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Abstract

A non-affine microsphere model for rubberlike materials is proposed, based
on a local minimization of the network free energy under a maximal ad-
vance path constraint. It accounts for any chain weight distribution and for
damage such as Mullins softening observed in filled rubber materials. The
non-affine equal-force model is compared to the common affine model and a
hybrid equal-force model from the literature, when considering the isotropic
hyperelastic behavior without damage of rubber materials presenting chains
of various lengths. The non-affine model shows an improved deformability
compared to the affine model limited by the maximal extension of the shorter
chains and a significantly softer behavior. Possible damage is introduced by
increasing the chain lengths according to the submitted maximal chain trac-
tion force. Each chain are impacted independently resulting in a directional
softening that introduces the evolution of the stress-free configuration that
needs to be assessed over the loadings. The model was successfully tested
on the cyclic uniaxial tension stretch-stress responses of carbon-black filled
styrene butadiene rubbers that were well fitted with three parameters only.

Keywords: rubber material, constitutive behavior, finite strain, anisotropic
material, Mullins softening

1. Introduction

Rubberlike materials are made of long polymer chains crosslinked into
physical networks. Large strains are attained thanks to the uncoiling of
chains while elasticity is achieved by the crosslinkings. From very early on,
micromechanically-based models have been developed to reproduce the en-
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tropic elasticity of these materials. Assuming an ideal network, the change
of its entropy is defined as the sum over the chains of their entropy changes.
Based on the statistics of polymeric chain configurations, Gaussian or Lange-
vin chain force-elongation relations have been defined (Kuhn and Grün,
1942). Dealing with isotropic materials, chains are randomly oriented in
space, which is conveniently represented by a microsphere, the chain end-to-
end vectors going from the center to the surface of the sphere, as proposed by
Treloar and Riding (1979) in their full-network model. The change of scale
from the material macroscopic scale at which the mechanical loading is ap-
plied to the microscopic chain scale, may be specified by various assumptions,
the most common being the affine one. For the latter, each chain is assumed
to move freely without constraint of its environnement, and the macroscopic
deformation gradient is directly applied to every chain end-to-end vector.

Non-affine models have been proposed to account for more realistic chain
deformations since long polymer chains are entangled and are assumed to
move within virtual tubes (McLeish, 2002) that create topological constraints.
In a seminal work, Miehe et al. (2004) defined a microsphere model with
non-affine deformation, adding a stretch-fluctuation field to the affine chain
stretch field. The solution satisfies to the kinematic compatibility conditions
while minimizing the energy state. Following a similar path, Tkachuk and
Linder (2012) proposed an efficient minimum energy based model thanks
to the description of chain paths for networks of functionalities three and
four. Finally, Verron and Gros (2017) proposed an hybrid equal-force model,
assuming equal-force for chains that are aligned, rather than equal-stretch
like for the affine model, with the constraint of collinearity of the deformed
end-to-end chain vectors with the affine deformed end-to-end vectors.

When used for industrial applications, rubberlike materials are usually
filled with nano-size fillers such as carbon-black or silica. The reinforcing
particles benefit to wear and failure resistances significantly, without sacri-
ficing the large strain elasticity. Nonetheless, such filled rubbers exhibit a
substantial softening upon first stretch, known as Mullins softening (Mullins,
1969). At the macroscopic scale, the Mullins softening was shown to be a
directional damage reactivating when exceeding the maximum load already
applied (Merckel et al., 2012), probably due to debonding an unraveling of
the bounded layer of polymer chains at the gum/particle interface (Diaz et
al., 2014). The damage and induced anisotropy resulting from the Mullins
softening, have been well reproduced by introducing directional damage in
affine microsphere models (Göktepe and Miehe; 2005, Diani et al., 2006), but
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have never been taken into account within a non-affine three-dimensional mi-
crosphere model framework. The main difficulty stands in the evolution of
the stress-free configuration that is damage dependent. Such a difficulty
was not encountered by Rastak and Linder (2018) when they introduced
strain-induced crystallization in the Tkachuk and Linder (2012) model. In
the current contribution, a non-affine microsphere model for rubberlike ma-
terials with damage is defined based on the convenient kinematic framework
defined in Tkachuk and Linder (2012), and extended herein to a general ther-
modynamic environment. The Mullins softening is introduced as directional
evolution of the polymer chain lengths, since increasing the chain lengths
loosen the polymer network rendering it softer.

