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ASYMPTOTIC BEHAVIOUR OF A NETWORK OF NEURONS WITH

RANDOM LINEAR INTERACTIONS

OLIVIER FAUGERAS, ÉMILIE SORET, AND ETIENNE TANRÉ

Abstract. We study the asymptotic behaviour for asymmetric neuronal dynamics in a network
of linear Hopfield neurons. The randomness in the network is modelled by random couplings
which are centered i.i.d. random variables with finite moments of all orders. We prove that if
the initial condition of the network is a set of i.i.d random variables with finite moments of all
orders and independent of the synaptic weights, each component of the limit system is described
as the sum of the corresponding coordinate of the initial condition with a centered Gaussian
process whose covariance function can be described in terms of a modified Bessel function. This
process is not Markovian. The convergence is in law almost surely w.r.t. the random weights.
Our method is essentially based on the CLT and the method of moments.

AMS Subject of Classification (2010):
60F10, 60H10, 60K35, 82C44, 82C31, 82C22, 92B20 proc

1. Introduction

We revisit the problem of characterizing the limit of a network of Hopfield neurons. Hopfield
[6] defined a large class of neuronal networks and characterized some of their computational
properties [7, 8], i.e. their ability to perform computations. Inspired by his work Sompolinsky
and co-workers studied the thermodynamic limit of these networks when the interaction term
is linear [3] using the dynamic mean-field theory developed in [11] for symmetric spin glasses.
The method they use is a functional integral formalism used in particle physics and produces
the self-consistent mean-field equations of the network. This was later extended to the case of a
nonlinear interaction term, the nonlinearity being an odd sigmoidal function [10]. Using the same
formalism the authors established the self-consistent mean-field equations of the network and
the dynamics of its solutions which featured a chaotic behaviour for some values of the network
parameters. A little later the problem was picked up again by mathematicians. BenArous and
Guionnet applied large deviation techniques to study the thermodynamic limit of a network of
spins interacting linearly with i.i.d. centered Gaussian weights. The intrinsic spin dynamics
(without interactions) is a stochastic differential equation where the drift is the gradient of a
potential. They prove that the annealed (averaged) law of the empirical measure satisfies a large
deviation principle and that the good rate function of this large deviation principle achieves its
minimum value at a unique measure which is not Markovian [4, 1, 5]. They also prove averaged
propagation of chaos results. Moynot and Samuelides [9] adapt their work to the case of a
network of Hopfield neurons with a nonlinear interaction term, the nonlinearity being a sigmoidal
function, and prove similar results in the case of discrete time. The intrinsic neural dynamics is
the gradient of a quadratic potential. Our work is in-between that of BenArous-Guionnet and
Moynot-Samuelides: we consider a network of Hopfield network, hence the intrinsic dynamics is
simpler than the one in BenArous-Guionnet’s case, with linear interaction between the neurons,
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hence simpler than the one in Moynot-Samuelides’ work. We do not make the hypothesis that
the interaction (synaptic) weights are Gaussian unlike the previous authors. The equations
of our network are linear and therefore their solutions can be expressed analytically. Thanks
to this we are able to use variants of the CLT and the moments method to characterise in a
simpler way the Thermodynamic limit of our network without the tools of the theory of large
deviations. Our main result is that the solution to the network equations converges in law
toward a non Markovian process, sum of the initial condition and a centered Gaussian process
whose covariance is characterized by a modified Bessel function.

2. Network model

We consider a network of N neurons in interaction. Each neuron i ∈ {1, · · · , N} is charac-

terized by its membrane potential (V
i,(N)
t )t where t ∈ R+ represents the time. The membrane

potential of neuron i is described by the stochastic differential equation

(2.1)


dV

i,(N)
t = −λV i,(N)

t dt+
1√
N

N∑
j=1

J
(N)
i,j V

j,(N)
t dt+ γdBi

t

L(V
(N)

0 ) = ν⊗N0 ,

where V
(N)

0 =
(
V 1

0 , · · · , V N
0

)
is the vector of initial conditions. The matrix J (N) is a square

matrix of size N and contains the synaptic weights. The parameters λ and γ are real constants
and (Bi

t)t models the internal noise of the neuron i. The (Bi
t)t, i ∈ {1, · · · , N} are N independent

standard Brownian motions. The initial condition is a random vector with i.i.d. coordinates,
each of distribution ν0. Each initial condition V i

0 is fixed and does not depend on the size N of

the network. For the sake of simplicity, we remove the size exponent N in J (N), i.e. J is the
matrix of the synaptic weights, for all N ∈ N.

We denote V
(N)
t = (V

1,(N)
t , · · · , V N,(N)

t ) and write system (2.1) in matrix form:

(2.2)


dV

(N)
t = −λV (N)

t dt+
J√
N
V

(N)
t dt+ γdBt

L
(
V

(N)
0

)
= ν⊗N0 .

System (2.2) can be solved explicitly, its solution V
(N)
t being given by,

(2.3) V
(N)
t = e−λt

[
exp

(
J√
N
t

)
V

(N)
0 + γ

∫ t

0
eλs exp

(
J√
N

(t− s)
)

dBs

]
, ∀t ∈ R+.

We make the following hypotheses

(H1) : ν0 has finite moments of all positive orders:∣∣∣∣∫
R
xp dν0(x)

∣∣∣∣ < +∞ for all p ∈ N

we note

µ0 :=

∫
R
x dν0(x) and φ0 =

∫
R
x2 dν0(x)

(H2) : The elements of the random matrix J are i.i.d. centered random variables of variance
σ2 and with finite moments of all orders. They are independent of the initial condition.
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3. Convergence of the particle system without noise

3.1. Mean field limit. In this section, we consider the case γ = 0 (no noise). We have the

following result on the convergence of the coordinates of vector (V
(N)
t )t∈R+ , for N → +∞ to a

Gaussian process whose covariance is determined by a Bessel function.

Theorem 3.1. Under the hypothesis (H1) and (H2), for each k ∈ N, the process (V
k,(N)
t )t∈R+

converges in law to (V
k,(∞)
t )t∈R+ where, for all t ∈ R+,

V
k,(∞)
t = e−λt

[
V k

0 + Zkt

]
, ∀t ∈ R+, L(Zkt ) = N

(
0, φ0Ĩ0(2σt)

)
,

with

(3.1) Ĩ0(z) =
∑
`≥1

z2`/(22`(`!)2).

Moreover, for all t ∈ R+, Zkt is independent of V k
0 .

