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Abstract. The work presented in this paper is devoted to the evalua-
tion of the dependability of computer control systems in power plants.
Two complementary approaches are used to analyse and evaluate the
dependability of such systems, based respectively on analytical model-
ing and experimental validation. Both approaches as well as examples
of their mutual interactions are briefly illustrated on a subsystem of a
specific computer control system. The analytical approach allows eval-
uation of dependability measures such as availability and identifies the
most influential dependability parameters. Fault injection provides the
numerical values of the above mentioned parameters and allows identi-
fication of specific behaviors that may not have been considered by the
analytical model.

1 Introduction

The work presented in this paper is devoted to the evaluation of the depend-
ability of Computer Control Systems (CCSs) in power plants. Our study focuses
on a subset of the CCS that provides the necessary means for the operators to
control the power production.

The considered system is partially composed of Commercial-Off-the-Shelf
(COTS) hardware and software components. Hence, only partial information is
available for system validation, and we cannot rely only on this information to
characterize the system and to acquire enough confidence for its use in critical
applications. More generally, the use of COTS components in such systems raises
the question of their acceptance by the proper authorities.

Our study emphasizes the combined use of two approaches to analyze and
evaluate the dependability of the CCS, based respectively on analytical and
experimental evaluation.

The purpose of the analytical approach is to provide stochastic models that
will be used to evaluate the dependability of the CCS. Modeling is done by means
of Generalized Stochastic Petri Nets (GSPNs). One of the major problems in
stochastic modeling is to have the most realistic values for the parameters. If for



rates like failure or repair, we can rely on statistical data obtained by feedback
on similar components or systems, when it comes to the parameters directly
related to the fault tolerance mechanisms (e.g., coverage), a specific analysis has
to be done in order to measure them. However, all such parameters may not
have significant impact on system dependability. A sensitivity study enables the
identification of the most influential one. Analytical evaluation helps to focus the
experimental evaluation on the parameters with strong impact, thus reducing the
number of experiments.

By forcing the system to react to undesirable inputs (the faults), fault in-
jection aims at evaluating the efficiency of the fault tolerance algorithms and
mechanisms, through measurement of some dependability parameters such as
coverage factor, fault dormancy, error latency, etc [1]. On the other hand, fault
injection, may identify specific failure modes of the system that have not been
taken into account by the modeling approach. This may lead to introduce some
modifications on the analytical model improving its representativity.

The above approaches are complementary and their combined use provides
accurate dependability measures [2].

The remainder of the paper is organized as follows. Section 2 briefly presents
the CCS. Section 3 is devoted to analytical modeling where examples of models
are presented to illustrate the needs for experimentation. Section 4, addressing
the experimental approach, discusses the way fault injection will be performed
according to the features of the CCS. Finally, Section 5 concludes the paper.

2 CCS Presentation

For the sake of simplicity, in what follows, the subset of the CCS considered in
our work will be referred to simply as the CCS. The CCS is a distributed system
with five nodes connected by a Local Area Network (LAN). Tt performs five main
functions: Processing (PR), archiving (AR), management of configuration data
(MD), man-machine interface (MMT) and interface with other parts of the CCS
(TP). The functions are not totally independent and they exchange information
through the LAN. The mapping between the various nodes and the functions is
given in figure 1. Note that while MMI is executed on four nodes, node 5 runs
three functions.

Nodes 1 to 4 are composed of one computer each. Node 5 is fault-tolerant: It
is composed of two redundant computers, one of them acting as a primary (its
outputs are the only considered) and the other as a backup (called secondary).
The primary computer executes three primary software replicas (corresponding
to AR, PR, and TP), while the secondary computer executes a subset of these
functions. All nodes have several Fault-Tolerance and Mechanisms (FTMs).