The paper is organized as follows. In section 2, the model of Tkachuk
and Linder (2012) is extended to account for any chain length distribution,
which will allow us to review the general constitutive equations for the non-
affine minimum averaged energy based microsphere model and to compare it
to the affine model and the hybrid equal-force model within isotropic elastic
assumptions. Then, in section 3, the Mullins softening is introduced with
an account for directional damage and a proper treatment of the evolution
of the stress-free configuration. The model, which satisfies the Clausius-
Duhem inequality, is tested on the uniaxial tension stretch-stress responses
of four actual materials made of the same styrene butadiene rubber gum and
filled with different amounts of N347 carbon-black. Finally, a representative
numerical example was chosen to illustrate the capability of the model to
exhibit induced anisotropy in terms of behavior and residual stretch

2. Elastic microsphere models with an account for molecular chain

distributions

2.1. General equations

Applying the thermodynamics principles to an ideal rubber network de-
fines its free energy W as,

W = −T
∑

n

s (1)

with T the temperature, s the entropy of a polymer chain and n the number
of chains. The entropy of a single non-Gaussian freely rotating chain, made
of N segments of lengths b, and characterized by its end-to-end distance r,
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is defined as (Kuhn and Gün, 1942),

s = c(T )− kN

(

r

Nb
β + ln

(

β

sinh β

))

with β = L−1
( r

Nb

)

, (2)

with c an arbitrary constant, k the Boltzmann constant and L(x) = cothx− 1
x

the Langevin function. Deriving Eq. (2) gives the force-elongation relation
for a single chain,

f = −T
(

∂s

∂r

)

=
kT

b
L−1

( r

Nb

)

. (3)

More generally, one may consider chain entropy of the form

s = c(T )− kNψ
( r

Nb

)

, (4)

leading to a force elongation law given by

f =
kT

b
ψ′

( r

Nb

)

, (5)

the function ψ being convex, and equal to zero at zero extension (ψ(0) = 0).
In the reference configuration, a polymer chain is characterized by its

number of segments Ni and its end-to-end vector orientation R (||R|| = 1).
In this configuration, the polymer network is described by the probability
p(Ni,R) of encountering a chain of Ni segments and orientation R. In a
microsphere representation (Figure 1), end-to-end vectors are depicted with
one end at the center of the sphere and the other end at its surface. Two
chains with the same initial orientation R and the same number of segments
Ni are assumed to have the same current end-to-end vector r = r(Ni,R) of
norm noted ||r|| = rNi,R. Within this representation, the strain dependent
part of the free energy density W becomes

W = νkT

∫

Ni

∫∫

Su

p(Ni,R)Niψ

(

rNi,R

Nib

)

dNidSu (6)

with ν the number of chain per unit volume, Su the unit sphere and
∫∫

Su
dSu =

1
4π

∫ π

θ=0

∫ 2π

ϕ=0
sin θdθdϕ.

Dealing with incompressible entropic hyperelasticity, the first Piola-Kir-
chhoff tensor writes as,

τ =
∂W
∂F

− qF−T (7)
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Figure 1: Microsphere approach representation with an account of chains of several lengths

characterized by their number of segments Ni. The initial orientation of a chain is given

by vector R.

with F the macroscopic deformation gradient tensor and q an unknown pres-
sure. Note that the current constitutive equations framework could be ex-
tended to compressible materials by adding to W a dilatational part U(J)
with J = det(F ) characterizing the volume changes. Introducing Eq. (6) in
Eq. (7), one writes τ as

τ = νkT

∫

N

∫∫

Su

p(Ni,R)ψ′
(

rR,Ni

Nib

)

∂rR,Ni

b ∂F
dSu dNi − qF−T (8)

and
∂rR,Ni

∂F
varies according to the chosen micromechanics scale transition.