The limiting process is then entirely determined by its initial condition and the Gaussian
process Zkt independent of V k

0 .

Remark 3.2. The modified Bessel function of the first kind I0 is defined as being the solution
of the ordinary differential equation z2y′′+ zy′− z2y = 0. This function is the sum of the series
(z2`/(22`(`!)2))`≥0 which is absolutely convergent for all z ∈ C, i.e.: I0(z) =

∑
`≥0 z

2`/(22`(`!)2),
so that we have

Ĩ0(z) = I0(z)− 1.

The hypothesis of independence between J and V
(N)

0 is crucial in the proof of Theorem 3.1.
Therefore the proof is not valid if we start the system at a time t1 > 0, in others words, we can
not establish the existence of a process

(
Z̄kt
)
t∈R+

which has the same distribution as
(
Zkt
)
t∈R+

and independent of V k
t1 such that

(3.2) V
k,(∞)
t1+t = e−λt

(
V
k,(∞)
t1

+ Z̄kt

)
.

Remark 3.3. The proof of Theorem 3.1 shows that the limiting process Zkt is an infinite sum
of independent Gaussian variables. Let (G`)`≥1 be a infinite sequence of independent standard
Gaussian random variables, then the following equality holds in law:

(3.3) Zkt
L
=
√
φ0

∞∑
`=1

t`σ`

`!
Gk` , ∀t ∈ R+.

To obtain the proof of Theorem 3.1 as well as the covariance of the limiting process, we need
the following lemma

Lemma 3.4. Let (Y`,j)(j,`)∈N2 be a sequence random variables independent of J , whose coordi-

nates are not necessarily independent and identically distributed and such that, for all p ∈ N,
and for ` ∈ N fixed,

(3.4) lim
N→+∞

E

 1

N

N∑
j=1

(Y`,j)
2

p = φ`,p < +∞.
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For all ` ∈ N, let U
(N)
` = 1√

N
`

∑N
j=1(J `)1,jY`,j, we have for all p ∈ N

i- limN→+∞ E
[
(U

(N)
` )2p

]
= φ`,p

(2p)!

p! 2p
σ2`p and limN→+∞ E

[
(U

(N)
` )2p+1

]
= 0

ii- Given any family of m integers (bi)1≤i≤m, m ∈ N, if at least one of the bi is odd, then
for all integers 0 ≤ `1 < · · · < `m,

lim
N→+∞

E
[
(U

(N)
`1

)b1 · · · (U (N)
`m

)bm
]

= 0.

iii- Given any family of m integers (ai)1≤i≤m, m ∈ N, with
∑m

i=1 ai = p, then for for all
integers 0 ≤ `1 < · · · < `m,

lim
N→+∞

E
[
(U

(N)
`1

)2a1 · · · (U (N)
`m

)2am
]

=
1

2p

m∏
i=1

φ`i,ai
(2ai)!

ai!
σ2`iai .

The proof of Lemma 3.4 is given in Section 5. It allows us to state the following result on the

covariance of the process
(
V
k,(∞)
t

)
t∈R+

Corollary 3.5. For all k ∈ N, the covariance of the limiting process (V
k,(∞)
t )t∈R+ is given by

(3.5) Cov
(
V
k,(∞)
t , V k,(∞)

s

)
= e−λ(t+s)

(
φ0Ĩ0(2σ

√
ts) + φ0 − µ2

0

)
, t, s ∈ R+,

Remark 3.6. The increments of the process
(
V
k,(∞)
t

)
t∈R+

are not independent. Indeed by

Corollary 3.5, for all 0 ≤ t1 < t2 < t3 < t4,

Cov
[
V
k,(∞)
t2

− V k,(∞)
t1

, V
k,(∞)
t4

− V k,(∞)
t3

]
6= 0.

Proof of Corollary 3.5: Because of Theorem 3.1 Zkt is centered for all t ∈ R+ implying that

E
[
V
k,(∞)
t

]
= e−λtµ0. It follows that

Cov
(
V
k,(∞)
t , V k,(∞)

s

)
= E

[(
V
k,(∞)
t − e−λtµ0

)(
V k,(∞)
s − e−λsµ0

)]
= E

[
V
k,(∞)
t V k,(∞)

s

]
− e−λ(t+s)µ2

0

= e−λ(t+s)

{
E
[
(V k

0 )2
]

+ E
[
V k

0

(
Z
k,(∞)
t + Zk,(∞)

s

)]
(3.6)

+ E
[
Zk,t Z

k
s

]
− µ2

0

}
.

Then, let e
(N)
k the k-th unit vector of RN , we remark that

V k
0

[(
exp

(
J√
N
s

)
− Id

)
V

(N)
0

]
k

= V k
0 (e

(N)
k )t

∑
`≥1

J `s`

`!
√
N
`
V

(N)
0

= (e
(N)
k )t

∑
`≥1

J `s`

`!
√
N
`
V k

0 V
(N)

0 ,
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where (e
(N)
k )t is the row vector transposed of the column vector e

(N)
k . As V0 and J are indepen-

dent,

E

(e
(N)
k )t

∑
`≥1

J `s`

`!
√
N
`
V k

0 V
(N)

0

 = E

(e
(N)
k )t

∑
`≥1

J `s`

`!
√
N
`

E
[
V k

0 V
(N)

0

]

= E

(e
(N)
k )t

∑
`≥1

J `s`

`!
√
N
`

Y
= E

(e
(N)
k )t

∑
`≥1

J `s`

`!
√
N
`
Y


where Y is the deterministic vector with all coordinates equal to µ2

0 except the k-th coordinate
which is equal to φ0. Y satisfies

lim
N→+∞

 1

N

N∑
j=1

(Yj)
2

p

= µ4p
0 .

It follows from Lemma 3.4.i and the proof of Theorem 3.1 that

(e
(N)
k )t

∑
`≥1

J `s`

`!
√
N
`
Y

L−→
N→+∞

N
(

0, µ4
0Ĩ0(2σs)

)
.

This convergence yields that

(3.7) E
[
V k

0 Z
k
s

]
= 0.

Combining (3.6) and (3.7), we obtain

Cov
(
V
k,(∞)
t , V k,(∞)

s

)
= e−λ(t+s)

(
φ0 − µ2

0 + E
[
Zkt Z

k
s

])
.

Moreover, by (3.3) and (3.1),

(3.8) E
[
Zkt Z

k
s

]
= φ0

∑
`≥1

σ2`(ts)`

(`!)2
= φ0Ĩ0(2σ

√
ts).

