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Abstract

We study the asymptotic behavior for asymmetric neuronal dynamics in a network of
linear Hopfield neurons. The interaction between the neurons is modeled by random cou-
plings which are centered i.i.d. random variables with finite moments of all orders. We
prove that if the initial condition of the network is a set of i.i.d. random variables and
independent of the synaptic weights, each component of the limit system is described as
the sum of the corresponding coordinate of the initial condition with a centered Gaussian
process whose covariance function can be described in terms of a modified Bessel function.
This process is not Markovian. The convergence is in law almost surely with respect to the
random weights. Our method is essentially based on the method of moments to obtain a
Central Limit Theorem.

AMS Subject of Classification (2020):
60F10, 60H10, 60K35, 82C44, 82C31, 82C22, 92B20

1 Introduction

We revisit the problem of characterizing the limit of a network of Hopfield neurons. Hopfield
[7] defined a large class of neuronal networks and characterized some of their computational
properties [8, 9], i.e. their ability to perform computations. Inspired by his work, Sompolinsky
and co-workers studied the thermodynamic limit of these networks when the interaction term
is linear [4] using the dynamic mean-field theory developed in [13] for symmetric spin glasses.
The method they use is a functional integral formalism used in particle physics and produces
the self-consistent mean-field equations of the network. This was later extended to the case of
a nonlinear interaction term, the nonlinearity being an odd sigmoidal function [12]. Using the
same formalism the authors established the self-consistent mean-field equations of the network
and the dynamics of its solutions which featured a chaotic behavior for some values of the
network parameters. A little later the problem was picked up again by mathematicians. Ben
Arous and Guionnet applied large deviation techniques to study the thermodynamic limit of
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a network of spins interacting linearly with i.i.d. centered Gaussian weights. The intrinsic
spin dynamics (without interactions) is a stochastic differential equation. They prove that the
annealed (averaged) law of the empirical measure satisfies a large deviation principle and that the
good rate function of this large deviation principle achieves its minimum value at a unique non
Markovian measure [5, 2, 6]. They also prove averaged propagation of chaos results. Moynot and
Samuelides [10] adapt their work to the case of a network of Hopfield neurons with a nonlinear
interaction term, the nonlinearity being a sigmoidal function, and prove similar results in the
case of discrete time. The intrinsic neural dynamics is the gradient of a quadratic potential. Our
work is in-between that of Ben Arous and Guionnet and Moynot and Samuelides: we consider
a network of Hopfield neurons, hence the intrinsic dynamics is simpler than the one in Ben
Arous and Guionnet’s case, with linear interaction between the neurons, hence simpler than
the one in Moynot and Samuelides’ work. We do not make the hypothesis that the interaction
(synaptic) weights are Gaussian unlike the previous authors. The equations of our network are
linear and therefore their solutions can be expressed analytically. As a consequence of this, we
are able to use variants of the CLT and the moments method to characterize in a simple way
the thermodynamic limit of the network without the tools of the theory of large deviations.
Our main result is that the solution to the network equations converges in law toward a non
Markovian process, sum of the initial condition and a centered Gaussian process whose covariance
is characterized by a modified Bessel function.

Plan of the paper

We introduce the precise model in Section 2. In Section 3, we state and prove our main result
(Theorem 3.1) on the asymptotic behavior of the dynamics in the absence of additive white
noise. Section 4 is devoted to the general case with additive white noise (Theorem 4.1). Our
approach in establishing these results is “syntactic”, based on Lemmas 3.3 and 3.8.

2 Network model

We consider a network of N neurons in interaction. Each neuron i ∈ {1, · · · , N} is characterized
by its membrane potential (V i,(N)(t))t where t ∈ R+ represents the time. The membrane
potentials evolve according to the system of stochastic differential equations
V i,(N)(t) = V i

0 − λ
∫ t

0
V i,(N)(s)ds+

1√
N

N∑
j=1

∫ t

0
J

(N)
i,j V j,(N)(s)ds+ γBi(t), ∀i ∈ {1, · · · , N}

L(V
(N)

0 ) = ν⊗N0 ,
(2.1)

where V
(N)

0 =
(
V 1

0 , · · · , V N
0

)
is the vector of initial conditions. The matrix J (N) is a square

matrix of size N and contains the synaptic weights. For i 6= j, the coefficient J
(N)
i,j /
√
N repre-

sents the synaptic weight for pre- synaptic neuron j to post-synaptic neuron i. The coefficient

J
(N)
i,i /
√
N can be seen as describing the interaction of the neuron i with itself. It turns out that

it has no role in defining the mean field limit. The parameters λ and γ are constants. The
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(Bi(t))t, i ∈ {1, · · · , N} are N independent standard Brownian motions modelling the internal
noise of each neuron. The initial condition is a random vector with i.i.d. coordinates, each of
distribution ν0.

We denote by V (N)(t) the vector (V 1,(N)(t), · · · , V N,(N)(t)). Hence, we can write the sys-
tem (2.1) in matrix form:

V (N)(t) = V
(N)

0 −
∫ t

0
λV (N)(s)ds+

∫ t

0

J (N)

√
N
V (N)(s)ds+ γB(t)

L
(
V

(N)
0

)
= ν⊗N0 .