In what follows, we explore three existing scale changes, the affine model,
the hybrid equal-force model (Verron and Gros, 2017), and the non-affine
minimum energy based maximal advance path constraint (MAPC) model
(Tkachuk and Linder, 2012), assuming isotropy. Within such an assumption,
the probability distribution p(Ni,R) becomes independent of R, and writes
as p(Ni).

2.2. Affine model

The current end-to-end vector of a chain, characterized by Ni segments
and an initial orientation R, and that is part of a network submitted to the
macroscopic deformation gradient F , is simply defined as,

r(Ni,R) =
√

NibF ·R (9)
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and consequently,
∂rNi,R

∂F
=
Nib

2

rNi,R

F ·R⊗R (10)

with ⊗ denoting the dyadic product. For this model, note that for all F , the
stretching of a chain (rNi,R/r

0
Ni,R

, with r0(Ni,R) =
√
Nib1 ·R), depends on

its initial orientation R only. Therefore, short and long chains are equally
stretched, limiting the network extensibility to the maximum extension of
the shorter chains.

2.3. Hybrid equal-force model

The hybrid equal-force model (Verron and Gros, 2017) writes that chains
with the same orientation R are submitted to the same traction force f

R
in-

dependently of their number of segments, which could be illustrated in Figure
1 by writing f1 = f2 = f3. The initial equilibrated force f 0 is determined by
setting the microsphere radius equal to the radius of the affine microsphere,
which writes as

∫

Ni

p(Ni)NibL
(

f 0b

kT

)

dNi =

∫

Ni

p(Ni)
√

NidNi. (11)

Moreover, the authors force the current end-to-end vector r of any chain to
be aligned with the FR for all applied F . Within this constraint, the au-
thors prove that an isotropic network characterized by the probability p(Ni)

behaves like an affine network of chains all made of N =

(

∫

Ni
p(Ni)NidNi

∫

Ni
p(Ni)

√
NidNi

)2

segments of bond length B =

(

∫

Ni
p(N)

√
NidNi

)

2

∫

Ni
p(Ni)NidNi

b, and characterized by the

following force-elongation behavior,

f =
kT

b
L−1

( r

NB
)

=
kT

b
L−1

( r

< N > b

)

. (12)

2.4. Non-affine mininum averaged energy model

The non-affine microsphere minimum averaged energy based model in-
troduced by Tkachuk and Linder (2012) was defined for a network of chains
characterized by a single number of segments N . Upon deformation gradient
F , the current end-to-end lengths of chains are calculated by minimizing the
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network free energy under specific deformation constraint that the authors
reduce to the following average kinematic conditions

∫∫

Su

r ⊗R dSu =
< r0 >

3
F (13)

with < r0 >=
√
Nb the initial chain lengths. The constrained minimization

problem is equivalent to finding a stationary point to the Lagrangian,

L(r,Π) = kT

∫∫

Su

Nψ
(rN,R

Nb

)

dSu

− Π :

(
∫∫

Su

r ⊗R dSu −
< r0 >

3
F

)

(14)

with Π a second-order tensor Lagrange multiplier, which was found to con-
veniently satisfy to (Tkachuk and Linder, 2012),

f
R
= Π ·R (15)

for every chain originally oriented along R, and to,

τ =
ν < r0 >

3
Π− qF−T . (16)

Note that with Eq. (15), the model results into an equal-force model
with chains of the same orientation R being submitted to the same traction
force. Nonetheless, unlike the hybrid equal-force model, the current end-to-
end vectors r are not necessarily aligned with F ·R.

Our extension of the model to networks presenting a distribution of chain
lengths rewrites the kinematic constraint as

∫

Ni

∫∫

Su

p(Ni,R) rNi,R ⊗R dSudNi =
1

3
F · l0 (17)

noting
1

3
l0 =

∫

Ni

∫∫

Su

p(Ni,R) r0
Ni,R

⊗R dSudNi. (18)

For an isotropic undamaged distribution of chains, the original chain dis-
tribution will be r0

Ni
= l0Ni

R, and from (18) the reference average chain
distribution writes as

l0 =< r0 > 1 with < r0 >=

∫

Ni

p(Ni)l
0
Ni
dNi.
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Herein, the average distance of the end-to-end chain vectors in the initial
configuration < r0 > is chosen equal to