Combining (3.6) and (3.8) we obtain (3.5). Note that the proof of (3.7) implies that E
[
V m

0 Zks
]

=
0, m ∈ N. This yields the last point of Theorem 3.1. �

Using Remark 3.3 and Corollar 3.5, we can write the EDS which is verified by the process

(V
k,(∞)
t )t∈R+ :

(3.9)

{
dV

k,(∞)
t = −λV k,(∞)

t dt+Hk
t dt

L(V k
0 ) = ν0.

with
(
Hk
t

)
t∈R+

a Gaussian process such that for all t ∈ R+,

Hk
t =

√
φ0σ

∑
`≥0

(σt)`

`!
Gk`+1
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where the Gk` are the same Gaussian random variables than in (3.3). Moreover, we can proceed

exactly as in the proof of Corollary 3.5 to obtain the covariance of the process
(
Hk
t

)
t∈R+

which

gives us

Cov
(
Hk
t , H

k
s

)
= φ0σ

2I0

(
2σ
√
st
)
.

The proof of Theorem 3.1 rests upon the use of the method of moments (see [2, Th. 30.2])
applied to the exponential of J in (2.3). The method of moments consists in proving the
weak convergence by establishing that the moments converge. This requires that the limiting
distribution is uniquely determined by it moments. This is the case of the Gaussian distributions.

Proof of Theorem 3.1. Without loss of generality we assume k = 1. By expanding the exponen-

tial of the matrix J in (2.3) (with γ = 0) we express the first coordinate of V
(N)
t as

V
1,(N)
t = e−λt

V 1
0 +

∑
`≥1

t`

`!

1
√
N
`

N∑
j=1

(J `)1,jV
j

0


= e−λt

V 1
0 +

∑
`≥1

t`

`!

1
√
N
`

N∑
j1,··· ,j`=1

J1,j1Jj1,j2 · · · Jj`−1,j`V
j`

0

 .(3.10)

We fix n and define the partial sum Z
(N)
n (t) of order n of (3.10):

(3.11) Z(N)
n (t) =

n∑
`=1

t`

`!
U

(N)
` , U

(N)
` =

1
√
N
`

N∑
j1,··· ,j`=1

J1,j1 · · · Jj`−1,j`V
j`

0 .

In the first part of the proof we apply the method of moments to Z
(N)
n (t). We will identify the

limit of the moments of Z
(N)
n (t) for N →∞ with the ones of a centred Gaussian process, noted

Zn(t), of variance φ0Ĩ0,n(2σt) where

(3.12) Ĩ0,n(z) =
n∑
`=1

z2`

22`(`!)2
,

is the partial sum of order n of Ĩ0(z) defined in (3.1). The method of moments then guarantees

that, for all n ∈ N, Z
(N)
n (t) converges in law to Zn(t) when N →∞.

We apply Lemma 3.4 to U
(N)
` defined in (3.11) with Y`,j = V j

0 not depending on `. We define

φp = lim
N→+∞

E

 1

N

N∑
j=1

(V j
0 )2

p ,
and observe that

1

Np

 N∑
j=1

(V j
0 )2

p

=
1

Np
p!

∑
1≤j1<···<jp≤N

(V j1
0 )2 · · · (V jp

0 )2 +O
(

1

N

)
.
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By hypothesis (H2) the V j
0 are i.i.d. random variables, we then have for all p ∈ N,

φp = lim
N→+∞

1

Np
p!E

 ∑
1≤j1<···<jp≤N

(V j1
0 )2 · · · (V jp

0 )2

+O
(

1

N

)

=
p!

p!
φp0 = φp0.

Lemma 3.4.i and the method of moments imply that, for all ` ∈ N, the sequence
(
U

(N)
`

)
N∈N

converges in law when N → +∞ to a centered Gaussian of variance φ0σ
2`.

Using Lemma 3.4 again we show that Z
(N)
n (t) converges in law to Zn(t) for all n ∈ N fixed.

Let p ∈ N, (Z
(N)
n (t))p is the sum of terms of the form

(3.13) Cp,b1,··· ,bm
∑

1≤`1<···<`m≤n

(
t`1

`1!
U

(N)
`1

)b1
· · ·
(
t`m

`m!
U

(N)
`m

)bm

over 1 ≤ m ≤ p and for families of positive integers (bi)1≤i≤m ∈ Σp,m where

(3.14) Σp,m = {(b1, · · · , bm) ∈ Nm∗ |
m∑
i=1

bi = p}.

Cp,(bi)1≤i≤m
is the multinomial coefficient :

Cp,b1,··· ,bm =
p!

b1! · · · bm!
.

By the second statement of Lemma 3.4, when taking the expected value of
(
Z

(N)
n (t)

)p
the terms

with at least one of the bi, 1 ≤ i ≤ m, odd vanish in the limit in N →∞. It directly yields that

the odd moments of Z
(N)
n (t) go to zero as N →∞ :

(3.15) E
[(
Z(N)
n (t)

)2p+1
]
−→

N→+∞
0, ∀p ∈ N.

We next consider the even moments of Z
(N)
n (t). Let p ∈ N, applying the second statement of

Lemma 3.4, we obtain

lim
N→+∞

E
[
(Z(N)

n (t))2p
]

= lim
N→+∞

p∑
m=1

∑
(ai)1≤i≤m∈Σp,m

C2p,2a1,··· ,2am

×
∑

1≤`1<···<`m≤n

(
t`1

`1!
U

(N)
`1

)2a1

· · ·
(
t`m

`m!
U

(N)
`m

)2am
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where Σp,m is defined in (3.14) Applying the third statement of Lemma 3.4, we obtain

(3.16) E
[
(Z(N)

n (t))2p
]

=

p∑
m=1

∑
(ai)i∈Σp,m

(2p)!

(2a1)! · · · (2am)!

∑
1≤`1<···<`m≤n

t2
∑
ai`i∏m

i=1(`i!)2ai
E

[
m∏
i=1

(U
(N)
`i

)2ai

]
.

We can now apply the first statement of Lemma 3.4 to obtain

(3.17) E
[
(Z(N)

n (t))2p
]
−→

N→+∞

p∑
m=1

∑
(ai)i∈Σp,m

(2p)!φp0
2p(a1)! · · · (am)!

