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A result of Barban-Vehov (and independently Motohashi) gives an estimate for the mean square of a sequence related to Selberg's sieve. This upper bound was refined to an asymptotic formula by S. Graham in 1978. In 1992, I made the observation that Graham's method can be used to obtain an asymptotic formula when the sum is restricted to an arithmetic progression. This formula immediately gives a version of the Brun-Titchmarsh theorem. I am taking the occasion of a volume in honour of my friend S. Srinivasan to revisit and publish this observation in the hope that it might still be of interest.

Introduction

Let 1 ≤ z 1 ≤ z 2 and define for i = 1, 2,

Λ i (n) = µ(n) log z i n if n ≤ z i 0 if n > z i
Also, set

λ n = Λ 2 (n) -Λ 1 (n) log z 2 /z 1 and a(n) = d|n λ d .
The λ n are weights that are related to Selberg's sieve. Notice that we have a(1) = 1 and a(n) = 0 for 1 < n ≤ z 1 . Moreover, for primes p, we have

a(p) = log p/z 1 log z 2 /z 1 if z 1 < p < z 2 0 otherwise.
It was shown by Barban and Vehov [BaVe68] and Motohashi [Mo74] that

n≤N |a(n)| 2 N log z 2 /z 1 .
Soon afterwards, S. Graham [START_REF] Graham | An asymptotic estimate related to Selberg's sieve[END_REF] was able to prove the following asymptotic formulae: if N ≥ z 2 , then

n≤N |a(n)| 2 = N log z 2 /z 1 + O N (log z 2 /z 1 ) 2
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n≤N |a(n)| 2 = N log N/z 1 (log z 2 /z 1 ) 2 + O N (log z 2 /z 1 ) 2 .
This result has found significant applications to zero density theorems and to the estimation of Linnik's constant (see [START_REF] Jutila | On Linnik's constant[END_REF] and [START_REF] Graham | On Linnik's constant[END_REF] for example).

The purpose of this note is to study the size of the sum when n is constrained to range through a fixed arithmetic progression. In my joint work with R. Balasubramanian [START_REF] Balasubramanian | Zeros of Dirichlet L-functions[END_REF], we observed (Proposition 1.2) that for N ≥ r and (b, r) = 1, we have

n≤N n≡b (mod r) |a(n)| N φ(r) 1 2 (log z 2 /z 1 ) 1 2 
.

This follows immediately from Graham's result by the Cauchy-Schwarz inequality.

Soon after [START_REF] Balasubramanian | Zeros of Dirichlet L-functions[END_REF] was written, I worked out an asymptotic formula for the sum on the left by adapting Graham's methods. The result is that for (b, r) = 1 and N ≥ rz 2 2 , we have

n≤N n≡b mod r |a(n)| 2 = N φ(r) log z 2 /z 1 + O N σ(r) φ(r) 2 (log z 2 /z 1 ) 2 . If rz 1 z 2 ≤ N ≤ rz 2 2 , then we show that n≤N n≡b mod r |a(n)| 2 = N φ(r) log z 2 /z 1 + O N (log rz 2 2 /N ) 5 r(log z 2 /z 1 ) 2 + O N (log r) 2 r(log z 2 /z 1 ) 2 + O rz 2 (log z 2 /z 1 ) 2 .
The last two terms on the right are not present if we have the additional condition z 1 > r. Also, It will be clear from the arguments that the same methods will actually allow us to get estimates for N < rz 1 z 2 as well but we do not pursue that here.

An immediate consequence of the first formula is a version of the Brun-Titchmarsh theorem in the following form. Denote by π(N, r, b) the number of primes ≤ N which are ≡ b mod r. Then we have

π(N, r, b) ≤ 2N φ(r) log N/r + O N σ(r) φ(r) 2 (log N/r) 2 .
We could try to use the second formula in a similar manner.

Our method of proof for both formulae is elementary and uses only the usual prime number theorem. The proof of the first formula is a direct generalization of the work of Graham ([Gr78], §3) and represents the easy case.