(2.2)

System (2.2) can be solved explicitly and its solution V (N)(t) is given by

V (N)(t) = e−λt

[
exp

(
J (N)

√
N
t

)
V

(N)
0 + γ

∫ t

0
eλs exp

(
J (N)

√
N

(t− s)

)
dB(s)

]
, ∀t ∈ R+. (2.3)

For the rest of the paper, we make the following hypotheses on the distributions of V
(N)

0 and
J (N).

(H1) ν0 is of compact support and we note

µ0 :=

∫
R
x dν0(x) and φ0 =

∫
R
x2 dν0(x),

its first and second order moments.

(H2) The elements of the matrix J (N) are i.i.d. centered and bounded random variables of
variance σ2. They are independent of the initial condition.

3 Convergence of the particle system without additive Brown-
ian noise (γ = 0)

In this section, we consider the model without any additive noise, that is γ = 0 in (2.1): The
unique source of randomness in the dynamics comes from the random matrices (J (N)) describing
the synaptic weights, and the initial condition.

3.1 Mean field limit

The following result describes the convergence when N → +∞ of the coordinates of the vector
(V (N)(t))t∈R+ to a Gaussian process whose covariance is determined by a Bessel function. The-
orem 3.1 below can be seen as a kind of mean-field description of (2.1) as the number of neurons
tends to infinity.
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Theorem 3.1. Under the hypotheses (H1) and (H2), for each k ∈ N∗, the process (V k,(N)(t))t∈R+

converges in law to (V k,(∞)(t))t∈R+ where,

V k,(∞)(t) = e−λt
[
V k

0 + Zk(t)
]
, ∀t ∈ R+.

The process
(
Zk(t)

)
t∈R+

is a centered Gaussian process starting from 0 ( Zk(0) = 0) such that

E
[
Zk(t)Zk(s)

]
= φ0Ĩ0(2σ

√
st), where Ĩ0(z) =

∑
`≥1

z2`/(22`(`!)2). (3.1)

Moreover, for all t ∈ R+, Zk(t) is independent of V k
0 .

Remark 3.2. The function Ĩ0 is closely connected to the modified Bessel function of the first kind
I0, defined as a solution of the ordinary differential equation z2y′′ + zy′ − z2y = 0, y′ = dy/dz.
This function is the sum of the series (z2`/(22`(`!)2))`≥0 which is absolutely convergent for all
z ∈ C, i.e.: I0(z) =

∑
`≥0(z/2)2`/(`!)2, so that we have

Ĩ0(z) = I0(z)− 1.

The proof of Theorem 3.1 requires the following lemma.

Lemma 3.3. Let J be an infinite matrix such that its finite restrictions J (N) satisfy (H2)
and consider a sequence of bounded (not necessarily identically distributed) random variables
(Yj)j∈N∗, independent of J .

Assume that, almost surely,

lim
N→∞

1

N

N∑
j=1

Y 2
j := φ < +∞. (3.2)

For all ` ∈ N∗ and for all 1 ≤ k ≤ N , define

U
k,(N)
` := tek

(
(J (N))`Y (N)

)
,

where ek is the k-th vector of the standard basis of RN . Then, for all 1 ≤ `1 < · · · < `m, m ∈ N∗,
the vector (

1
√
N
`1
U
k,(N)
`1

, · · · , 1
√
N
`m
U
k,(N)
`m

)
converges in law as N → +∞, to an m-dimensional Gaussian random vector of diagonal co-
variance matrix diag(σ2`iφ) independent of any finite subset of the sequence (Yj)j∈N∗.

Remark 3.4. The hypothesis that the Yjs are bounded is not the only possible one. The Lemma
is also true for independent Yjs with finite moments of all orders.

We give one corollary of this Lemma.
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Corollary 3.5. Under the same assumptions as in Lemma 3.3, for all integers p > 1 and
1 ≤ k1 < k2 < · · · < kp the vector(

1
√
N
`1
U
k1,(N)
`1

, · · · , 1
√
N
`m
U
k1,(N)
`m

,

1
√
N
`1
U
k2,(N)
`1

, · · · , 1
√
N
`m
U
k2,(N)
`m

, · · · , 1
√
N
`1
U
kp,(N)
`1

, · · · , 1
√
N
`m
U
kp,(N)
`m

)
converges in law as N → +∞, to an mp-dimensional Gaussian random vector of diagonal
covariance matrix diag(σ2`iφ), i = 1, · · · ,m repeated p times, independent of any finite subset
of the sequence (Yj)j∈N∗.

Proof. It is easy to adapt the proof of Lemma 3.3.

Proof of Lemma 3.3.
W.l.o.g, we consider the case k = 1 and do not show the index 1 in the proof, i.e. we write

U
(N)
` for U

1,(N)
` . We first prove by the method of moments that 1

N`/2U
(N)
` converges in law when

N → ∞ toward a centered Gaussian random variable of variance σ2`φ, i.e. the case m = 1 of
the Lemma. We then sketch the generalization of the proof to the case m > 1.

To do this we expand U
(N)
` and write

1

Nn`/2

(
U

(N)
`

)n
=

1

Nn`/2

∑
j1,··· ,jn

J
(N)

1,j11
J

(N)

j11 ,j
1
2
· · · J (N)

j1`−1,j
1
`
· · · J (N)

1,jn1
J

(N)
jn1 ,j

n
2
· · · J (N)

jn`−1,j
n
`
Yj1`
· · ·Yjn` ,

where
∑

j1,··· ,jn means
∑N

j11 ,··· ,j1`
·

jn1 ,··· ,jn
`
=1

=1.