∑
1≤`1<···<`m≤n

m∏
i=1

t2ai`i

(`i!)2ai

m∏
i=1

σ2ai`i ,

which is precisely the moment of order 2p of a centered Gaussian random variable of variance

φ0Ĩ0,n(2σt). It yields that for all n ∈ N, and for t ∈ R+, Z
(N)
n (t) converges in law when N →∞

to Zn(t) with

L (Zn(t)) = N
(

0, φ0Ĩ0,n(2σt)
)
,

where Ĩ0,n(2σt) is defined in (3.12). Moreover, the function Ĩ0,n converges pointwise to Ĩ0 defined

in (3.1).It implies that Zn(t) converges in law, for n→ +∞ to a N
(

0, Ĩ0(2σt)
)

.

The second part of the proof consists in adding the initial condition V 1
0 to our analysis. We

compute the characteristic function of the pair
(
V 1

0 , Z
(N)
n (t)

)
. The main difficulty in computing

this characteristic function is that V 1
0 appears in Z

(N)
n (t), indeed we can write Z

(N)
n (t) as the

sum

(3.18) Z(N)
n (t) = Z̃(N)

n (t) +
n∑
`=1

t`
√
N
`
`!

N∑
j1,···j`−1=1

J1,j1 · · · Jj`−1,1V
1

0 ,

where Z̃
(N)
n (t) is the restriction of Z

(N)
n (t) over j` ≥ 2

Z̃(N)
n (t) =

n∑
`=1

t`
√
N
`
`!

N∑
j1,···j`−1=1

N∑
j`=2

J1,j1 · · · Jj`−1,j`V
j`

0 .

First, we show that this dependence disappears in the limit N → +∞.

Let (u1, u2) ∈ R2, by (3.18) we have∣∣∣exp
(
iu1V

1
0

)
exp

(
iu2Z

(N)
n (t)

)
− exp

(
iu1V

1
0

)
exp

(
iu2Z̃

(N)
n (t)

)∣∣∣ =
∣∣∣exp

(
iu1V

1
0

)
exp

(
iu2Z̃

(N)
n (t)

)∣∣∣
×

∣∣∣∣∣∣exp

iu2

n∑
`=1

t`
√
N
`
`!

N∑
j1,···j`−1=1

J1,j1 · · · Jj`−1,1V
1

0

− 1

∣∣∣∣∣∣ .



ASYMPTOTIC BEHAVIOUR OF A NETWORK OF NEURONS WITH RANDOM LINEAR INTERACTIONS 9

Then, using the fact that |ez − 1| ≤ |z|e|z|,∣∣∣exp
(
iu1V

1
0

)
exp

(
iu2Z

(N)
n (t)

)
− exp

(
iu1V

1
0

)
exp

(
iu2Z̃

(N)
n (t)

)∣∣∣ ≤ ∣∣∣exp
(
iu1V

1
0

)
exp

(
iu2Z̃

(N)
n (t)

)∣∣∣
×

∣∣∣∣∣∣u2

n∑
`=1

t`
√
N
`
`!

N∑
j1,···j`−1=1

J1,j1 · · · Jj`−1,1V
1

0

∣∣∣∣∣∣ exp

∣∣∣∣∣∣u2

n∑
`=1

t`
√
N
`
`!

N∑
j1,···j`−1=1

J1,j1 · · · Jj`−1,1V
1

0

∣∣∣∣∣∣


≤

∣∣∣∣∣∣u2

n∑
`=1

t`
√
N
`
`!

N∑
j1,···j`−1=1

J1,j1 · · · Jj`−1,1V
1

0

∣∣∣∣∣∣ exp

∣∣∣∣∣∣u2

n∑
`=1

t`
√
N
`
`!

N∑
j1,···j`−1=1

J1,j1 · · · Jj`−1,1V
1

0

∣∣∣∣∣∣
 .

(3.19)

Using the method of moment on

n∑
`=1

t`

`!
√
N
`

N∑
j1,···j`−1=1

J1,j1 · · · Jj`−1,1V
1

0

gives us that all moments are zero hence it converges in law, and then in probability to 0 as
N → +∞. The limit of (3.19), as N → +∞ is zero. It follows that

lim
N→+∞

E
[
exp

(
iu1V

1
0

)
exp

(
iu2Z

(N)
n (t)

)]
= lim

N→+∞
E
[
exp

(
iu1V

1
0

)
exp

(
iu2Z̃

(N)
n (t)

)]
= E

[
exp

(
iu1V

1
0

)]
lim

N→+∞
E
[
exp

(
iu2Z̃

(N)
n (t)

)]
and taking j` ≥ 2 does not change anything in the previous calculus on the moments, which
yields that

lim
N→+∞

E
[
exp

(
iu2Z̃

(N)
n (t)V j`

0

)]
= lim

N→+∞
E
[
exp

(
iu2Z

(N)
n (t)

)]
.

It shows the independence between Zn(t) and V 1
0 .

Hence we have the convergence in law as N → +∞ of the pair
(
V 1

0 , Z
(N)
n (t)

)
to
(
V 1

0 , Zn(t)
)
,

and it follows that

(3.20) V 1
0 + Z(N)

n (t)
L
−→

N→+∞
V 1

0 + Zn(t).

It remains to let n→ +∞ and to show that, if Z(N)(t) =
∑

`≥1

t`

`!
U

(N)
` , then V 1

0 +Z(N)(t)
L
−→

N→+∞
V 1

0 + Z(t), where L (Z(t)) = N (0, Ĩ0(2σt)). We are in the following situation:

V 1
0 + Z

(N)
n (t) V 1

0 + Zn(t)

V 1
0 + Z(t)

L
N →∞

L n→∞
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According to [2, Th. 25.5], to obtain the weak convergence of V 1
0 + Z(N)(t) to V 1

0 + Z(t) as
N → +∞, it is sufficient to show that for all t ∈ R∗

(3.21) lim
n→+∞

lim sup
N→+∞

P
[
| (V 1

0 + Z(N)
n (t))− (V 1

0 + Z(N)(t)) |≥ ε
]

= 0, ∀ε > 0.

By Markov inequality, we have

(3.22) P
[
| Z(N)

n (t)− Z(N)(t) |≥ ε
]
≤ 1

ε
E
[∣∣∣Z(N)

n (t)− Z(N)(t)
∣∣∣] ,

and

E
[
| Z(N)

n (t)− Z(N)(t) |
]

= E

∣∣∣∣∣∣
∑
`≥n+1

t`

`!
U

(N)
`

∣∣∣∣∣∣


≤
∑
`≥n+1

t`

`!
E
[∣∣∣U (N)

`

∣∣∣] .
Moreover, by statement i) of Lemma 3.4 and the moment method, (U

(N)
` )N converges in law

as N → ∞ to a Gaussian random variable of zero mean and variance φ0σ
2`. Then as | · | is

continuous, for all K ∈ R

lim
N→+∞

E
[∣∣∣U (N)

`

∣∣∣1|U(N)
` |<K

]
= E

[
|U`|1|U`|<K

]
,

with, ∀` ∈ N, L(U`) = N (0, φ0σ
2`). It follows that the law of |U`| is a half normal distribution,

and hence that

lim
K→+∞

E
[
|U`|1|U`|<K

]
= E [|U`|]

=

√
2φ0√
π
σ`.