∫

Ni
p(Ni)

√
Ni b dNi for model com-

parisons. The constrained free energy minimization problem Eq. (14) reduces
again to finding the stationary point of the Lagrangian

L(r,Π) = kT

∫

Ni

Ni

∫∫

Su

p(Ni,R)ψ

(

rNi,R

Nib

)

dSudNi

− Π :

(
∫

Ni

∫∫

Su

p(Ni,R) rNi,R ⊗R dSudNi −
1

3
F · l0

)

.(19)

To solve (19), the easiest way is to introduce the chain traction fR . The
optimality conditions of (19) then write

fR
rNi,R

rNi,R = Π ·R, (20)

∫

Ni

∫∫

Su

p(Ni,R) rNi,R ⊗RdSudNi =
1

3
F · l0. (21)

Taking the norm of (20) we get fR = ‖Π ·R‖, then rNi,R by inversion of the

constitutive law fR =
kT

b
ψ′

(

rNi,R

Nib

)

, and after elimination of rNi,R by (20),

the kinematic constraint (21) reduces to an implicit nonlinear constitutive
law defining the multiplier Π by

Π ·
∫

Ni

∫∫

Su

p(Ni,R)
rNi,R

fR
R⊗RdSudNi =

1

3
F · l0. (22)

We then get the first Piola Kirchhoff stress tensor by

τ = ν
∂L

∂F
− qF−T

=
ν

3
Π · (l0)T − qF−T . (23)

Observe that by construction the second Piola Kirchhoff stress tensor S =
F−1 · τ is indeed symmetric since we have from (22)

S =
ν

9
l0 ·

(
∫

Ni

∫∫

Su

p(Ni,R)
rNi,R

fR
R⊗RdSudNi

)−1

· (l0)T − qF−1 · F−T .
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2.5. Model comparison

Theoretical uniaxial tension stretch-stress responses are estimated to com-
pare the models. Within isotropy and incompressibility assumptions, the
uniaxial tension deformation gradient is diagonal and depends on the uniax-
ial stretching λ according to F = Diag(λ, λ−1/2, λ−1/2). Using in all cases
the same chain entropy (2), the engineering uniaxial stress F/S0 is simply
calculated with the previous definitions of τ for the different models, and
one obtains:

• For affine networks,

F/S0 = νkT

∫

Ni

p(Ni)

∫∫

Su

Nib

rNi,R

L−1

(

rNi,R

Nib

)

(R2
1λ− R2

3

λ2
)dSu dNi (24)

with rNi,R =
√
Nib

√
R ·C ·R.

• For hybrid equal-force networks,

F/S0 = νkT

∫∫

Su

B
b

NB
rN ,R

L−1
(rN ,R

NB
)

(R2
1λ− R2

3

λ2
)dSu (25)

with rN ,R =
√
NB

√
R ·C ·R.

• For the non-affine minimum averaged energy model,

F/S0 = ν
< r0 >

3

(

Π11 −
Π33

λ3/2

)

(26)

with components Π11 and Π33 defined by Eq. (22) that result in two nonlinear
equations to solve,















< r0 >

3
λ−

∫

Ni

p(Ni)

∫∫

Su

NibL(fRb/kT )
Π11

fR
R2

1dSudNi = 0

< r0 >

3

1√
λ
−

∫

Ni

p(Ni)

∫∫

Su

NibL(fRb/kT )
Π33

fR
R2

3dSudNi = 0
(27)

with fR = (
∑

i Π
2
iiR

2
i )

1/2 and Π22 = Π33 for loading symmetry reasons.