We follow and recall the notations of [1]: we denote jr the sequence (word) of `+ 1 indexes
(1, jr1 , · · · , jr` ). To each word jr we associate its length ` + 1, its support supp(jr), the set of
different integers in {1, · · · , N} in jr, and its weight wt(jr), the cardinality of supp(jr). We also
associate the graph Gjr = (Vjr , Ejr) where Vjr = supp(jr) has by definition wt(jr) vertices and
the edges are constructed by walking through jr from left to right. Edges are oriented if they
connect two different indexes. In detail we have

Ejr = {(1, jr1) ∪ (jri , j
r
i+1), i = 1, · · · `− 1}

Each edge e ∈ Ejr has a weight noted N jr
e which is the number of times it is traversed by

the sequence jr.

We note j the sentence (j1, · · · , jn) of n words jr, r = 1, · · · , n, of length ` + 1 and we
associate to it the graph Gj = (Vj, Ej) obtained by piecing together the n graphs Gjr . In detail,
as with words, we define for a sentence j its support supp(j) = ∪nr=1supp(j

r) and its weight
wt(j) as the cardinality of supp(j). We then set Vj = supp(j) and Ej the set of edges. Edges are
directed if they connect two different vertices and we have

Ej = {(1, jr1) ∪ (jri , j
r
i+1), i = 1, · · · `− 1, r = 1, · · · , n}
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Two sentences j1 and j2 are equivalent, noted j1 ' j2 if there exists a bijection on {1, · · · , N}
that maps one into the other.

For e ∈ Ej we note N j
e the number of times e is traversed by the union of the sequences jr.

By independence of the elements of the matrix J , the independence of the Js and the Y s,
and by construction of the graph Gj we have

E
[

1

Nn`/2

(
U

(N)
`

)n]
=
∑
j

1

Nn`/2

∏
e∈Ej

E

[(
J

(N)
1,1

)N j
e

]
E[Yj1`

· · ·Yjn` ] :=
∑
j

Tj (3.3)

In order for Tj to be non zero we need to enforce N j
e ≥ 2 for all e ∈ Ej. This implies

n` =
∑
e∈Ej

N j
e ≥ 2 |Ej| ≥ 2(wt(j)− 1),

i.e.
wt(j) ≤ bn`/2c+ 1.

We now make the following definitions:

Definition 3.6. Let W`,n,t be the set of representatives of equivalent classes of sentences j,

j = (j1, · · · , jn) of n words of length ` + 1 starting with 1, such that t = wt(j) and N j
e ≥ 2 for

all e ∈ Ej.

Definition 3.7. Let A`,n,t be the set of sentences j, j = (j1, · · · , jn) of n words of length `+ 1

starting with 1, such that t = wt(j) and N j
e ≥ 2 for all e ∈ Ej.

We now rewrite (3.3)

E
[

1

Nn`/2

(
U

(N)
`

)n]
=

1

Nn`/2

bn`/2c+1∑
t=1

∑
j∈A`,n,t

∏
e∈Ej

E

[(
J

(N)
1,1

)N j
e

]
E[Yj1`

· · ·Yjn` ]

=

bn`/2c+1∑
t=1

∑
j′∈W`,n,t

∑
j'j′

1

Nn`/2

∏
e∈Ej

E

[(
J

(N)
1,1

)N j
e

]
E[Yj1`

· · ·Yjn` ]. (3.4)

Our assumption on Y ensures that ∣∣∣E[Yj1`
· · ·Yjn` ]

∣∣∣ ≤ K
for a constant K independent of j and N . In addition, for j ' j′, we have∏

e∈Ej

E
[
(J1,1)N

j
e

]
=
∏
e∈Ej′

E
[
(J1,1)N

j′
e

]
.

We deduce that for any j′ ∈ W`,n,t hence such that wt(j′) = t,∣∣∣∣∣∣
∑
j'j′

1

Nn`/2

∏
e∈Ej

E
[
(J1,1)N

j
e

]
E[Yj1`

· · ·Yjn` ]

∣∣∣∣∣∣ ≤ K CN,t

Nn`/2

∣∣∣∣∣∣
∏
e∈Ej′

E
[
(J1,1)N

j′
e

]∣∣∣∣∣∣ ,
6



where
CN,t = (N − 1)(N − 2) · · · (N − t+ 1) ' N t−1 (3.5)

is the number of sentences that are equivalent to a given sentence j′, with weight t (remember
that the first element of each word is equal to 1). Since the cardinality of W`,n,t is independent
of N , we conclude that each term in the right hand side of (3.4) is upper bounded by a constant
independent of N times the ratio CN,t/N

n`/2. According to (3.5), this is equivalent to N t−n`/2−1.
Therefore, asymptotically in N , the only relevant term in the right hand side of (3.4) is the one
corresponding to t = bn`/2c+ 1.

In order to proceed we use the following Lemma whose proof is postponed.

Lemma 3.8. If W`,n,t 6= ∅ and n is odd, then t ≤ bn`/2c.