Then,

lim sup
N→+∞

E
[
| Z(N)

n (t)− Z(N)(t) |
]
≤
√

2φ0√
π

∑
`≥n+1

t`

`!
σ`.

The right hand side of this inequality goes to zero when n → ∞ and (3.21) follows. This
concludes the proof of Theorem 3.1. �

3.2. Propagation of chaos. An important consequence of Lemma 3.4 is that the propagation
of chaos is satisfied by the mean field limit.

Theorem 3.7. For any pair (k1, k2) ∈ N2, k1 6= k2, and for all t ∈ R+, we have independence

between V
k1,(∞)
t and V

k2,(∞)
t .

Proof. Consider k1 = 1 and k2 = 2 and we denote by

U
k,(N)
` =

1
√
N
`

N∑
j=1

(J `)k,jY
j

0 , k = 1, 2.
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The scheme of the proof consist on taking k and ` ∈ N not necessarily different and consider
(u1, u2) ∈ R2. The proof consist again of using the method of moment to establish that for all
(u1, u2) ∈ R2,

(3.23) U
1,(N)
` u1 + U

2,(N)
k u2

L−→
N→+∞

N
(

0, φ0

(
(σ`u1)2 + (σku2)2

))
.

It will imply that the couple (U
1,(N)
` , U

2,(N)
k ) converges in law to a Gaussian vector with a

diagonal covariance matrix, hence the limits in law of U
1,(N)
ell and U

2,(N)
k will be independent.

Moreover, it is equivalent to the independence of the limit in law of Z
1,(N)
1 and Z

2,(N)
1 . Then we

will proceed recursively by admitting that for a n ∈ N∗,

(3.24) Z
1,(N)
n−1 u1 + Z

2,(N)
n−1 u2

L−→
N→+∞

N
(

0, 2φ0Ĩ0,n−1(2σt)(u2
1 + u2

2)
)

(which is the case of Z
1,(N)
1 u1+Z

2,(N)
1 u2) and we will show that it implies that Z

1,(N)
n u1+Z

2,(N)
n u2

converges in law to a N
(

0, 2φ0Ĩ0,n(2σt)(u2
1 + u2

2)
)

. The result will follow.

First, let (u1, u2) be in R2. Then we compute the moments of U
1,(N)
` u1 +U

2,(N)
k u2. As in the

proof of Lemma 3.4, the odd moments are zero. Consider p ∈ N,

(
U

1,(N)
` u1 + U

2,(N)
k u2

)2p
=

2p∑
m=0

(2p)!

m!(2p−m)!
um1 u

2p−m
2 (U

1,(N)
` )m(U

1,(N)
k )2p−m.

By Lemma 3.4 ii-, the expectation of the sum over the m odd converges to 0, hence,
(3.25)

lim
N→+∞

E
[(
U

1,(N)
` u1 + U

2,(N)
k u2

)2p
]

= lim
N→+∞

p∑
m=0

(2p)!

(2m)!(2(p−m))!
u2m

1 u
2(p−m)
2 E

[
(U

1,(N)
` )2m(U

2,(N)
k )2(p−m)

]
by Lemma 3.4 iii- (the proof is also valid for k = `)

(3.26) E
[
(U

1,(N)
` )2m(U

2,(N)
k )2(p−m)

]
→

N→+∞
φp0

(2m)!(2(p−m))!

2pm!(p−m)!
σ2`mσ2k(p−m).

Combining (3.25) and (3.26) yields convergence of law

(U
1,(N)
` u1 + U

2,(N)
k u2)

L−→
N→+∞

N
(

0, (u2
1 + u2

2)φ0(σ2` + σ2k)
)

and then,

(3.27)
(
U

1,(N)
` , U

2,(N)
k

)
L−→

N→+∞
N (0,Σ`,k) , with Σ`,k a diagonal matrix.

the independence between the limit in law of U
1,(N)
` and U

2,(N)
k . It yields, taking ` = 1 = k,

that Z1
1 (t) and Z2

1 (t) are independent and that, for all (u1, u2) ∈ R2,

(3.28) Z
1,(N)
1 (t)u1 + Z

2,(N)
1 (t)u2

L−→
N→+∞

N
(
0, 2φ0(σt)2(u2

1 + u2)2
)
.
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Now, let n ∈ N and assume (3.24) is satisfied for at rank n− 1, then, let p ∈ N;(
Z1,(N)
n (t)u1 + Z2,(N)

n (t)u2

)p
=

(
(Z

1,(N)
n−1 (t)u1 + Z

2,(N)
n−1 (t)u2) +

tn

n!
(U1,(N)

n u1 + U2,(N)
n u2)

)p
=

p∑
m=0

p!

m!(p−m)!
(Z

1,(N)
n−1 u1 + Z

2,(N)
n−1 u2)m(

tn

n!
)p−m(U1,(N)

n u1 + U2,(N)
n u2)p−m

If p is odd, then, either m or 2p+ 1−m is odd and consequently, the expectation converges to
zero as N → +∞. It yields, combining with the independence (3.27) between the limit in law

of U
1,(N)
` and U

2,(N)
k that the odd moment of

(
Z

1,(N)
n u1 + Z

2,(N)
n u2

)
converges to 0. Consider

now the even case, let p ∈ N,(
Z1,(N)
n u1 + Z2,(N)

n u2

)2p
=

2p∑
m=0

(2p)!

m!(2p−m)!
(Z

1,(N)
n−1 u1+Z

2,(N)
n−1 u2)m(

tn

n!
)2(p−m)(U1,(N)

n u1+U2,(N)
n u2)2p−m,

as before, if m is odd then the expectation will converges to zero. It yields that(
Z1,(N)
n u1 + Z2,(N)

n u2

)2p
=

p∑
m=0

(2p)!

(2m)!(2(p−m))!
(Z

1,(N)
n−1 u1+Z

2,(N)
n−1 u2)2m(

tn

n!
)2(p−m)(U1,(N)

n u1+U2,(N)
n u2)2(p−m).