Though these calculations were completed some years ago, I had not published them. However, the occasion of a volume honouring the memory of my friend S. Srinivasan caused me to look at them again. In particular, the consequence for the Brun-Titchmarsh theorem may still be of interest. When I was a Visiting Fellow at the Tata Institute for Fundamental Research in 1983-1984, Srinivasan was my office-mate and we shared many hours of mathematical conversation. We also enjoyed many social occasions together when we had a chance to discuss philosophical and even spiritual questions. Srinivasan was always a thorough and thoughtful individual and I look back on those occasions with many pleasant memories. Given that his main interest was in analytic number theory, I thought the topic of this article might have been of interest to him.

The note is organized as follows. In §2, we prove the first formula. In §3, we begin the proof of the second formula. In §4 and §5, we estimate certain error terms and in §6, we study the main term. Finally in §7, we complete the proof of the second formula. I would like to thank the referees for helpful comments that helped to streamline the presentation.

The First Formula

The purpose of this section is to prove the following.

Theorem 2.1. Suppose that rz 2 2 ≤ N and (b, r) = 1. Then,

n≤N n≡b (mod r) |a(n)| 2 = N φ(r) log z 2 /z 1 + O N σ(r) φ(r) 2 (log z 2 /z 1 ) 2 .
The proof follows closely the method of [START_REF] Graham | An asymptotic estimate related to Selberg's sieve[END_REF], §3 but we give the details in order to orient the reader. First, we note an immediate consequence. Denote by ψ(N, z 2 , r, b) the number of integers n ≤ N with n ≡ b (mod r) all of whose prime factors are ≥ z 2 . Denote also by π(N, r, b) the number of primes p ≤ N with p ≡ b (mod r).

Corollary 2.2. If rz 2 2 ≤ N , then ψ(N, z 2 , r, b) ≤ N φ(r) log z 2 + O N σ(r) φ(r) 2 (log z 2 ) 2 .
Proof. If n ≤ N , and n ≡ b (mod r) and it has all its prime divisors ≥ z 2 , then a(n) = 1.

Corollary 2.3. We have

π(N, r, b) ≤ 2N φ(r) log N/r + O N σ(r) φ(r) 2 (log N/r) 2 .
Proof. This follows on noting that To prove the theorem, we notice that

(log z 2 /z 1 ) 2 n≤N n≡b (mod r) |a(n)| 2 = n≤N n≡b (mod r)   d|n Λ 1 (d) - e|n Λ 2 (e)   2 .
The right hand side is a sum of terms of the form

S i,j = n≤N n≡b (mod r) d,e|n Λ i (d)Λ j (e).
where i, j ∈ {1, 2}. The theorem will follow from the following.

Proposition 2.4. We have

S i,j = N φ(r) log min(z i , z j ) + O(z i z j ) + O(N σ(r)/φ(r) 2 ).
In particular, if rz i z j ≤ N , the first error term is O(N/r).
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3. The second formula Proof. By definition

S i,j = Λ i (d)Λ j (e){ N r[d, e] + O(1)}.
The error term is  

d≤z i |Λ i (d)|     e≤z j |Λ j (e)|   z i z j .
The main term is N r

d≤z i e≤z j (d,r)=(e,r)=1 Λ i (d)Λ j (e) [d, e] .
Without loss of generality, we may suppose that z i ≤ z j . We have

d≤z i e≤z j (d,r)=(e,r)=1 Λ i (d)Λ j (e) [d, e] = Λ i (d)Λ j (e) de m|(d,e) φ(m)
and inserting the definition of Λ i and Λ j , the right hand side is seen to be

m≤z i (m,r)=1 µ(m) 2 φ(m) m 2    d 0 ≤z i /m (d 0 ,mr)=1 µ(d 0 ) d 0 log z i md 0        e 0 ≤z j /m (e 0 ,mr)=1 µ(e 0 ) e 0 log z j me 0     .
We quote the following from [START_REF] Graham | An asymptotic estimate related to Selberg's sieve[END_REF], §2:

