show that this diagram is commutative i.e. that Z (N ) (t) L -→ N →+∞ Z 1 (t).
According to [START_REF] Billingsley | Probability and measure. Wiley series in probability and mathematical statistics[END_REF]Th. 25.5], to obtain the convergence in law of Z (N ) (t) to Z 1 (t) as N → +∞, it is sufficient to show for all t ∈ R * lim n→+∞ lim sup

N →+∞ P | (Z (N ) n (t)) -Z (N ) (t) |≥ ε = 0, ∀ε > 0. (3.9)
By Markov inequality, we have

P | Z (N ) n (t) -Z (N ) (t) |≥ ε ≤ 1 ε E Z (N ) n (t) -Z (N ) (t) , (3.10) 
and

E | Z (N ) n (t) -Z (N ) (t) | = E   ≥n+1 t ! U (N )   ≤ ≥n+1 t ! E U (N ) .
Moreover, by step 1, U

N converges in law as N → ∞ to a centered Gaussian random variable U of variance φ 0 σ 2 . Then the law of |U | is a half normal distribution, and hence

E [|U |] = √ 2φ 0 √ π σ .
Then, lim sup

N →+∞ E | Z (N ) n (t) -Z (N ) (t) | ≤ √ 2φ 0 √ π ≥n+1 t ! σ .
The right hand side goes to zero as n → ∞ and (3.9) follows, hence we have obtained the convergence in law of V 1,(N ) (t) to e -λt V 1 0 + Z 1 (t) , Z 1 (t) being independent of V 1 0 . In order to prove that the process (Z 1 (t)) t∈R + is Gaussian we show that aZ 1 (t) + bZ 1 (s) is Gaussian for all reals a and b and all s, t ∈ R + . But this is clear from (3.8) which shows that

aZ (N ) n (t) bZ (N ) n (s) = n =1 at + bs ! 1 √ N U (N ) ,
and the previous proof commands that aZ (N ) (t)+bZ (N ) (s) converges in law when N → ∞ toward a centered Gaussian random variable of variance φ 0 (a 2 I 0 (2σt) + 2ab I 0 (2σ √ ts) + b 2 I 0 (2σs)).

We now make a few remarks concerning the properties of the mean field limit.

Remark 3.10 (Decomposition as an infinite sum of independent standard Gaussian variables).

A consequence of the proof is that Z 1 (t) is equal in law to the sum of the following series

Z k (t) L = φ 0 ∞ =1 t σ ! G k , ∀t ∈ R + . (3.11)
where (G k ) ≥1,k≥1 are independent standard Gaussian random variables, independent of the initial condition V k 0 . This decomposition yields the covariance of V k,(∞) : Cov V k,(∞) (t), V k,(∞) (s) = φ 0 e -λ(t+s) I 0 (2σ √ ts) -e -λ(t+s) E(V 0 ) 2 (3.12)

It also shows that the only sources of randomness in the solution to (2.1) (when γ = 0) are the initial condition and the family (G k ) ≥1,k≥1 which does not depend on time. The limiting process is thus an F 0 + -measurable process.

Remark 3.11 (Non independent increments). It follows from the above that the increments of the process V k,(∞) (t) t∈R + are not independent since for all 0

≤ t 1 < t 2 ≤ t 3 < t 4 , Cov V k,(∞) (t 2 ) -V k,(∞) (t 1 ), V k,(∞) (t 4 ) -V k,(∞) (t 3 ) = 0.
Remark 3.12. Using Theorem 3.1 and (3.11) we obtain the SDE satisfied by the process

(V k,(∞) (t)) t∈R + : dV k,(∞) (t) = -λV k,(∞) (t)dt + H k (t)dt L(V k,(∞) 0 ) = ν 0 . (3.13)
where H k (t) t∈R + is the centered Gaussian process

∀t ≥ 0, H k (t) = φ 0 σ ≥0 (σt) ! G k +1 .
The standard Gaussian random variables

G k have been introduced in (3.11). It is easily verified that E H k (t)H k (s) = φ 0 σ 2 I 0 2σ √ ts (= φ 0 σ 2 (1 + I 0 (2σ √ ts))).
A k (t). The process (A k (t)) t∈R + is a centered Gaussian process, also independent of V k 0 and of (B k (t)) t∈R + . Its covariance writes

E A 1 (t)A 1 (s) = s 0 e 2λu I 0 (2σ (t -u)(s -u)) du 0 ≤ s ≤ t
Proof. Without loss of generality we assume k = 1.