We are ready to complete the proof of Lemma 3.3.
If n is odd, Lemma 3.8 shows that t ≤ bn`/2c, so that the maximum value of CN,t in (3.4) is

O(N bn`/2c−1) and we have limN→∞
1

Nn`/2E[(U
(N)
` )n] = 0. If n = 2p is even, (3.4) commands

E
[

1

Nn`/2

(
U

(N)
`

)n]
' 1

Np`

∑
j∈A`,2p,p`+1

∏
e∈Ej

E

[(
J

(N)
1,1

)N j
e

]
E[Yj1`

· · ·Y
j2p`

] (3.6)

An element of A`,2p,p`+1 is a set of p pairs of identical words of length `+ 1. Each word in a pair
contains ` + 1 different symbols and the intersection of their p supports is equal to {1}. Thus

we have E
[
(J1,1)N

j
e

]
= σ2p` for all j ∈ A`,2p,p`+1.

We have

E
[

1

Nn`/2

(
U

(N)
`

)n]
' σ2p`

Np`

∑
j∈A`,2p,p`+1

E[Yj1`
· · ·Y

j2p`
]

There are (2p − 1)!!(= 1.3. · · · (2p − 1)) ways to group the 2p words in pairs. Indeed, given a
sequence of p`+ 1 different symbols, we set q1 = 1 and pick the first ` symbols in the sequence
to obtain jq1 . We then choose one, say jr1 , r1 6= q1, among the n− 1 = 2p− 1 remaining words
to form the first pair of identical words. We next go to the first unpaired word after jq1 , say
jq2 , q2 /∈ {q1, r1} and choose one among the n− 3 = 2p− 3 remaining words to form the second
pair of identical words (with the next ` symbols in the sequence). And this goes on until we
reach the end, having exhausted the sequence of p`+ 1 different symbols. It follows that there
are (2p− 1)!! ways to group the 2p indexes in pairs.

For each such grouping and for each p-tuple of different indexes (j1
` , · · · , j

p
` ) there are (N −

(p+ 1))(N − (2p+ 1)) · · · (N − ((`− 1)p+ 1)) ways of choosing the remaining `− 1 p-tuples of
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different indexes (j1
k , · · · , j

p
k), k = 1, · · · , `− 1. Putting all this together we obtain

E
[

1

Nn`/2

(
U

(N)
`

)n]
' (2p− 1)!!σ2p` 1

Np

N∑
j1,··· ,jp=2, all indexes different

E[Y 2
j1 · · ·Y

2
jp ]

' (2p− 1)!!σ2p` 1

Np

N∑
j1,··· ,jp=1

E[Y 2
j1 · · ·Y

2
jp ]

' (2p− 1)!!σ2p`E

 1

N

N∑
j=1

Y 2
j

p .
By (3.2) and dominated convergence we obtain

lim
N→∞

E
[

1

Nn`/2

(
U

(N)
`

)n]
=

{
0 if n odd

σ2`p(2p− 1)!!φp if n = 2p.

At this point we have proved that 1
N`/2U

(N)
` converges in law when N → ∞ to a centered

Gaussian of variance σ2lφ.

We go on to sketch the proof that for all m ∈ N∗ and integers 1 ≤ `1 < `2 < · · · < `m,

the m-dimensional vector ( 1
N`1/2

U
(N)
`1

, 1
N`2/2

U
(N)
`2

, · · · , 1
N`m/2U

(N)
`m

) converges in law toward an

m-dimensional centered Gaussian vector with covariance matrix diag(σ2`kφ).

The proof is essentially the same as in the case m = 1 but the notations become much
heavier. The major ingredients are

1. To each U
(N),
`k

, 1 ≤ k ≤ m we associate the graphs Gjk , with jk = (jk,1, · · · , jk,nk) and

jk,r = {1, jk,r1 , · · · , jk,r`k }, r = 1, · · · , nk.

2. We piece these graphs together to obtain the graph Gj1,··· ,jm . This allows us to write a

formula similar to (3.3) for E
[

1
N(n1`1+···+nm`m)/2

(
U

(N)
`1

)n1

· · ·
(
U

(N)
`m

)nm
]
.

3. We enforce the condition that edges in Gj1,··· ,jm must have a weight larger than or equal
to 2.

4. We generalize the definition 3.6 to the set noted W`1,n1,··· ,`m,nm,t and prove an analog to
Lemma 3.8.

5. These last two steps allow us to write a formula analog to (3.4).

6. Lemma 3.8 can be easily generalized to the following

Lemma 3.9. If W`1,n1,··· ,`m,nm,t 6= ∅ and if any of n1, · · · , nm is odd, then t ≤ b(n1`1 +
· · ·+ nm`m)/2c.

8



7. Combining all this yields the result

lim
N→∞

E
[

1

N (n1`1+···+nm`m)/2

(
U

(N)
`1

)n1

· · ·
(
U

(N)
`m

)nm
]

={
0 if any of n1, · · · , nm is odd∏m

k=1 σ
2`kpk(2pk − 1)!!φpk if n1 = 2p1, · · · , nm = 2pm

which shows that the m-dimensional vector ( 1
N`1/2

U
(N)
`1

, 1
N`2/2

U
(N),
`2
· · · , 1

N`m/2U
(N)
`m

) con-
verges in law toward an m-dimensional centered Gaussian vector with covariance matrix
diag(σ2`kφ).

This ends the proof of Lemma 3.3. It is central to our approach and allows us to establish
Theorems 3.1 and 4.1 in a “syntactic” manner by connecting the stochastic properties of the
matrices J (N) and the structure of the sequences of indexes that appear when raising them to
integer powers.