The computers are commercial workstations running COTS operating sys-
tems and protocols. Indeed, the whole CCS is itself a COTS system constituted
by COTS software and hardware components to which specific proprietary soft-
ware has been added by the CCS provider. Roughly speaking, we can consider
that each node has three layers. The lowest layer corresponds to the COTS hard-
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Fig. 1. CCS architecture

ware and software components. On top of it runs the second layer constituted
by the distributed middleware (for system configuration, system fault-tolerance,
real-time services, etc.), on top of which run the main functions sketched above.

From a dependability point of view, very little knowledge about the CCS
development and integration is available. As a consequence, its use in critical
applications may be questionable. However, we will see later that this lack of
knowledge may be compensated by information resulting from their widespread
use in other systems. Nevertheless, such systems require a lot of validation before
being accepted in critical application systems, hence the need for a complete
validation approach.

3 Analytical Approach

The purpose of the analytical approach is to provide stochastic models to eval-
uate measures of dependability such as availability, reliability and safety. The
evaluation is based on Markov chain models.

The modeling approach is modular, taking benefit from the systems’ modu-
larity. It is an incremental approach, similar to the one described in [3]. Model
construction is based on GSPNs (see e.g., [4]): The Markov chain is derived from
the processing of the GSPN. In a first step, we build the GSPNs of all nodes and
of the LAN independently. The system’s GSPN is obtained by composition of
the above GSPNs, taking into account the dependencies between the nodes and
between the nodes and the LAN. Indeed, two sources of dependencies are to be
considered:

e functional dependencies due to the communication between system func-
tions, and

e dependencies due to maintenance (when several nodes are in failure, repair
may be performed in successive steps if not enough repairmen are available).

Due to all these dependencies, the resulting global model is very complex. This
complexity is increased by the fact that, within each node, several dependencies
resulting from the interactions between the hardware and software components
have also to be considered. Examples of dependencies internal to each node are:
Software stop following hardware failure, error propagation from hardware to
software or from software to software, switching from the primary computer
on to the secondary computer. Because of this complexity, it is not possible to



present in this paper the complete model of the whole CCS. We will thus con-
sider one node, Node 5. In addition, as our purpose in this paper is to emphasize
the combined use of the analytical and experimental approaches for system vali-
dation (more specifically for dependability evaluation), we have selected a small
part of Node 5 to illustrate this objective.

In the rest of the section, we will first present the GSPNs of the two software
replicas of function DP running on Node 5, then the GSPN of the switch from
the primary computer on to the secondary computer. These examples have been
chosen so as to introduce some significant parameters that can be evaluated by
fault injection. An example of results is then commented before discussing how
fault injection can help.

3.1 Examples of GSPN Models

Figure 2 gives the GSPNs of two software redundant replicas: The primary and
secondary replicas running respectively on the two redundant computers. To
model these replicas, the following assumptions and notations are used:

o the activation rate of a software fault is A, (Trq) in the primary and A, (Trs)
in the secondary;

o a software fault is detected by the FTMs with probability d (tro and trs).
The detection rate is § (Tra and Trs);

o the effects of a non detected error are perceived with rate = (Trs and Trg);

e errors detected on the secondary are of two categories: Those requiring to
stop the primary (trs), and those necessitating only a secondary reset (trg);

o the reset rate is p (Tr7) and the probability that an error induced by the
activation of a permanent software fault disappearing with a reset is r (tr7);

e if the error does not disappear with the software reset, a re-installation of
the software is done. The software re-installation rate is o (Trs).

A detected or perceived (tra and Trg) software error in the primary induces
a switch (Pgy,) from the primary computer to the secondary. And, as mentioned
above, certain detected errors in the secondary software (trs) component may
also induce a switch between computers.

Note that an error in the primary software may propagate to the secondary
(tri1). Indeed try; models the common modes failures (probability p) of the
primary and secondary (A, = common mode failure rate).

The second example of GSPN concerns the switch between the two redundant
computers (figure 3). As seen in figure 2, a switch between the two software
replicas may occur when either an error is detected or perceived in the primary
or detected in the secondary software components. Indeed, switching of replicas
involves switching the computers on which the replicas are running. In addition,
an error detected or perceived in the primary hardware induces a switch.