The proof is in two parts. We first assume ν 0 = δ 0 and show that, starting from 0 (which implies that only the Brownian part of (2.3) acts) the process converges in law to γ t 0 e -λ(t-s) dB 1 (s) + γe -λt A 1 (t). In the second part we remove the condition ν 0 = δ 0 . Part 1: Let ν 0 = δ 0 , then the explicit solution of (2.2) is given by

V (N ) (t) = γ t 0 e -λ(t-s) exp J (N ) √ N (t -s) dB(s). ( 4.3) 
As before, we expand the exponential of J and obtain

V (N ) (t) = γe -λt   t 0 e λs dB(s) + ≥1 t 0 e λs J (N ) √ N ! (t -s) dB(s)   . (4.4) 
For all ≥ 1, we introduce the C 1 function Λ defined by

Λ (t, s) = 1 ! e λs (t -s) , (4.5) 
and write

V (N ) (t) = γe -λt   t 0 e λs dB(s) + ≥1 t 0 J (N ) √ N Λ (t, s)dB(s)   .
We focus on the first coordinate of V (N ) (t) and we introduce, for all ≥ 1, the following notations.

U (N ) (t) := t e 1 J (N ) t 0 Λ (t, s)dB(s). (4.6) 
Then, we have

V 1,(N ) (t) = γe -λt   t 0 e λs dB 1 (s) + ≥1 1 √ N U (N ) (t)   .
We next define

A (N ) n (t) := n =1 1 √ N U (N ) (t)
For each ≥ 1 and t ∈ R + the sequence (Y j (t)) j∈N * , Y j (t) = t 0 Λ (t, s)dB j (s), satisfies (3.2). Indeed, by the law of large numbers lim

N →∞ 1 N N j=1 (Y j (t)) 2 = E t 0 Λ (t, s) dB 1 (s) 2 = t 0 (Λ (t, s)) 2 ds := φ (t) (4.7)
Moreover, for each ≥ 1, for each t ≥ 0, the Y j (t) are independent centered Gaussian variables.

It follows from Remark 3.4 and a slight modification of the proof of Lemma 3.3 that the ndimensional vector 1

√ N U (N ) 1 (t) • • • 1 √ N n U (N )
n (t) converges in law to an n-dimensional centered Gaussian process with diagonal covariance matrix diag(σ 2 φ (t)), = 1, • • • , n. This process is independent of any finite subset of the Brownians B j , hence of t 0 e λs dB 1 (s). It follows that A (N ) n (t) converges in law toward a centered Gaussian process A n (t) of variance n =1 σ 2 φ (t). Because n =1 σ 2 φ (t) converges to ≥1 σ 2 φ (t) and A n (t) is a centered Gaussian process, the Kolmogorov-Khinchin Theorem commands that A n (t) converges in law when n → ∞ to a centered Gaussian process A 1 (t) independent of the Brownian B 1 , with covariance Λ 2 (t) := ≥1 σ 2 φ (t). By (4.5) and (3.1) we have Λ 2 (t) = t 0 e 2λu I 0 (2σ(t -u)) du, It remains to prove that A (N ) (t) converges in law to A 1 (t). According to [START_REF] Billingsley | Probability and measure. Wiley series in probability and mathematical statistics[END_REF]Th. 25.5], to obtain the weak convergence of A (N ) (t) to A(t) as N → +∞, it is sufficient to show that for all t ∈ R + We know from the beginning of the proof that for all t ∈ R + and for all ∈ N * , , lim

N →+∞ 1 √ N l U (N ) (t) := U (t) L = N (0, σ 2 φ (t))
Then the law of |U (t)| for all t ∈ R + is a half normal distribution, and

E [|U (t)|] = 2 π σ (φ (t)) 1/2
Then, lim sup

N →+∞ E A (N ) n (t) -A (N ) (t) ≤ 1 ε 2 π >n σ φ (t)
The right hand side of this inequality goes to zero when n → ∞ and (4.8) follows. This concludes the first part of the proof.