Lemma 2.5. For any integer a and any c > 0, we have

n≤Q (n,a)=1 µ(n) n log Q n = a φ(a) + O c (σ -1 2 (a)(log 2Q) -c ).
Using this on the terms in parentheses, we find that the above is

m≤z i (m,r)=1 µ(m) 2 φ(m) m 2 mr φ(mr) + O(σ -1 2 (mr)(log 2z i /m) -2 2
The error terms are O(1) just as in [START_REF] Graham | An asymptotic estimate related to Selberg's sieve[END_REF], pp. 89-90. The main term is

r 2 φ(r) 2 m≤z i (m,r)=1 µ(m) 2 φ(m) .
This is seen to be r φ(r)

log z i + O( rσ(r) φ(r) 2 ).

The second formula

The aim of the remaining sections is to prove the following asymptotic formula which will suffice to deduce the second formula.

Theorem 3.1. Suppose that rz 1 z 2 ≤ N ≤ rz 2 2 . Then for (b, r) = 1, we have

n≤N n≡b mod r   d|n Λ 2 (d)   2 = N φ(r) log z 2 + O N r (log rz 2 2 /N ) 5 + O N r (log r) 2 + O(rz 2 ).
Expanding the sum on the left, we have

n≤N n≡b mod r   d|n Λ 2 (d)     e|n Λ 2 (e)  
and we begin the proof by splitting this sum into three components

S A + S B + O(S C )
where in S A we restrict the sum to d, e satisfying [d, e] > N/r. The remaining terms may be rearranged to give In §4., we shall show that

[d,e]≤N/r Λ 2 (d)Λ 2 (e) n≤N n≡b mod r n≡0 mod [d,e]
S A N r log rz 2 2 /N 5 + N r (log r) 2 + rz 2 .
In §5., we shall show that

S C N r log rz 2 2 /N 4 .
Finally, in §6., we shall deal with the main term S B , and in §7. we collect together the various pieces to complete the proof of Theorem 3.1.

We state explicitly the consequence of Theorem 3.1 for the a(n).

Theorem 3.2. Suppose that rz 2 2 ≥ N ≥ rz 1 z 2 . Then n≤N n≡b (mod r) |a(n)| 2 = N φ(r) log z 2 /z 1 + O N (log rz 2 2 /N ) 5 r(log z 2 /z 1 ) 2 +O N (log r) 2 r(log z 2 /z 1 ) 2 +O rz 2 (log z 2 /z 1 ) 2 .

Estimation of S

A Proposition 4.1. Suppose that rz 2 2 ≥ N > r. Then n≤N n≡b (mod r) [d,e]|n [d,e]>N/r |Λ 2 (d)Λ 2 (e)| N r log rz 2 2 /N 5 + N r (log r) 2 + rz 2 .
Remark 4.2. Our argument will show that in certain ranges of r, z i , z j and N , this estimate can be refined.

.

Proof. Write ρ = (d, e).
Then, each n can be written as n = ρe 0 d 0 n 0 with d = ρd 0 , e = ρe 0 and [d, e] = ρd 0 e 0 > N/r. This last condition implies that n 0 < r. The sum over e 0 then ranges over the interval N rρd 0 < e 0 ≤ z 2 ρ .

In order for this to be nonempty, we need

d 0 > N/rz 2 .
But d 0 ≤ z 2 /ρ and so ρ < rz 2 2 /N . Thus, our sum is

ρ<rz 2 2 /N (ρ,r)=1 n 0 <r (n 0 ,r)=1 N rρ <d 0 e 0 ≤ N ρn 0 d 0 e 0 ≡ρn 0 b (mod r) d 0 <z 2 /ρ,e 0 <z 2 /ρ |Λ 2 (d 0 ρ)Λ 2 (e 0 ρ)|.
Here, for any residue class β (mod r) (with (β, r) = 1), we are writing β (mod r) for the inverse class. The inner sum is Separating the d 0 and the e 0 sums, we find that this is

d 0 |µ(d 0 ρ) log z 2 d 0 ρ | e 0 |µ(e 0 ρ) log z 2 e 0 ρ |
where the sum over d 0 is in the range