By (3.24) and by (3.27), it implies the convergence(
Z1,(N)
n u1 + Z2,(N)

n u2

)2p
→N→+∞ (u2

1 + u2
2)pφp0

(2p)!

2pp!
2p(Ĩ0,n(2σt))p.

We have the convergence in law of
(
Z

1,(N)
n u1 + Z

2,(N)
n u2

)
to a N (0, 2(u2

1 + u2
2)φ0Ĩ0,n(2σt)) with

N → +∞ and hence the couple (Z
1,(N)
n (t), Z

2,(N)
n (t)) converges in law to Gaussian vector with

diagonal covariance matrix which lead to the independence between Z1
n(t) and Z2

n(t). The
independence with the initial condition has already been shown, which allow us to conclude
that V 1

t and V 2
t are independent. �

4. Convergence of the particle system with noise

In this section, we consider the case γ 6= 0. Then the explicit solution of (2.2) is

(4.1) V
(N)
t = e−λt exp

(
Jt√
N

)[
V

(N)
0 + γ

∫ t

0
e−λs exp

(
− Js√

N

)
dBs

]
.

Theorem 4.1. Under hypothesis (H2) on the matrix J and the initial random vector V
(N)

0 we

have the convergence in law as N → +∞ of V
k,(N)
t to V

k,(∞)
t where

(4.2) V
k,(∞)
t = e−λt

[
V k

0 + Ĝ
k,(∞)
t + γ

∫ t

0
eλsdBk

s

]
Where, for all t ∈ R+, Ĝ

k,(∞)
t has Gaussian distribution with zero mean and variance φ0Ĩ0(2σt)+

γ2Ψ(σ, t) with

Ψ(σ, t) =
∑
`≥1

σ2`

(`!)2
v(t, `), v(t, `) =

∫ t

0
e2λs(t− s)2`ds.
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Proof. We again prove the result for k = 1. The proof follows exactly the same steps as that of
Theorem 3.1. First, the explicit solution of (2.1) has the form

(4.3) V
(N)
t = e−λt

[
exp

(
J√
N
t

)
V

(N)
0 + γ

∫ t

0
eλs exp

(
J√
N

(t− s)
)

dBs

]
.

Expanding the exponential, we obtain

V
(N)
t = e−λt

∑
`≥0

J `

`!
√
N
`

[
t`V

(N)
0 + γ

∫ t

0
eλs(t− s)`dBs

]
.

Taking the first coordinate and separate ` = 0 from the sum

(4.4) V 1
t = e−λt

V 1
0 + γ

∫ t

0
eλsdB1

s +
∑
`≥1

N∑
j=1

(J `)1,ju`,j(t)
√
N
`
`!


with

(4.5) u`,j(t) := t`V j
0 + γ

∫ t

0
eλs(t− s)`dBj

s .

Then we can follows the same scheme than for the proof of Theorem 3.1. The sequence (u`,j(t)
satisfies the hypothesis of Lemma (3.4) for t ∈ R+ fixed. Then applying Lemma 3.4 with
Yj,` = uj,`(t), for t ∈ R+ fixed. It yields that φ0 in Theorem 3.1 is replaced by E

[
u(1, `)2

]
=

t2`φ0 + γ2
∫ t

0 (t− s)2`ds by independence between V
(N)

0 and the Brownian motion. Theorem 4.1
follows. �

5. Proof of Lemma 3.4

Proof of Lemma 3.4. i) We start the proof of the first statement of Lemma 3.4 by considering
the case ` = 2. First, remark that

(5.1) U
(N)
2 =

1

N
J1,1

N∑
j2=1

J1,j2Y 2, j2 +
1

N

N∑
j1=2,j2=1

J1,j1Jj1,j2Y2,j2 .

By the strong law of large numbers, the first term of the sum in the right hand side goes to zero
almost surely as N → +∞ by hypothesis (H2). Next we note that the products J1,j1Jj1,j2 that
appear in the second term are always made up of two different elements. In order to deal with
this second term we define

H`,j1 :=

N∑
j2=1

Jj1,j2Y`,j2 ,

and

Ũ
(N)
2 =

1

N

N∑
j1=2

J1,j1H2,j1 .

Then, for all k ∈ N∗, we can expand
(
Ũ

(N)
2

)k
as the sum over m from 1 to k and over the

families (ai)i∈Σk,m
(defined in (3.14)) of the terms

(5.2)
1

√
N

2k
Ck,a1,··· ,am

∑
2≤j(1)1 <···<j(m)

1 ≤N

Ja1
1,j

(1)
1

Ha1

2,j
(1)
1

· · · Jam
1,j

(m)
1

Ham

2,j
(m)
1

.
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Recall that Ck,a1,··· ,am is the multinomial coefficient

Ck,a1,··· ,am :=
k!

a1! · · · am!
.

As the (j
(`)
1 )1≤`≤m are higher than 2, all the terms

(
J

1,j
(`)
1

)
1≤`≤m

, are independent from all the(
H

2,j
(`)
1

)
1≤`≤m

. Moreover, as the Js are centered, if at least one of the a` is equal to one, the

expectation of the sum over the (j
(`)
1 )1≤`≤m vanishes. This is the case when m > bk/2c: at least

one of the ai is equal to one.

Thus we may restrict our attention to the sum for which for all ` ∈ {1, · · · ,m}, a` ≥ 2, i.e the
sum over m ≤ bk/2c. We remark that the family (H

2,j
(`)
1

)1≤`≤m is not independent. Indeed, all

the coordinates of (Y2,i)1≤i≤N appear in each H
2,j

(`)
1

, 1 ≤ ` ≤ N . Furthermore the dependence

is only between the coordinates of Y2,··· which are independent of the matrix J . Consider one of
the Ha`

2,j
(`)
1

, 1 ≤ ` ≤ m. We can expand it in the same way as (5.2) for a fixed value of `:

Ha`

2,j
(`)
1

=

a∑̀
m`=1

∑
Σa`,m`

C
(`)

a`,a
(`)
1 ,··· ,a(`)m`

∑
1≤j(1)2 <···<j(m`)

2 ≤N

(
J
j
(`)
1 ,j

(1)
2

Y
2,j

(1)
2

)a(`)1 · · ·
(
J
j
(`)
1 ,j

(m`)
2

Y
2,j

(m`)
2

)a(`)m`
.