In order to prove that the process (A 1 (t)) t∈R + is Gaussian we proceed exactly as in the proof of Theorem 3.1 and show that aA 1 (t)+bA 1 (s) is Gaussian for all reals a and b and all s < t ∈ R + .

where U k i ,(N ) j (t) := t e k i J j t 0 Λ j (t, s)dB(s), i = 1, • • • , p, j = 1, • • • , m, converges in law as N → +∞, to an 2mp-dimensional Gaussian random vector of diagonal covariance matrix diag(σ 2 i φ 0 ), i = 1, • • • , m repeated p times, and diag(σ 2 i φ i (t)), i = 1, • • • , m repeated p times.

Proof. Follows from the one of Lemma 3.3.

P

  | A (N ) n (t) -A (N ) (t) |≥ ε = 0, ∀ε > 0.(4.8)By Markov inequality, we haveP | A (N ) n (t) -A (N ) (t) |≥ ε ≤ 1 ε E A (N ) n (t) -A (N ) (t) ,andE | A (N ) n (t) -A (N ) (t)
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Remark 3.13 (Long time behavior). The function I 0 behaves as an O e z / √ 2πz as z → +∞. As a consequence of (3.12) σ = λ is a critical value for the solution: if σ > λ the solution V 1 blows up when t → ∞ while if σ < λ it converges to its mean. Remark 3.14 (Non Markov property). The hypothesis of independence between J and V 0 is crucial in the proof of Theorem 3.1. Therefore the proof is not valid if we start the system at a time t 1 > 0, in other words, we cannot establish the existence of a process Zk (t) t∈R + with the same law as Z k (t) t∈R + , independent of V k,(∞) (t 1 ), and such that

(3.14)

Propagation of chaos

An important consequence of Lemma 3.3 and its Corollary 3.5 is that the propagation of chaos property is satisfied by the mean field limit.

Theorem 3.15. For any finite number of labels

and for all t ∈ R + , the random processes

are independent and identically distributed.

Proof. The proof follows directly from Corollary 3.5 and the proof of Theorem 3.1.

4 Convergence of the particle system with an additive Brownian noise (γ = 0)

In this section, we consider the general equation (2.2) with γ = 0.

Mean field limit

Here, the randomness is not entirely determined at time t = 0, so we expect that the F 0 + -measurable property of the limit which is satisfied by the mean field limit of Section 3 is no longer true. Considering γ = 0, the explicit solution of (2.2) is

Theorem 4.1. Under hypotheses (H1) and (H2) on the matrix J and the initial random vector

The process (Z k (t)) t∈R + is the same centered Gaussian process as in Theorem 3.1. It is independent of the initial condition V k 0 , of the Brownian motion (B k (t)) t∈R + and of the process Indeed, the previous proof commands that aA (N ) (t) + bA (N ) (s) converges in law when N → ∞ toward a centered Gaussian random variable of variance a 2 Λ 2 (t) + 2abΛ(t, s) + b 2 Λ 2 (s), where

We remove the assumption ν 0 = δ 0 . A slight modification of the proof of Lemma 3.3 shows that the 2n-dimensional vector 1

where U (N ) is defined by (3.8) and U (N ) (t) by (4.6), converges in law when N → ∞ to the 2ndimensional centered Gaussian vector with covariance diag(σ

where φ , ≥ 1 is defined by (4.7).

We conclude that Z (N )

n (t) converges in law when N → ∞ to Z n (t) + A n (t), and that Z n (t) and A n (t) are independent. The convergence of Z n (t) + A n (t) to Z 1 (t) + A 1 (t) follows again from the Kolmogorov-Khinchin Theorem.

Remark 4.2. Note that the process A 1 (t) does not have independent increments.

Propagation of chaos

As in the case without noise, propagation of chaos occurs. Theorem 4.3. For any finite number of labels k 1 < k 2 < • • • < k p , and for all t ∈ R + , the random processes V k 1 ,(∞) (t), V k 2 ,(∞) (t), • • •, V kp,(∞) (t) are independent and identically distributed.

Proof. The proof follows directly from the following extension of Corollary 3.5 and the proof of Theorem 3.1.

Corollary 4.4. Under the same assumptions as in Lemma 3.3 (see also Remark 3.4), for all integers p > 1 and 1 ≤ k 1 < k 2 < • • • < k p the 2mp-dimensional vector obtained by concatenating the two mp-dimensional vectors