A network made of 50% of chains with 4 segments and 50% of chains
with 16 segments is chosen to compare the uniaxial stretch-stress responses
of these models. Note that a simple set of 256 directions defined by Sloan
and Wormersley (2004) was chosen for the numerical integration over the unit
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Figure 2: Normalized uniaxial tension stretch-stress responses predicted by the affine, the

hybrid equal force and the minimum strain energy based models for a microsphere network

characterized by 50% of chains with 4 segments and 50% of chain with N = 16 segments.

sphere. Readers interested in optimizing the numerical integration scheme
for microsphere models may refer to Ehret et al. (2010) and Verron (2015).
Figure 2 shows the uniaxial stretch-stress responses, normalized by νkT ,
obtained with the three models. The affine model is the stiffest, and its max-
imum uniaxial stretch is limited by the shorter chains to

√

min(Ni). This
property contradicts the experimental data reported for bimodal networks
(Mark, 1981). The non-affine minimum averaged energy based model is the
softest, with the larger limit of extension. At small and moderate stretches,
the hybrid equal-force presents the same initial stiffness as the energy based
model, which indicates that logically for moderate uniaxial tension the min-
imum energy based model displays chain end-to-end vectors that are rather
aligned with the affine chain end-to-end vectors. At larger stretches, the
hybrid equal-force model becomes significantly stiffer than the minimum en-
ergy based model. Actually, within the microsphere representation, the affine
model presents an upper bound while the equal-force MAPC model defined
with an average kinematic constraint defines a lower bound. It is no surprise
that the hybrid equal-force model from Verron and Gros (2017) defined with
a local kinematic constraint applied at the chain scale, appears in between
the mentioned bounds.
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Before introducing damage in the model, we may discuss briefly the capa-
bility of microsphere models to reproduce rubber like materials stretch-stress
responses for various states of strain. Actually, neither Tkachuk and Lin-
der (2012) nor Verron and Gros (2017) looked into this problem. For the
affine model, a satisfactory attempt to fit pure shear and biaxial stretch-
stress responses from data reported by James et al. (1975) may be found
in (Diani and Gilormini, 2005). In the latter paper, Treloar (1944) uniaxial
and equibiaxial data were fit with different values of the parameter of chain
length N for the fact that samples were preloaded differently according to
the test, possibly inducing disparate Mullins softening. For this same reason,
Treloar’s data are to be used with caution when testing models. Actually,
not enough information was provided by the author to use these data with
confidence.

When testing the affine and the MAPC models on the reference data from
Kawabata et al. (1981) recorded on an unfilled natural rubber submitted
to pure shear and equibiaxial tension at stretches below the crystallization
threshold, both models show unsatisfactory results Montrer figure? . This
limitation may be overcome, as it was proposed by Miehe et al. (2004), by
adding a tube constraint to the chain motion. The chain motion is defined
within a tube of diameter d and the elementary strain energy density depends
on the chain stretching and on the tube contraction. The strain energy is no
longer a single variable function. While Miehe et al. (2004) model provides
with a much better account of the state of strain dependence of rubberlike
materials, it also introduces more fitting parameters (actually 3 parameters
were added). Introducing such a complexity is needed for any microsphere
model, whether it is a force model or an affine model, when actual data
obtained with various states of strains are considered. Nonetheless, in order
to simply present a model that already presents some complication, it was
chosen to use a commun form for the elementary strain energy density and
to limit the model/experimental data comparisons to uniaxial tension tests.

3. Modeling Mullins-type damage

3.1. Framework

Damage such as the Mullins effect experienced by carbon-black of sil-
ica filled rubbers has been added with success to affine microsphere models
(Göktepe and Miehe, 2005; Diani et al., 2006). Therefore, the non-affine
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minimum averaged energy based model is extended to account for such a
directional softening generating anisotropy and resulting in the evolution of
the stress-free configuration. The model will be tested on the representations
of the stretch-stress responses of several carbon-black filled styrene butadi-
ene rubbers upon cyclic uniaxial tensions. Moreover, a numerical example
is presented to illustrate the model ability to produce deformation-induced
anisotropy.

3.2. Damage definition

Extensive experimental observations have shown that at the macroscopic
scale, the Mullins softening is a direction damage that is activated once ex-
ceeding the maximum stretch or equivalently the maximum load already ap-
plied in the considered direction (Merckel et al., 2012). The microsphere ap-
proach provides a convenient framework to apply directional damage, allow-
ing for instance to modify the chain property in each direction independently.
Mullins softening appears to result from the debonding and unravelling of
the layer of rubber at the surface of the filler particles (Diaz et al., 2014).
Therefore, links that were mechanically inactive due to restricted motions
become active resulting in an increase of the number of chain links noted
Ni. Consequently, the damage is implemented in the model as a directional
increase of the number of chain bonds occuring at constant mass according
to the loading history sustained in each direction.