N rz 2 < d 0 < min z 2 ρ , N n 0 ρ
and the sum over e 0 is in the range

N rd 0 ρ < e 0 < min z 2 ρ , N n 0 d 0 ρ with the additional condition e 0 ≡ b • d 0 ρn 0 (mod r).
First, consider the contribution of the e 0 which satisfy e 0 > r. Writing e 0 = * + e 1 r, we see that the inner sum is

≤ 1≤e 1 ≤min N n 0 ρd 0 r , z 2 rρ log z 2 e 1 rρ . (4.1) 4.A. Case 1 If N/n 0 d 0 ≤ z 2 , then this is N n 0 ρd 0 r log z 2 n 0 d 0 N + 1 .
Inserting this into the sum over d 0 , we find that it is

N n 0 ρr N z 2 n 0 <d 0 ≤ z 2 ρ 1 d 0 log z 2 d 0 ρ log z 2 n 0 d 0 N + 1 .
For this sum to be nonempty, we require

ρ < z 2 2 n 0 /N.
Using the following consequence of the arithmetic mean -geometric mean inequality,

(log A)(log B) ≤ (log AB) 2 (4.2)
for A, B ≥ 1, the above sum is

N n 0 ρr 1 d 0 log z 2 2 n 0 N ρ 2 . The sum over d 0 is log z 2 2 n 0 N ρ
and so, we have to estimate

n 0 <r ρ<n 0 z 2 2 /N N rn 0 ρ log z 2 2 n 0 N ρ 3 and this is N r N/z 2 2 ≤n 0 <r 1 n 0 log z 2 2 n 0 N 4 which in turn is N r log rz 2 2 N 5 . (4.3) 4.B. Case 2 If N/n 0 d 0 ≥ z 2 , the sum in (4.1) is e 1 ≤z 2 /rρ log z 2 e 1 rρ z 2 rρ .
Notice that in order for such terms to exist, we need ρ ≤ z 2 /r and in particular, r ≤ z 2 . Inserting this estimate into the sum over d 0 , we get

z 2 rρ d 0 <min(N/n 0 z 2 ,z 2 /ρ) log z 2 d 0 ρ .
We distinguish two sub cases.

4.C. Case 2(a)

Suppose that z 2 /ρ < N/n 0 z 2 .

Then, the sum over d 0 is O(z 2 /ρ) and so the overall contribution is

ρ<rz 2 2 /N n 0 <N ρ/z 2 2 n 0 <r z 2 2 rρ 2 . This simplifies to z 2 2 r ρ<rz 2 2 /N 1 ρ 2 N ρ z 2 2 and this is N r log rz 2 2 N .

4.D. Case 2(b)

Consider the remaining case

z 2 /ρ ≥ N/n 0 z 2 .
Then, the sum over

d 0 is N n 0 z 2 log n 0 z 2 2 ρN
and so the overall contribution is

n 0 <r ρ<min(n 0 z 2 2 /N,z 2 /r) z 2 ρr N n 0 z 2 log n 0 z 2 2 ρN which is = N r n 0 <r 1 n 0 ρ 1 ρ log n 0 z 2 2 ρN .
This sum can be split into two subsums, the first of which is N r

n 0 <min(r,N/rz 2 ) 1 n 0 ρ<n 0 z 2 2 /N 1 ρ log n 0 z 2 2 ρN and this is N r N/z 2 2 <n 0 <r 1 n 0 log n 0 z 2 2 N 2 which is N r log rz 2 2 N 3 .
The second is N r

ρ<z 2 /r 1 ρ N/rz 2 <n 0 <r ρN/z 2 2 <n 0 1 n 0 log n 0 z 2 2 ρN
which is seen to be N r

ρ<rz 2 2 /N 1 ρ log rz 2 2 N 2 and this is N r log rz 2 2 N 3 .
Note that this term is present only if r 2 z 2 > N .