The switch mechanisms in figure 3, are characterized by two parameters: The
switch rate (8) and the switch coverage factor (c). ¢ is the probability that the
service is re-established when a fault affects a given component in an operational
context.
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Fig. 2. GSPN of the activation of a software fault in Node 5
3.2 Model Parameters

In order to process the model to obtain the desired measures of dependability,
numerical values should be given to the various model parameters (i.e., event
rates and probabilities). One of the major problems is to have the most realistic
values for these parameters.

As mentioned earlier, the system is composed of COTS. In spite of all the
drawbacks the use of COTS in critical systems may have, there are some advan-
tages. Among them, there is one in particular that directly affects the analytical
approach: Feedback information. Feedback information can help the analytical
approach insofar as to give realistic values to some of the models’ parameters.

If for rates like failure or repair, we can rely on statistical data obtained from
feedback, when it comes to the parameters directly related to the fault tolerance
mechanisms, a specific analysis has to be done in order to measure them. The
experimental approach through fault injection is perfectly suitable to help the
analytical method in this point.

Usually, we perform sensitivity analysis to point out the parameters that
affect significantly the dependability measures evaluated. This means that the
model 1s processed with different values of the parameters to check how strongly
they affect these measures. Only the parameters with strong impact will be
evaluated experimentally, to reduce the number of experiments.
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For the CCS, we have considered nominal values for the failure and repair
rates obtained by analogy with other systems and we made sensitivity anal-
ysis for the other parameters. The objectives were twofold: Identify the most
significant ones to measure them experimentally and, for those that cannot be
measured experimentally, make sensitivity analysis to evaluate a range for the
dependability measures. The model has been processed using the SURF-2 tool
[5]. The unavailability, evaluated in hours per year (with a repair time of 10
hours) according to ¢ and 3 is given in table 1.

It can be seen that both parameters have significant impact. It is obvious that
the smallest unavailability is obtained for the shortest switch time and the best
coverage factor. This table shows that an annual unavailability of approximately
2h may be obtained for (0.99; bmin) and (0.98; 1min or 30s). Since 3 an ¢ are
not known at this stage, we cannot make any conclusions. Fault injection will
help us to identify the accurate result.

Table 1. Node 5 annual unavailability

c\\1/8 30s 1min 5min 10min

0.99 1h34min 1h38min 2h06min 2h45min07s
0.98 2h00min 2h04min 2h33min 3h11min
0.95 3h20min 3h23min 3h52min 4h31min

4 Experimental Approach

We have developed an efficient fault-injection strategy taking advantage of the
main basic characteristics of the CCS, which are: i) the modular and multilayer
design and implementation paradigms, and ii) the use, at the lowest layer of the
system’s architecture, of standard COTS components.

In the rest of the section, we explain the features of our fault-injection strat-
egy resulting from the early integration of the above characteristics. After that,
we show how a prototype tool, supporting our strategy, can be used to obtain
the set of expected measures.



4.1 A Modular and Multilevel Approach

To take into account the multilayer and modular design of the system, our fault
injection strategy is multilevel. Also, the notion of fault region around both hard-
ware and software components plays an important role. The integration of these
two concepts enables us to a) design fault models emulating with a high accuracy
the real faults affecting the CCS at any architectural layer, and b) refine pro-
gressively fault injection campaigns. Refinement is not only needed to improve
analytical analysis results, but also to obtain other diagnostic information, in-
creasing our knowledge about the CCS behavior in the presence of faults. The
two following paragraphs explain these concepts and their relation with the CCS
characteristics.

In a modular, distributed and multilevel computation approach, one can
consider that each component is associated to a fault region. For example, a node
can be considered as a fault region at a high level of abstraction. At a lower level
of abstraction, a computer or a software replica can also be considered as a fault
region. Each failure mode of each component 1s seen by the other interacting
components, as being a fault model.