Since at the chains scale, the non-affine minimum averaged energy model
is an equal-force model, for each chain, the number of segments is assumed
to increase with the maximum force undergone over the loading history. A
simple definition of the evolution of Ni is for instance,

{

Ni(t) =
[

1 + α(fmax − f ini)
]

N0
i , fmax = max

t
(f(t)) and

dNi/dt = 0 when f(t) < fmax

(28)

where α is a damage parameter that is positive and constant for all directions,
and f ini represents the chain force in the initial stress-free isotropic condition.
Since f(t) depends on the chain orientation R, the chain lengths evolve in
a fully deterministic way unevenly according to the directions. The chain
end-to-end vectors in the stress-free configuration become dependent on the
chain orientation R in the reference configuration and may write as r0

R,Ni,t
.

The stress-free configuration starts as a microsphere and then evolves with
time. Figure 3 illustrates how the microsphere may evolve during a uniaxial
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Initial configuration              Deformed configuration            Stress-free configuration

                       undergoing damage                    resulting from damage

x x x

Figure 3: Illustration of the possible evolution of stress-free configuration. The initial

microsphere geometry is submitted to a uniaxial loading creating damage in the directions

of chain extension and returns to a non-spherical stress-free configuration after unloading.

tension loading-unloading. In the next section, constitutive equations are
written with the construction of the relaxed configuration. Note that in
the current damage evolution, we chose to keep the probability distribution
constant and we note pi = p(N0

i ).

3.3. Constitutive equations with construction of the relaxed configuration

Let us consider an initially isotropic microsphere network that has been
submitted to a loading history resulting to a known distribution of num-
bers of segments denoted Ni that are now dependent on t and R and writes
as Ni,R,t. The polymer network is now characterized by a stress-free con-
figuration with chain end-to-end vectors r0

R,Ni,t
, and when submitted to a

deformation gradient tensor F , the kinematic constraint Eq. (17) still holds
with a stress free reference configuration given by

1

3
l0(t) =

∫

N0

i

pi

∫∫

Su

r0
R,Ni,t

⊗RdSudN
0
i (29)

and the stress tensor τ remain defined by equations (22) and (23).
Written in a symmetric fashion, Equations (22) result again in six non-

linear equations of unknowns (F−1 ·Π · (l0)T )ij, after having calculated the
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stress-free configuration l0(t). To be self equilibrated, this stress free config-
uration must minimize the configuration free energy

kT

∫

N0

i

pi

∫∫

Su

Ni,R,t ψ

(

r0
R,Ni,t

Ni,R,tb

)

dSudN
0
i → min

under the volumic constraint det ( 1
<r0>

l0) = 1. The optimality conditions
now write

f 0
R

r0
R,Ni,t

r0
R,Ni,t

= Π0 ·R, (30)

Π0 =
1

3
q0

(

l0(t)
)−T

, (31)

l0(t) =
1

3

∫

N0

i

pi

∫∫

Su

r0
R,Ni,t

⊗RdSudN
0
i , (32)

det (
1

< r0 >
l0) = 1 (33)

with f 0
R = ‖Π0 ·R‖ and r0

R,Ni,t
given by inversion od the chain traction law

f 0
R =

kT

b
ψ′

(

r0
R,Ni,t

Ni,R,tb

)

. After elimination of l0(t) by (31- 33), (32) reduces to

a nonlinear system defining the multiplier Π0. The relaxed configuration is
stress free since we have

1

ν
σ0(t) =

∫

N0

i

pi

∫∫

Su

f 0
R ⊗ r0

R,Ni,t
dSu dN

0
i − q01

=
1

3
q0

∫

N0

i

pi

∫∫

Su

(

l0(t)
)−T

.R⊗ r0
R,Ni,t

dSu dN
0
i − q01

= 0.

Note that the stress free configuration is defined within an arbitrary rotation
that we set to unity by imposing that l0(t) be symmetric.