Hence, with the same argument as before, if at least one of the (a
(`)
j )j is equal to one, the

expectation vanishes. It follows that for each ` ∈ {1, · · ·m}, m` ≤ ba`/2c. The consequence is
that for a fixed m and a family (a`), in (5.2), using the hypothesis that Y and J have finite
moments (hypotheses (H1) and (H2),

(5.3) E

 ∑
2≤j(1)1 <···<j(m)

1 ≤N

Ja1
1,j

(1)
1

Ha1

2,j
(1)
1

· · · Jam
1,j

(m)
1

Ham

2,j
(m)
1

 = O
(
Nm+

∑m
`=1ba`/2c

)
.

We first look at the odd case and take k = 2p + 1. As previously noted, m ≤ bk/2c, i.e.
m ≤ p, and

m∑
`=1

⌊a`
2

⌋
≤

⌊
1

2

m∑
`=1

a`

⌋
≤
⌊

2p+ 1

2

⌋
= p.

By (5.3), it follows that in (5.2) we have at most N2p terms. As all the moments of the
coordinates of J and Y are finite, we obtain that, in this case, (5.2) is an O (1/N), and then

(5.4) lim
N→+∞

E
[(
Ũ

(N)
2

)2p+1
]

= 0.
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Next we consider the even case, k = 2p. As previously, m ≤ p. Considering 1 ≤ m ≤ p − 1
and proceeding exactly as for the odd case, we have that

1

N2p
E


p−1∑
m=1

∑
(a1,··· ,am)∈Σk,m

Ck,a1,··· ,am
∑

2≤j(1)1 <···<j(m)
1 ≤N

Ja1
1,j

(1)
1

Ha1

2,j
(1)
1

· · · Jam
1,j

(m)
1

Ham

2,j
(m)
1︸ ︷︷ ︸

contains at most N
m+b

∑m
`=1

a`/2c≤N2p−1 terms


= O

(
1

N

)
.

It follows that the only surviving term in (5.2) is the one such that m = p. Hence, the only
choice for the values of the (a`)1≤m≤p is a1 = · · · = ap = 2. It yields that

E
[
(Ũ

(N)
2 )2p

]
= O

(
1

N

)
+

1

N2p

∑
2≤j(1)1 <···<j(p)1 ≤N

(2p)!

2p
σ2pE

(
H2

2,j
(1)
1

· · ·H2

2,j
(p)
1

)
+ 0.

It remains to control E
(
H2

2,j
(1)
1

· · ·H2

2,j
(p)
1

)
. As j

(1)
1 < · · · < j

(p)
1 , by Hypothesis (H2):

E
[
H2

2,j
(1)
1

· · ·H2

2,j
(p)
1

]
= E


 N∑
j
(1)
2 =1

J
j
(1)
1 ,j

(1)
2

Y
2,j

(1)
2


2

· · ·

 N∑
j
(p)
2 =1

J
j
(p)
1 ,j

(p)
2

Y
2,j

(p)
2


2

= E

 ∑
1≤j(1)2 ,···j(p)2 ≤N

(J
j
(1)
1 ,j

(1)
2

Y
2,j

(1)
2

)2 · · · (J
j
(p)
1 ,j

(p)
2

Y
2,j

(p)
2

)2


+ 2E

 ∑
1≤j(1)2 <i

(1)
2 <···<j(p)2 <i

(p)
2 ≤N

J
j
(1)
1 ,j

(1)
2

Y
2,j

(1)
2

J
j
(1)
1 ,i

(1)
2

Y
2,i

(1)
2

· · · J
j
(p)
1 ,j

(p)
2

Y
2,j

(p)
2

J
j
(p)
1 ,i

(p)
2

Y
2,i

(p)
2


= σ2pE

 ∑
1≤j(1)2 ,··· ,j(p)2 ≤N

(
Y

2,j
(1)
2

· · ·Y
2,j

(p)
2

)2

+ 0.(5.5)

We note that since the indexes j
(`)
2 , 1 ≤ ` ≤ p can be equal, the Y

2,j
(`)
2

s are not necessary

independent from each other.

This motivates the following decomposition. Let

∆ 6=,pN = {1 ≤ j(1)
2 , · · · , j(p)

2 ≤ N | ∀1 ≤ `, r ≤ p, ` 6= r, j
(`)
2 6= j

(r)
2 },(5.6)

∆=,p
N = {1 ≤ j(1)

2 , · · · , j(p)
2 ≤ N | ∃(`1, `2), `1 6= `2, j

(`1)
2 = j

(`2)
2 }.

The sets ∆6=,pN and ∆=,p
N are disjoint and

{{j(1)
2 , · · · j(p)

2 } ∈ {1, · · · , N}
p} = ∆6=,pN ∪∆=,p

N .

Because the cardinal of ∆=,p
N is of order Np−1, and since because of hypothesis (H1), all the

moments of the coordinates of Y are finite, it follows that the only surviving term in the right

hand side of (5.5) is the sum over ∆6=,pN . Then, we have that
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(5.7) E
[
(Ũ

(N)
2 )2p

]
=

1

N2p

(2p)!

2p
(σ2)2p

∑
(j

(i)
2 )∈∆ 6=,p

N

E
[
(Y

2,j
(1)
2

)2
]
· · ·E

[
(Y

2,j
(p)
2

)2
]

+O
(

1

N

)
,

and, thanks to (3.4),

(5.8) lim
N→+∞

1

Np

∑
(j

(i)
2 )∈∆ 6=,p

N

E
[
(Y

2,j
(1)
2

)2
]
· · ·E

[
(Y

2,j
(p)
2

)2
]

=

lim
N→∞

E

 1

N

N∑
j=1

(Y2,j)
2

p = φ2,p.

Then, combining (5.7) and (5.8) we finally obtain that

(5.9) lim
N→+∞

E
[
(Ũ

(N)
2 )2p

]
=

(2p)!

2p p!
(σ2)2pφ2,p.

This yields statement i) of the Lemma in the special case ` = 2.

We now extend it to the general case and proceed by recurrence. Let ` ≥ 3, as before, we
denote by

Ũ
(N)
` =

1
√
N
`

N∑
j1=2

N∑
j2,··· ,j`=1

Jj1,j2 · · · Jj`−1,j`Y`,j` .

We suppose that, for all p ∈ N:

lim
N→+∞

E
[(
U

(N)
`−1 )2p

)]
= lim

N→+∞
E
[(
Ũ

(N)
`−1

)2p
]

=
2p!