To summarize, Case (2) occurs only if r < z 2 and in this case, it contributes

N r log rz 2 2 N 3 .
4.E. The contribution of terms with e 0 < r By interchanging the roles of e 0 and d 0 , we may also suppose that d 0 < r. We see that as n 0 < r, the congruence condition e 0 d 0 ρn 0 ≡ b (mod r)

implies that e 0 , d 0 , ρ uniquely determine n 0 . Thus, our sum is

≤ d 0 ,e 0 ρ log z 2 d 0 ρ log z 2 e 0 ρ .
Here, the outer sum ranges over d 0 , e 0 < r satisfying N/rz 2 < d 0 < z 2 and e 0 < z 2 and the inner sum ranges over ρ satisfying

N rd 0 e 0 ≤ ρ ≤ min z 2 d 0 , z 2 e 0 , rz 2 2 N . Since N rz 2 < d 0 we see that z 2 d 0 ≤ rz 2 2 N .
Also,

e 0 ≥ N rρd 0 > N rz 2 and so z 2 e 0 ≤ rz 2 2 N .
Let us set w = min(

z 2 d 0 , z 2 e 0 ).
We will consider the case w = z 2 /d 0 , the other case being similar. In this case we must have

rz 2 ≤ N.
It forces the condition N rz 2 ≤ e 0 ≤ d 0 .
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Using the identity (4.2), the sum over ρ is

N rd 0 e 0 log N 2 r 2 z 2 2 d 0 e 0 + z 2 d 0 log d 0 e 0 .
Now we insert this into the sum over d 0 and e 0 . For the e 0 sum to be nonempty, we must also have r 2 z 2 ≥ N (since r 2 z 2 ≥ rz 2 d 0 ≥ N ). In this case, the e 0 sum is

N rd 0 log N rz 2 + z 2 .
Summing this over d 0 , we get an estimate of

N r log N rz 2 (log r) + rz 2 and this is ≤ N r (log r) 2 + rz 2 .

Estimation of S C

Proposition 5.1. Suppose that rz i z j ≥ N > r. Then, we have 

ρ≤z i d 0 ≤z i /ρ |Λ i (d 0 ρ)| e 0 ≤N/rd (e 0 ,d 0 )=1 |Λ j (e 0 ρ)|.
In the inner sum, we need in fact that

e 0 ≤ min( N rd , z j ρ ).
Consider the contribution of terms with z j ≤ N/rd 0 .

We have to estimate

ρ≤z i d 0 ≤min(z i /ρ,N/rz j ) log z i d 0 ρ e 0 ≤z j /ρ (e 0 ,d 0 )=1 log z j e 0 ρ .
We see that z i ρ < N rz j (5.4) holds if and only if ρ > rz i z j N .

In this case, the sum is

ρ>rz i z j /N d 0 ≤z i /ρ log z i d 0 ρ e 0 ≤z j /ρ log z j e 0 ρ
and this is

ρ>rz i z j /N z i z j ρ 2 z i z j N rz i z j = N r .
The contribution of the remaining terms (the one that do not satisfy (5.4)) is

ρ≤rz i z j /N d 0 ≤N/rz j log z i d 0 ρ e 0 ≤z j /ρ log z j e 0 ρ .
This is seen to be

ρ≤rz i z j /N z j ρ N rz j log z i ρ rz j N + O N rz j .
Simplifying, this is N r

ρ<rz i z j /N 1 ρ log rz i z j N ρ + O   N r ρ<rz i z j /N 1 ρ   which is N r log rz i z j N 2 .
Consider now the case that z j > N/rd 0 .