Our fault-injection approach 1s intended to be used at any level of abstrac-
tion. This enables us to refine the outcomes of fault injection campaigns. The
same fault injection protocol is used for emulating both high-level faults affect-
ing link communication between software replicas, and low-level real hardware
faults affecting the memory or internal processor units. The templates emulat-
ing a real fault and the means to inject and to observe their consequences, are
instantiated in a strong relationship with the granularity of the target injection
and monitoring levels. For example, at the low system layer, a well-known bit-flip
model is considered as a good representation of the consequences of real elec-
tromagnetic perturbations (hardware faults). By an error propagation analysis,
this multilevel approach would give us the means to observe, at a higher system
layer, the consequences of the same low-level fault. Such analysis is necessary
for emulating, with a coarse, yet satisfactory, high-level software fault models,
low-level real faults. The corollary of this schema is a good coverage of the real
fault types considered by the analytical approach. Both the injection and the ob-
servation activities are carried out by means of agents placed in different places
of the system.

4.2 Exploiting Standard COTS Component Features

As stated earlier, the CCS is composed of proprietary software running on top
of the distributed middleware that is running on top of standard software and
hardware COTS. The middleware provides, among other services, fault-tolerance
mechanisms to protect the services required by the upper functions from errors
propagated from the lowest layer. Because very little information of CCS’s struc-
ture, specification, development and integration is available, sometimes we will
be constrained to place our fault injector Agents out of the proprietary CCS soft-
ware. Tdeally, they will be placed between the low layer (constituted by COTS



components) and the CCS middleware services. Thus, the implementation of
CCS on top of COTS components is an interesting benefit for the fault-injection
point of view. Because services, features and structures of standard COTS are
well documented, we can easily interface the target node and use them to gen-
erate “COTS-level” faults, emulating real hardware and software faults.

4.3 TImplementation of the Fault-Injection Strategy

Fault injection campaigns give us an estimation of the parameters identified
by the analytical approach, by means of readouts (R) obtained during the CCS
operational activity (A), in presence of well selected sets of faults (F). Moreover,
further unknown CCS operational behaviors under faulty conditions may be
detected by a set of readouts correctly placed in the nodes. The desired measures
(M) are obtained by processing the readouts.

Our fault injection strategy is built around a Software Implemented Fault
Injection (SWIFT) approach. As recent works (see e.g., [7,8]) have shown, SWIFT
approaches take full advantage of features provided by standard hardware and
software COTS. Their main advantages are their ability for: i) emulating a wide
variety of fault models (F), ii) programming, in time and space, the point of
impact of the injections, iii) placing, almost wherever we want, the readouts
(R) to observe the consequences of emulated faults, and iv) automating the
experimental campaign by script file orders addressed to injector Agents.

Our tool platform is based on the SPARC™ hardware architecture, running
Solaris 2.5.1 Operating System™ . Tt is depicted in figure 4 where the target
node is assumed to be Node 5. Because a large degree of portability is neces-
sary for covering the evaluation of a wide variety of CCSs, we have separated
the tool into a portable high-level software, and a small system-dependent part
(which depends on the target platform). For this purpose we have adopted a
“Host-Target” paradigm, separating the campaign computation tasks (design,
experiment control and measures) running on the host, from fault-injection and
monitoring tasks achieved by Agents running on the target node (more precisely
on the two workstations of the node, WS1 and WS2). The Agents have three
main roles:

e program when and where the fault is to be injected according to the scripts
received;

e perform the fault injection;

o record and send the results (through the readouts).

4.4 Contributions of Fault Injection to the Analytical Approach

In the model described in figure 3, 1/8 corresponds to the switch duration fol-
lowing any failure origin (detected or perceived failure in the primary hardware,
failure of the primary software or a subset of errors in the secondary software).
Even though the three origins have been distinguished, it is assumed that the
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Fig. 4. Fault injection platform

switch rate and the coverage factor are independent from the origin. Fault injec-
tion may be performed separately, keeping record of the failure origin. If the re-
sults show significantly different switching times or coverage factors, this means
that the analytical model should be modified to distinguish the three cases.
Otherwise, if the switch duration and coverage factor are independent from the
switch origin, there is no need to modify the model. This shows an example of
how fault injection results can lead to modify the model or to strengthen our
confidence on the assumptions supporting it. In the following, we comment the
campaign aiming at evaluating 1/4.