2pp!
σ2p(`−1)φ`−1,p(5.10)

lim
N→+∞

E
[(
U

(N)
`−1 )2p+1

)]
= lim

N→+∞
E
[(
Ũ

(N)
`−1

)2p+1
]

= 0.(5.11)

We then decompose U
(N)
` over j1 = 1 and j1 ≥ 2

U
(N)
` =

1
√
N
`
J11

N∑
j2,··· ,j`=1

J1,j2 · · · Jj`−1,j`Y`,j` +
1
√
N
`

N∑
j1=2

N∑
j2,··· ,j`=1

J1,j1Jj1,j2 · · · Jj`−1,j`Y`,j`

=
1√
N
Ũ

(N)
`−1 + Ũ

(N)
` .(5.12)

By the recurrence hypothesis, it is easy to see that all the moments of the first term of the right
hand side of (5.12) converge to zero. It yields that the latter converges to 0 in probability as
N → +∞. It remains to show that, for all p ∈ N,

E
[
(Ũ

(N)
` )2p

]
−→

N→+∞

(2p)!

2pp!
(σ2)`pφ`,p and E

[
(Ũ

(N)
` )2p+1

]
−→

N→+∞
0.

To this effect, similar to the decomposition (5.6), let us define the following three disjoint sets.

∆<,`
N is the subset of `-tuples of indexes in {1, · · · , N}` having between 2 and b`/2c+ 1 indexes

which are equal. Let ∆ 6=,`N be the subset of {1, · · · , N}` with all indexes different, and let ∆>,`
N be
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the complement of the union of the other two: at least b`/2c+2 indexes are equal. Decomposing

Ũ
(N)
` on the disjoint sets ∆<,`

N , ∆>,`
N , and ∆#,`

N , we write

(5.13)

Ũ
(N)
` =

1
√
N
`

( ∑
2≤j1≤N

(j1,...,j`)∈∆<,`
N

J1,j1Jj1,j2 · · · Jj`−1,jnY`,j` +
∑

2≤j1≤N
(j1,...,j`)∈∆>,`

N

J1,j1Jj1,j2 · · · Jj`−1,jnY`,j`

+
∑

2≤j1≤N
(j1,...,j`)∈∆ 6=,`

N

J1,j1Jj1,j2 · · · Jj`−1,jnY`,j`

)

The sum over ∆<,`
N contain at least one entry of the matrix J independent of the others and of

degree 1. By the zero mean hypothesis of J , the first term on the right hand side of (5.13) has

mean zero. On ∆>,`
N , the sums have of the order of N `−(i+1) < N `/2 terms, i ≥ bl/2c + 2, and

hence disappear in the limit N →∞ when taking the expectation of (5.13). As before, the only

surviving term is the one with the sum over ∆6=,`N . We then apply the same arguments as for
` = 2 to this term to obtain that, for all p ∈ N

lim
N→+∞

E
[(
Ũ

(N)
` )2p

)]
=

(2p)!

2pp!
σ2`pφ`,p,

lim
N→+∞

E
[(
Ũ

(N)
` )2p+1

)]
= 0.

It yields the same limits for U
(N)
` . This conclude the proof statement i), for all ` ∈ N.

We now prove statements ii) and iii), which are generalizations of statement i). First of all,
for i ∈ {1, · · · , N} and for ` ∈ N, we define

H`,j =
∑

1≤j2,··· ,j`≤N
Ji,j2 · · · Jj`−1,j`Y`,j` .

Then in the case m = 2, let `1 < `2 and b1, b2 ∈ N: E
[
(U

(N)
`1

)b1(U
(N)
`2

)b2
]

is the sum over m1 = 1

to `1, m2 = 1 to `2 and over families (c
(1)
i )i ∈ Σm1,b1 and (c

(2)
i )i ∈ Σm2,b2 of the terms

(5.14)
1

√
N
`1b1+`2b2

`1∑
m1=1

b1!b2!

c
(1)
1 ! · · · c(1)

m1 !c
(2)
1 ! · · · c(2)

m2

N∑
j
(1)
1 ,··· ,jm1

1 =1

N∑
i
(1)
1 ,··· ,im2

1 =1

E
[
(J

1,j
(1)
1

H
`1,j

(1)
1

)c
(1)
1 · · · (J

1,j
(m1)
1

H
`1,j

(m1)
1

)c
(1)
m1 (J

1,i
(1)
1

H
`2,i

(1)
1

)c
(2)
1 · · · (J

1,i
(m2)
1

H
`2,i

(m2)
1

)c
(2)
m2

]
Using exactly the same arguments as in the proof of statement i), we see that if either m1 >

bb1/2c or m2 > bb2/2c there is at least one of the c
(1)
i or c

(2)
i which is equal to one. Suppose

that c
(1)
1 = 1 then on the set where j

(1)
1 6= i

(i)
1 for all i ∈ {1, · · · , `2} the expectation of the sum

over the j
(i)
1 , i

(j)
1 is null. Moreover, the sum over m1 < bb1/2c or over m2 < bb2/2c disappears

in the limit. Indeed, as in the proof of statement i), there are not enough terms in these cases.
Consequently, if at least one of the exponents b1 or b2 is odd, the limit is null. It is easy to see
that it is exactly the same thing for m ≥ 2 and statement ii) of the Lemma follows.
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Furthermore, it yields that in the case b1 = 2a1 and b2 = 2a2, a1, a2 ∈ N, the only surviving
term in the limit N → +∞ is for m1 = a1 and m2 = a2:

(5.15) lim
N→+∞

E
[(
U

(N)
`1

)2a1 (
U

(N)
`2

)2a2
]

= lim
N→+∞

1

N `1a1+`2a2

(2a1)! (2a2)!

2p∑
1≤j(1)1 <···<ja11 ≤N

∑
1≤i(1)1 <···<ia21 ≤N

E
[
J2

1,j
(1)
1

(H
`1,j

(1)
1

)2 · · · J2

1,j
(a1)
1

(H
`1,j

(a1)
1

)2J2

1,i
(1)
1

(H
`2,i

(1)
1

)2 · · · J2

1,i
(a2)
1

(H
`2,i

(a2)
1

)2

]
As before, only expectation of the sum over the set of indexes which are all different from each
other contributes to the limit. Then it follows that, using (5.9),

(5.16) lim
N→+∞

E
[(
U

(N)
`1

)2a1 (
U

(N)
`2

)2a2
]

=
(2a1)! (2a2)!

2pa1!a2!
(σ2)`1a1+`2a2φ`1,a1φ`2,a2 .

The extension to the case m ≥ 3 is similar. This conclude the proof of Lemma 3.4.
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