Note that the proof also shows that this Gaussian vector is independent of any finite subset
of the sequence (Yj)j∈N∗ . Indeed, given k distinct integers j1, · · · , jk, if we eliminate from the
previous construction all words ending with any of these integers, the limits will not change and
will be, by construction, independent of Yj1 , · · · , Yjk .

Proof of Lemma 3.8. For any r ∈ 1, · · · , n, consider the number of times the letter jr1 appears
at this position in the set of n words

cr :=

n∑
s=1

1{js1=jr1}.

Since the number n of words is odd, at least one of the cr is also odd. Indeed, assume c1 = 2k1

is even. Consider the n− 2k1 indexes which are not equal to j1
1 and assume w.l.o.g. that one of

them is j2k1+1
1 . If c2k1+1 is odd, we are done, else let c2k1+1 = 2k2 and consider the n−2k1−2k2

indexes which are not equal to j2k1+1
1 and to j1

1 . This process terminates in a finite number
of steps and since n is odd we must necessarily either find an odd cr or end up with a single
remaining element corresponding also to an odd cr.

Assume ( w.l.o.g,) c1 is odd.

Case 1 If c1 = 1, there must be another oriented edge (1, j1
1) in the sentence and it cannot be the

first edge of any of the remaining n−1 words. It means that at least one of the jsk is equal
to 1. Hence there is an oriented edge (j, 1), and it has to appear at least twice so that
there are at least two jsk equal to 1. The total number of letters is n(` + 1) and we have
shown that the letter 1 appeared at least n+ 2 times.

Now, since

supp(j) = {1} ∪ (supp(j)\{1}),
and every letter in supp(j)\{1} has to appear at least twice, we conclude that

2|supp(j)\{1}| ≤ n`− 2,
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and therefore wt(j)− 1 ≤ (n`− 2)/2.

Case 2 If c1 = 3, w.l.o.g, we assume that j1
1 = j2

1 = j3
1

2a If j1
2 = j2

2 = j3
2 , then we have

2|supp(j)\{1, j1
1 , j

1
2}| ≤ n(`+ 1)− n︸︷︷︸

1

− 3︸︷︷︸
j11

− 3︸︷︷︸
j12

,

and hence wt(j)− 3 ≤ (n`− 6)/2.

2b Otherwise, w.l.o.g., j1
2 6= j2

2 and j1
2 6= j3

2 . The edge (j1
1 , j

1
2) must appear twice and

hence the letter j1
1 appears at least 4 times, i.e.

2(wt(j)− 2) ≤ n`− 4

Case 3 If c1 ≥ 5, then 2(wt(j)− 2) ≤ n`− 5.

This ends the proof of Lemma 3.8. It is a good example of the use of our “syntactic” approach:
it provides an upper bound on the number of different symbols in a sentence of n words of
indexes when n is odd which is key in establishing the convergence properties of the powers of
the matrices J (N) when N →∞.

Proof of Theorem 3.1. Without loss of generality we assume k = 1. We first expand the ex-
ponential of the matrix J (N) in (2.3) (with γ = 0) and express the first coordinate of V (N)(t)
as

V 1,(N)(t) = e−λt

V 1
0 +

∑
`≥1

t`

`!

1
√
N
`

N∑
j1,··· ,j`=1

J
(N)
1,j1

J
(N)
j1,j2
· · · J (N)

j`−1,j`
V j`

0

 . (3.7)

The main idea of the proof is to truncate the infinite sum in the right hand side of (3.7) to order
n, establish the limit of the truncated term when N → ∞, obtain the limit of the result when
n→∞, and show that it is the limit of the non truncated term when N →∞.

Let n ∈ N∗ and define the partial sum Z
(N)
n (t) of order n of (3.7)

Z(N)
n (t) =

n∑
`=1

t`

`!

1
√
N
`
U

(N)
` with U

(N)
` = te1

(
J (N)

)`
V0. (3.8)

Lemma 3.3 with Y = V0 dictates the convergence in law, for all n ∈ N∗, of the vector(
1√
N
U

(N)
1 , · · · , 1√

N
nU

(N)
n

)
N∈N∗

to an n-dimensional centered Gaussian random vector, independent of V 1
0 , with a diagonal co-

variance matrix Σ, such that ∀1 ≤ i ≤ n, Σi,i = σ2iφ0. It follows that we have the independence

between the limits in law of each
1
√
N
`
U

(N)
` , 1 ≤ ` ≤ n and also the convergence in law of

10



the sum Z
(N)
n (t) to a centered Gaussian random variable Zn(t), independent of V 1

0 , of variance

φ0
∑n

`=1
(σt)2`

(`!)2
=: Ĩ0,n(2σt).

Moreover, since the function Ĩ0,n converges pointwise to Ĩ0 as n goes to infinity, the Kol-
mogorov–Khinchin Theorem (see e.g. [11, Th. 1 p.6]) gives the convergence of Zn(t).

Zn(t)
L
−→

n→+∞
Z1(t) ∼ N (0, φ0Ĩ0(2σt))

It is clear that Z
(N)
n (t)

L
−→

n→+∞
Z(N)(t) where Z(N)(t) =

∑
`≥1

t`

`!
U

(N)
` , so that we have

Z
(N)
n (t) Zn(t)

Z1(t)Z(N)(t)

L
N →∞

L n→∞ L n→∞

It remains to show that this diagram is commutative i.e. that Z(N)(t)
L
−→

N→+∞
Z1(t).