3.4. Flow rule

In addition to the above constitutive laws, the time evolution of the in-
ternal variables Ni,R,t must satisfy to the Clausius-Duhem inequality for any
isothermal evolution, which may writes as,

−
∑

i,R

∂W
∂Ni,R,t

Ṅi,R,t ≥ 0 (34)
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By definition of the evolution law Eq. (28), we see that Ṅi,R,t > 0, ∀i and
∀R. Moreover, deriving Eq. (6) with respect to Ni,R,t, one obtains,

∂W
∂Ni,R,t

= νkTpi

(

ψ(
r

Nib
)− r

Nib
ψ′(

r

Nib
)

)

(35)

which is always negative since the chain strain energy function ψ is convex
with zero value at origin, ensuring that for each direction and each initial
number of segments N0

i ,

− ∂W
∂Ni,R,t

Ṅi,R,t ≥ 0, (36)

and therefore assessing the satisfaction of the Clausius-Duhem inequality
(34).

3.5. Reproducing experimental data

The model is now tested to reproduce the uniaxial tension responses of
four styrene butadiene rubbers made of the same gum composition and filled
with 30, 40, 50 or 60 phr of N347 carbon-black. These materials were submit-
ted to a cyclic uniaxial tests with increasing maximum stretch. Each material
undergoes upon loading some significant softening that is increasing with the
maximum stretch and that is exhibited by a softer response upon unload-
ing. When reloading, the material stretch-stress response is very close to the
unloading stretch-stress responses, and neglecting the material viscoelastic-
ity, we may actually consider that the reloading and unloading stretch-stress
responses coincide until reaching the maximum stretch already applied, af-
ter which the material follow the initial loading stretch-stress response. The
initial loading stretch-stress responses and the unloading stretch-stress re-
sponses recorded for each materials are plotted with symbols in Figure 4.

The experimental data were fitted with the non-affine minimum energy
based microsphere model accounting for Mullins softening using the mi-
croscale microstructure evolution defined in Eq. (28). For simplicity purpose,
since no information was detained on the chain molecular weight distribu-
tion, only one chain length was considered notedN0 to characterize the initial
microstructure configuration. The model depends on three parameters only,
νkT , N0 and α. Starting from an isotropic initial configuration, solving equa-
tions (22, 30, 33) for an applied uniaxial stretch λ consists in solving 4 non-

linear equations of unknown λtr (noting 1
<r0>

l0 = Diag(λtr, λ
−1/2
tr , λ

−1/2
tr )),
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Figure 4: Model fit of the behaviors of four rubbers made of the same SBR gum and

filled with either 30, 40, 50 or 60 phr of N347 carbon-black submitted to cyclic uniaxial

loading-unloadings. Experimental data are plotted with symbols and the model appear in

solid lines.

q0, Π11, Π33 (The algorithm used to solve the nonlinear system of equations
is given in Appendix Appendix A). A fully implicit numerical scheme was
successfully applied, and the representations of the model uniaxial loading-
unloading responses are shown in Figure 4 for the material parameters listed
in table 1. It is quite remarkable to observe that the three-parameter model
reproduces well the Mullins softening for every material. Finally, one could
expect a more accurate fit when the initial probability distribution pi is
known.

3.6. Induced anisotropy and residual stretch evolution

As a representative numerical example to illustrate the model capability
to exhibit strain-induced anisotropy, the following loading path was consid-
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Table 1: Model parameters fitted on the experimental data displayed in Figure 4.

Materials νkT (MPa) N0 α
30 phr SBR 0.63 3.5 0.080
40 phr SBR 0.67 3.0 0.047
50 phr SBR 0.75 2.0 0.054
60 phr SBR 1.0 2.0 0.042

Figure 5: Model uniaxial stretch-stress responses during a first uniaxial stretching cy-

cle according to direction 1 generating directional damage, followed by a cyclic uniaxial

stretching in direction 2. The residual stretches along the principal directions of load-

ing are plotted during the phases of loadings in order to illustrate the evolution of the

stress-free configuration.

ered: First, a uniaxial tension load-unload cycle up to 200% stretching in
direction 1, followed by a uniaxial tension cycle up to 200% stretching in
direction 2. Figure 5 illustrates the stretch-stress responses for both cycles
obtained with the 50 phr SBR material parameters reported in table 1. The
loading response according to direction 2 is to compare to the unloading re-
sponse in direction 1, which is the material response if it was submitted to
a second loading according to direction 1. The stretch-stress response dif-
ference illustrates the material anisotropy resulting from the first uniaxial
cycle.