Note that

z i ρ ≥ d 0 > N rz j .
Thus, ρ < rz i z j /N . We have

ρ≤min(z i ,rz i z j /N ) N rz j <d 0 ≤z i /ρ log z i d 0 ρ e 0 ≤N/rd 0 ρ log z j e 0 ρ . The sum over e 0 is N rd 0 ρ log z j ρ rd 0 ρ N + O(1) .
Inserting this, we get that our sum is

N r ρ≤min(z i ,rz i z j /N ) 1 ρ N rz j <d 0 ≤z i /ρ 1 d 0 log z i d 0 ρ log rd 0 z j N .
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6. The main term

The sum over d 0 is easily seen to be

∼ 1 6 log rz i z j N ρ 3 .
Inserting this, we find that our sum is

N r ρ≤min(z i ,rz i z j /N ) 1 ρ log rz i z j N ρ 3 N r log rz i z j N 4 .

The main term

Finally, we deal with the main term. We need the following technical result.

Proposition 6.1. Suppose that rz i z j ≥ N > r. Then, we have

[a 1 ,a 2 ]≤M (a 1 ,r 1 )=(a 2 ,r 2 )=1 Λ i (d 1 a 1 )Λ j (d 2 a 2 ) a 1 a 2 = µ(d 1 )µ(d 2 ) d 1 r 1 φ(d 1 r 1 ) d 2 r 2 φ(d 2 r 2 ) γ µ(γ) 2 φ(γ) 2 + +O log z i z j d 1 d 2 M 4 + E
where γ ranges over γ ≤ min(

z i d 1 , z j d 2 ) and (γ, r 1 r 2 d 1 d 2 ) = 1.
Here,

E d 1 r 1 φ(d 1 r 1 ) σ -1 2 (d 2 r 2 )(log 2z j /d 2 ) -4 + d 2 r 2 φ(d 2 r 2 ) σ -1 2 (d 1 r 1 )(log 2z i /d 1 ) -4 +σ -1 2 (d 1 r 1 )σ -1 2 (d 2 r 2 )(log 2z i /d 1 ) -4 (log 2z j /d 2 ) -4 . Proof. Write γ = (a 1 , a 2 ). The condition [a 1 , a 2 ] ≤ M is then a 1 a 2 ≤ M γ. Write a 1 = γa 1 , a 2 = γa 2 .
Then, our sum is

(γ,r 1 r 2 )=1 (a 1 ,r 1 )=1 Λ i (d 1 γa 1 ) γa 1 (a 2 ,r 2 )=1 a 2 ≤M/γa 1 Λ j (d 2 γa 2 ) γa 2
since a 1 a 2 ≤ M γ means that γa 1 a 2 ≤ M . Moreover, we may as well assume that (a 1 , d 1 ) = (a 2 , d 2 ) = 1.

Thus, we can rewrite our sum as

(γ,r 1 r 2 d 1 d 2 )=1 µ(d 1 γ)µ(d 2 γ) γ 2 (a 1 ,d 1 γr 1 )=1 a 1 ≤min(M/γ,z i /d 1 γ) µ(a 1 ) log z i /d 1 γa 1 a 1 × (a 2 ,d 2 γr 2 )=1 a 2 ≤min(M/γa 1 ,z j /d 2 γ) µ(a 2 ) log z j /d 2 γa 2 a 2 .
Suppose that a 1 ≥ M d 2 /z j . Then, the innermost sum is (using Lemma 2.5 quoted in §2)

d 2 γr 2 φ(d 2 γr 2 ) + O(σ -1 2 (d 2 γr 2 )(log 2z j /d 2 γ) -4 ) + O log z j a 1 d 2 M 2
where the last term is present only if

M a 1 < z j d 2 .
The contribution of the last term above, when inserted into the a 1 sum is

a 1 1 a 1 log z i d 1 γa 1 log z j a 1 d 2 M 2
where the range of the sum is

M d 2 z j ≤ a 1 ≤ z i d 1 γ .
We see that it is

log z i /d 1 γ d 2 M/z j 4 = log z i z j d 1 d 2 γM 4 .
Inserting this into the γ sum yields an error term of