According to [3, Th. 25.5], to obtain the convergence in law of Z(N)(t) to Z1(t) as N → +∞,
it is sufficient to show that for all t ∈ R∗

lim
n→+∞

lim sup
N→+∞

P
[
| (Z(N)

n (t))− Z(N)(t) |≥ ε
]

= 0, ∀ε > 0. (3.9)

By Markov inequality, we have

P
[
| Z(N)

n (t)− Z(N)(t) |≥ ε
]
≤ 1

ε
E
[∣∣∣Z(N)

n (t)− Z(N)(t)
∣∣∣] , (3.10)

and

E
[
| Z(N)

n (t)− Z(N)(t) |
]

= E

∣∣∣∣∣∣
∑
`≥n+1

t`

`!
U

(N)
`

∣∣∣∣∣∣


≤
∑
`≥n+1

t`

`!
E
[∣∣∣U (N)

`

∣∣∣] .
Moreover, by step 1,

(
U

(N)
`

)
N

converges in law as N → ∞ to a centered Gaussian random

variable U` of variance φ0σ
2`. Then the law of |U`| is a half normal distribution, and hence

E [|U`|] =

√
2φ0√
π
σ`.

Then,

lim sup
N→+∞

E
[
| Z(N)

n (t)− Z(N)(t) |
]
≤
√

2φ0√
π

∑
`≥n+1

t`

`!
σ`.

11



The right hand side goes to zero as n → ∞ and (3.9) follows, hence we have obtained the
convergence in law of V 1,(N)(t) to e−λt

[
V 1

0 + Z1(t)
]
, Z1(t) being independent of V 1

0 .

In order to prove that the process (Z1(t))t∈R+ is Gaussian we show that aZ1(t) + bZ1(s) is
Gaussian for all reals a and b and all s, t ∈ R+. But this is clear from (3.8) which shows that

aZ(N)
n (t) + bZ(N)

n (s) =
n∑
`=1

at` + bs`

`!

1
√
N
`
U

(N)
` ,

and the previous proof commands that aZ(N)(t)+bZ(N)(s) converges in law whenN →∞ toward
a centered Gaussian random variable of variance φ0(a2Ĩ0(2σt) + 2abĨ0(2σ

√
ts) + b2Ĩ0(2σs)).

We now make a few remarks concerning the properties of the mean field limit.

Remark 3.10 (Decomposition as an infinite sum of independent standard Gaussian variables).
A consequence of the proof is that Z1(t) is equal in law to the sum of the following series

Zk(t)
L
=
√
φ0

∞∑
`=1

t`σ`

`!
Gk` , ∀t ∈ R+. (3.11)

where (Gk` )`≥1,k≥1 are independent standard Gaussian random variables, independent of the
initial condition V k

0 .

This decomposition yields the covariance of V k,(∞):

Cov
[
V k,(∞)(t), V k,(∞)(s)

]
= φ0e

−λ(t+s)I0(2σ
√
ts)− e−λ(t+s)E(V0)2 (3.12)

It also shows that the only sources of randomness in the solution to (2.1) (when γ = 0) are the
initial condition and the family (Gk` )`≥1,k≥1 which does not depend on time. The limiting process
is thus an F0+-measurable process.

Remark 3.11 (Non independent increments). It follows from the above that the increments of
the process

(
V k,(∞)(t)

)
t∈R+

are not independent since for all 0 ≤ t1 < t2 ≤ t3 < t4,

Cov
[
V k,(∞)(t2)− V k,(∞)(t1), V k,(∞)(t4)− V k,(∞)(t3)

]
6= 0.

Remark 3.12. Using Theorem 3.1 and (3.11) we obtain the SDE satisfied by the process
(V k,(∞)(t))t∈R+: {

dV k,(∞)(t) = −λV k,(∞)(t)dt+Hk(t)dt

L(V
k,(∞)

0 ) = ν0.
(3.13)

where
(
Hk(t)

)
t∈R+

is the centered Gaussian process

∀t ≥ 0, Hk(t) =
√
φ0σ

∑
`≥0

(σt)`

`!
Gk`+1.

The standard Gaussian random variables Gk` have been introduced in (3.11). It is easily verified
that

E
[
Hk(t)Hk(s)

]
= φ0σ

2I0

(
2σ
√
ts
)

(= φ0σ
2(1 + Ĩ0(2σ

√
ts))).

12



Remark 3.13 (Long time behavior). The function Ĩ0 behaves as an O
(
ez/
√

2πz
)

as z → +∞.
As a consequence of (3.12) σ = λ is a critical value for the solution: if σ > λ the solution V 1

blows up when t→∞ while if σ < λ it converges to its mean.

Remark 3.14 (Non Markov property). The hypothesis of independence between J and V0 is
crucial in the proof of Theorem 3.1. Therefore the proof is not valid if we start the system at a
time t1 > 0, in other words, we cannot establish the existence of a process

(
Z̄k(t)

)
t∈R+

with the

same law as
(
Zk(t)

)
t∈R+

, independent of V k,(∞)(t1), and such that

V k,(∞)(t1 + t) = e−λt
(
V k,(∞)(t1) + Z̄k(t)

)
. (3.14)

3.2 Propagation of chaos

An important consequence of Lemma 3.3 and its Corollary 3.5 is that the propagation of chaos
property is satisfied by the mean field limit.