The first step is to select a satisfactory abstraction level for the experiments.
This selection is done according to both our knowledge about the CCS compo-
nents, and the degree of details required by the GSPN model. For the purpose
of our example, the middleware layer is a satisfactory target level. This choice
results from the fact a large part of the CCS activities (A) are instantiated on
top of this layer, and also the hardware error detection and fault tolerance mech-
anisms (provoking the switch) are in this layer. The second step concerns the
description of the aims of the experimental campaign. For this purpose, we rely
on the approach described in [6] that proposes two domains for fault injection
characterization: The output domain (measures, M and readouts, R) describing
the objectives of the campaign (here the measure of 1/3), and the input do-
main (faults, F' and activities, A) describing the means employed to reach these
objectives.

The campaign for measuring the switch time 1/3 implies the definition of a
set of commands to be sent to the injector and monitoring Agents. Here, three
campaigns (taking into account different Fault sets (F)) must be programmed,
since system switch may result from three cases as recalled above. However, the
goal being the same, a subset of common class of readouts (R) can be defined
for the three campaigns. Here, the first part of R is defined as a set of reads
of the internal clock to compute the time spent between error detection and
service restart. This time is computed and recorded by the Agents'. For this
clock service we rely on the hardware and operating systems COTS features.
The second part of R concerns the observation of the consequences of F (the

! We assume that nodes’ clocks of the CCS architecture are synchronized by an exter-
nal mechanism



switch) and, in this case, the objective is the evaluation of the coverage factor
with respect to the sets F. This subset of R is closely related to the definition of
F for each campaign.

In order to emulate the three sets F, we rely on some structural aspects
according to the level of abstraction chosen and the R set. First of all, we identify
the set of computational objects (a subset of the activities (A)) concerned by the
experiments. Here, these computational objects are the set of tasks provoking
the start of the switch mechanisms. In order to program a fault emulation, we
define a series of actions using the resources provided by the COTS components:
Breakpoint registers, clock ticks register, task control blocks, etc. Indeed, the
first step of the fault injection experiment is to stop, for a very short of time, the
nominal behavior of the WS at the application layer, by modifying the nominal
behavior of the underlying layer (here the middleware layer). After this, we
emulate the fault. After resuming the CCS activity, the Agents analyze the
behavior of the computation objects under faulty assumptions and record, for
a pre-defined period of time, the results of the fault-tolerance mechanisms and
the time of switch in readouts. At the end of the three campaigns, the readouts
recorded are used by the host node to calculate the three values of 1/3 and c.

5 Conclusions

In this paper an evaluation of the dependability of computer control systems
(using standard COTS components) in power plants has been presented. More
precisely, a strategy combining the use of two complementary approaches based
respectively on analytical and experimental evaluation has been discussed.

It is shown how an optimization of the fault injection campaign is obtained by
making sensitivity analysis on the analytical models. Thus, only the parameters
that affect the most the system’s unavailability and for which no feedback infor-
mation has been given, will be evaluated by fault injection campaigns. Also, we
have discussed the way results of the experimental evaluation may influence the
analytical models and how fault injection takes advantage of the use of standard
COTS components in the sytem.

The work is still under progress. Particulary the fault injection is under imple-
mentation. Even though the paper was devoted to a specific CCS architecture,
our work is intended to be more general. Tts aim is to support the industrial
company for which this work is performed, in several ways:

e select, based on dependability analysis and evaluation, among other things
the most suitable system among those proposed by systems’ integrators;
e characterize more precisely the selected system.

The modeling and the fault injection approaches can thus be applied with
progressive knowledge of the system: For system selection, high level approaches
are sufficient, whereas for accurate system characterisation, more precise, low
level approaches are needed.
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