The evolution of the residual stretches during the loading steps (note that
the residual stretches do not evolve during the unloadings) in the principal
directions of loading are also plotted figure 5. During the first loading, the
residual stretch in direction 1 increases, while the residual stretches in di-
rections 2 and 3 are identical due to the symmetry of loading and decrease
due to the material isotropy. During the subsequent stretching in direction
2, the direction 2 residual stretch increases, while the residual stretches in
directions 2 and 3 decrease non evenly due to the loss of symmetry between
directions 1 and 3 induced by the first loading.
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4. Conclusion

The minimum energy based maximal advance path constrained model
designed for microsphere representations of rubberlike materials (Tkachuk
and Linder, 2012) has been extended to account for any polymer chain weight
distributions and for damage such as Mullins softening experienced by filled
rubbers. The equal-force model at the chain microscale, is constrained by an
averaged kinematic relation at the macroscale, and appears as a lower bound
for microsphere models, while the affine model assesses the upper bound.

Within the microsphere representation, chains are characterized by their
reference orientation and their numbers of segments of given length. By
letting the number chain segments increase, it is possible to introduce some
softening resulting from enhanced chain mobility loosening the polymer net-
work. Applying the damage on each chain independently, allows to create
an uneven network consistent with the directional softening reported in the
literature for the Mullins effect. Due to the uneven microstructure changes,
the material initial isotropy is lost and the evolving stress-free configura-
tion of the network has to be taken into account. A comparison between
the model and actual cyclic uniaxial tension tests obtained on a SBR gum
filled with four amounts of carbon-black fillers have shown the remarkable
potential of the model, which reproduced relatively well the behavior of each
material with three parameters only. Finally, a numerical example was pro-
posed to illustrate the possible strain-induced anisotropy and the stress-free
configuration evolution.

Appendix A. Solving the constitutive equations

Since simple uniaxial tension tests were simulated, the systems of non-
linear equations were solved with a simple python routine using the built-in
fuction fsolve.

In the case of isotropy without damage, the problem consists in a system
of two nonlinear equations (27). In the case of an initial isotropic material
submitted to damage the problem consists in a system of five non-linear
equations. Finally, when considering the numerical example illustrating the
induced anisotropy, solving the second loading case consists in a system of
nine non-linear equations.
• Initial state

Definition of the material parameters
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-νkT
-Damage evolution
-Definition of nb material directions with the chain distribution lengths

yielding < r0 >
-Initialization Π = Π0 = kT

3<r0>
1, if not first loading Π0 and Π are known

from the previous calculations
• Loading discretization F (tn)
• Solving equations
-For each time step tn, the system of equations are solved to calculate (Πtn ,Π

0
tn , q

0(tn))
-For every direction, calculate f = ΠtnR, update NR,tn(f), and
r = r

f
f with r = NR,tnbL

(

fb
kT

)

-For every direction, calculate f 0 = Π0
tnR, and

r0 = r0

f0f
0 with r0 = NR,tnbL

(

f0b
kT

)

- Solve
∫

N0

i

pi

∫∫

Su

(r ⊗R) dSudN
0
i = F (tn) ·

∫

N0

i

pi

∫∫

Su

(r0 ⊗R) dSudN
0
i

Π0 · (
∫

N0

i

pi

∫∫

Su

(r0 ⊗R) dSudN
0
i )

T = q01,

det (
1

3 < r0 >

∫

N0

i

pi

∫∫

Su

(r0 ⊗R) dSudN
0
i ) = 1.

-Calculate the stress

τ (tn) = νΠtn · (
∫

N0

i

pi

∫∫

Su

(r0 ⊗R) dSudN
0
i )

T − q(F (tn))
−T .
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