Theorem 3.15. For any finite number of labels 1 ≤ k1 < k2 < · · · < kp, and for all t ∈ R+,
the random processes V k1,(∞)(t), V k2,(∞)(t), · · ·, V kp,(∞)(t) are independent and identically
distributed.

Proof. The proof follows directly from Corollary 3.5 and the proof of Theorem 3.1.

4 Convergence of the particle system with an additive Brownian
noise (γ 6= 0)

In this section, we consider the general equation (2.2) with γ 6= 0.

4.1 Mean field limit

Here, the randomness is not entirely determined at time t = 0, so we expect that the F0+-measurable
property of the limit which is satisfied by the mean field limit of Section 3 is no longer true.
Considering γ 6= 0, the explicit solution of (2.2) is

V (N)(t) = e−λt exp

(
J (N)t√
N

)[
V

(N)
0 + γ

∫ t

0
eλs exp

(
−J

(N)s√
N

)
dB(s)

]
. (4.1)

Theorem 4.1. Under hypotheses (H1) and (H2) on the matrix J and the initial random vector

V
(N)

0 , for each k ∈ N∗, V k,(N)(t) converges in law as N → +∞ to

V k,(∞)(t) := e−λt
[
V k

0 + γ

∫ t

0
eλsdBk(s) + Zk(t) + γAk(t)

]
. (4.2)

The process (Zk(t))t∈R+ is the same centered Gaussian process as in Theorem 3.1. It is
independent of the initial condition V k

0 , of the Brownian motion (Bk(t))t∈R+ and of the process

13



Ak(t). The process (Ak(t))t∈R+ is a centered Gaussian process, also independent of V k
0 and of

(Bk(t))t∈R+. Its covariance writes

E
[
A1(t)A1(s)

]
=

∫ s

0
e2λuĨ0(2σ

√
(t− u)(s− u)) du 0 ≤ s ≤ t

Proof. Without loss of generality we assume k = 1.

The proof is in two parts. We first assume ν0 = δ0 and show that, starting from 0
(which implies that only the Brownian part of (2.3) acts) the process converges in law to
γ
∫ t

0 e
−λ(t−s)dB1(s) + γe−λtA1(t). In the second part we remove the condition ν0 = δ0.

Part 1: Let ν0 = δ0, then the explicit solution of (2.2) is given by

V (N)(t) = γ

∫ t

0
e−λ(t−s) exp

(
J (N)

√
N

(t− s)

)
dB(s). (4.3)

As before, we expand the exponential of J and obtain

V (N)(t) = γe−λt

∫ t

0
eλsdB(s) +

∑
`≥1

∫ t

0
eλs

((
J (N)

)`
√
N
`
`!

(t− s)`
)

dB(s)

 . (4.4)

For all ` ≥ 1, we introduce the C1 function Λ` defined by

Λ`(t, s) =
1

`!
eλs(t− s)`, (4.5)

and write

V (N)(t) = γe−λt

∫ t

0
eλsdB(s) +

∑
`≥1

∫ t

0

(
J (N)

)`
√
N
`

Λ`(t, s)dB(s)

 .
We focus on the first coordinate of V (N)(t) and we introduce, for all ` ≥ 1, the following
notations.

U
(N)
` (t) := te1

(
J (N)

)` ∫ t

0
Λ`(t, s)dB(s). (4.6)

Then, we have

V 1,(N)(t) = γe−λt

∫ t

0
eλsdB1(s) +

∑
`≥1

1
√
N
`
U

(N)
` (t)

 .
We next define

A(N)
n (t) :=

n∑
`=1

1
√
N
`
U

(N)
` (t)

For each ` ≥ 1 and t ∈ R+ the sequence (Y `
j (t))j∈N∗ , Y

`
j (t) =

∫ t
0 Λ`(t, s)dB

j(s), satisfies (3.2).
Indeed, by the law of large numbers

lim
N→∞

1

N

N∑
j=1

(Y `
j (t))2 = E

[(∫ t

0
Λ`(t, s) dB

1(s)

)2
]

=

∫ t

0
(Λ`(t, s))

2ds := φ`(t) (4.7)
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Moreover, for each ` ≥ 1, for each t ≥ 0, the Y `
j (t) are independent centered Gaussian variables.

It follows from Remark 3.4 and a slight modification of the proof of Lemma 3.3 that the n-

dimensional vector
(

1√
N
U

(N)
1 (t) · · · 1√

N
nU

(N)
n (t)

)
converges in law to an n-dimensional centered

Gaussian process with diagonal covariance matrix diag(σ2`φ`(t)), ` = 1, · · · , n. This process is
independent of any finite subset of the Brownians Bj , hence of

∫ t
0 e

λsdB1(s). It follows that

A
(N)
n (t) converges in law toward a centered Gaussian process An(t) of variance

∑n
`=1 σ

2`φ`(t).

Because
∑n

`=1 σ
2`φ`(t) converges to

∑
`≥1 σ

2`φ`(t) and An(t) is a centered Gaussian process,
the Kolmogorov–Khinchin Theorem commands that An(t) converges in law when n → ∞ to
a centered Gaussian process A1(t) independent of the Brownian B1, with covariance Λ2(t) :=∑

`≥1 σ
2`φ`(t). By (4.5) and (3.1) we have

Λ2(t) =

∫ t

0
e2λuĨ0(2σ(t− u)) du,

It remains to prove that A(N)(t) converges in law to A1(t). According to [3, Th. 25.5], to obtain
the weak convergence of A(N)(t) to A(t) as N → +∞, it is sufficient to show that for all t ∈ R+

lim
n→+∞

lim sup
N→+∞

P
[
| A(N)

n (t)−A(N)(t) |≥ ε
]

= 0, ∀ε > 0. (4.8)

By Markov inequality, we have

P
[
| A(N)

n (t)−A(N)(t) |≥ ε
]
≤ 1

ε
E
[∣∣∣A(N)

n (t)−A(N)(t)
∣∣∣] ,

and

E
[
| A(N)

n (t)−A(N)(t) |
]
≤
∑
`≥n+1

E

[∣∣∣∣∣ 1
√
N
l
U

(N)
` (t)

∣∣∣∣∣
]
.

We know from the beginning of the proof that for all t ∈ R+ and for all ` ∈ N∗, ,

lim
N→+∞

1
√
N
l
U

(N)
` (t) := U`(t)

L
= N (0, σ2`φ`(t))

Then the law of |U`(t)| for all t ∈ R+ is a half normal distribution, and

E [|U`(t)|] =

√
2

π
σ` (φ`(t))

1/2

Then,

lim sup
N→+∞

E
[∣∣∣A(N)

n (t)−A(N)(t)
∣∣∣] ≤ 1

ε

√
2

π

∑
`>n

σ`φ`(t)

The right hand side of this inequality goes to zero when n→∞ and (4.8) follows. This concludes
the first part of the proof.

In order to prove that the process (A1(t))t∈R+ is Gaussian we proceed exactly as in the proof
of Theorem 3.1 and show that aA1(t)+bA1(s) is Gaussian for all reals a and b and all s < t ∈ R+.
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Indeed, the previous proof commands that aA(N)(t) + bA(N)(s) converges in law when N →∞
toward a centered Gaussian random variable of variance a2Λ2(t) + 2abΛ(t, s) + b2Λ2(s), where

Λ(t, s) =

∫ s

0
e2λuĨ0(2σ

√
(t− u)(s− u)) du 0 ≤ s ≤ t

Part 2:

We remove the assumption ν0 = δ0. A slight modification of the proof of Lemma 3.3 shows
that the 2n-dimensional vector(

1√
N
U

(N)
1 , · · · , 1√

N
nU

(N)
n ,

1√
N
U

(N)
1 (t), · · · , 1√

N
nU

(N)
n (t)

)
,

where U
(N)
` is defined by (3.8) and U

(N)
` (t) by (4.6), converges in law when N →∞ to the 2n-

dimensional centered Gaussian vector with covariance diag(σ2φ0, · · · , σ2nφ0, σ
2φ1, · · · , σ2nφn),

where φ`, ` ≥ 1 is defined by (4.7).

We conclude that Z
(N)
n (t) + A

(N)
n (t) converges in law when N → ∞ to Zn(t) + An(t), and

that Zn(t) and An(t) are independent. The convergence of Zn(t)+An(t) to Z1(t)+A1(t) follows
again from the Kolmogorov–Khinchin Theorem.

Remark 4.2. Note that the process A1(t) does not have independent increments.

4.2 Propagation of chaos

As in the case without noise, propagation of chaos occurs.

Theorem 4.3. For any finite number of labels k1 < k2 < · · · < kp, and for all t ∈ R+,
the random processes V k1,(∞)(t), V k2,(∞)(t), · · ·, V kp,(∞)(t) are independent and identically
distributed.

Proof. The proof follows directly from the following extension of Corollary 3.5 and the proof of
Theorem 3.1.

Corollary 4.4. Under the same assumptions as in Lemma 3.3 (see also Remark 3.4), for all
integers p > 1 and 1 ≤ k1 < k2 < · · · < kp the 2mp-dimensional vector obtained by concatenating
the two mp-dimensional vectors( 1
√
N
`1
U
k1,(N)
`1

, · · · , 1
√
N
`m
U
k1,(N)
`m

,

1
√
N
`1
U
k2,(N)
`1

, · · · , 1
√
N
`m
U
k2,(N)
`m

, · · · , 1
√
N
`1
U
kp,(N)
`1

, · · · , 1
√
N
`m
U
kp,(N)
`m

)
,

where U
ki,(N)
`j

= tekiJ
`jV0, i = 1, · · · , p, j = 1, · · · ,m and(

1
√
N
`1
U
k1,(N)
`1

(t), · · · , 1
√
N
`m
U
k1,(N)
`m

(t),

1
√
N
`1
U
k2,(N)
`1

(t), · · · , 1
√
N
`m
U
k2,(N)
`m

(t), · · · , 1
√
N
`1
U
kp,(N)
`1

(t), · · · , 1
√
N
`m
U
kp,(N)
`m

(t)

)
,
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where U
ki,(N)
`j

(t) := tekiJ
`j
∫ t

0 Λ`j (t, s)dB(s), i = 1, · · · , p, j = 1, · · · ,m, converges in law as
N → +∞, to an 2mp-dimensional Gaussian random vector of diagonal covariance matrix
diag(σ2`iφ0), i = 1, · · · ,m repeated p times, and diag(σ2`iφ`i(t)), i = 1, · · · ,m repeated p times.

Proof. Follows from the one of Lemma 3.3.
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