γ 1 γ 2 log z i z j d 1 d 2 γM 4 log z i z j d 1 d 2 M 4 .
We are left with the problem of estimating

(γ,r 1 r 2 )=1 µ(d 1 γ)µ(d 2 γ) γ 2   (a 1 ,d 1 γr 1 )=1 µ(a 1 ) log z i /d 1 γa 1 a 1 d 2 γr 2 φ(d 2 γr 2 ) + O(σ -1 2 (d 2 γr 2 )(log 2z j /d 2 γ) -4 )   .
The sum over a 1 can also be estimated using the Lemma 2.5. It is equal to

d 1 γr 1 φ(d 1 γr 1 ) + O(σ -1 2 (d 1 γr 1 )(log 2z i /d 1 γ) -4 ).
Inserting this, we find that the main terms give

(γ,r 1 r 2 d 1 d 2 )=1 µ(d 1 γ)µ(d 2 γ) γ 2 d 1 d 2 r 1 r 2 γ 2 φ(d 1 γr 1 )φ(d 2 γr 2 ) which is equal to µ(d 1 )µ(d 2 ) d 1 r 1 φ(d 1 r 1 ) d 2 r 2 φ(d 2 r 2 ) (γ,r 1 r 2 d 1 d 2 )=1 µ(γ) 2 φ(γ) 2 .
The sum over γ extends to γ ≤ min(

z i d 1 , z j d 2 ).
Now we consider the cross terms. There are three of them. The first is

(γ,r 1 r 2 d 1 d 2 )=1 1 γ 2 d 1 γr 1 φ(d 1 γr 1 ) σ -1 2 (d 2 γr 2 )(log 2z j /d 2 γ) -4
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which is d 1 r 1 φ(d 1 r 1 ) σ -1 2 (d 2 r 2 )(log 2z j /d 2 ) -4 .
Similarly, the second is

d 2 r 2 φ(d 2 r 2 ) σ -1 2 (d 1 r 1 )(log 2z i /d 1 ) -4
and the third is

σ -1 2 (d 1 r 1 )σ -1 2 (d 2 r 2 )(log 2z i /d 1 ) -4 (log 2z j /d 2 ) -4 .
This proves the result.

We only need to apply this result in the following case.

Proposition 6.2. Suppose that rz 2 2 ≥ N > r. Then, we have

[d,e]≤N/r (d,r)=(e,r)=1 Λ 2 (d)Λ 2 (e) [d, e] = r φ(r) log z 2 + O log rz 2 2 N 5 + O r φ(r) σ -1 2 (r)(log 2z 2 ) -4 .
Proof. Let us set ρ = (d, e). Then the sum in question may be written as

[d,e]≤N/r (d,r)=(e,r)=1 Λ 2 (d)Λ 2 (e) de u|ρ φ(u) = u≤z 2 (u,r)=1 φ(u) u 2 [d 1 ,e 1 ]≤N/ru (d 1 ,r)=(e 1 ,r)=1
Λ 2 (ud 1 )Λ 2 (ue 1 )

d 1 e 1 .

Applying Proposition 5.1 to the inner sum, we find that the above is For the cases i = j = 1 and i = 1, j = 2, the condition N ≥ rz i z j is satisfied and so we get the desired estimate from Proposition 1. The only remaining case is i = j = 2 where this condition is not satisfied. This case follows from Theorem 3.1.

  π(N, r, b) ≤ π(z 2 , r, b) + ψ(N, z 2 , r, b), and the trivial bound π(z 2 , r, b) ≤ z 2 /r + 1 and choosing z 2 = (N/r)

  e]≤N/r (d,r)=(e,r)=1 Λ 2 (d)Λ 2 (e) [d, e] + O   [d,e]≤N/r |Λ 2 (d)Λ 2 (e)|   which we write as S B + O(S C ).

N rρ <d 0 e 0 ≤ N ρn 0 d 0 e 0

 0 ≡ρn 0 b (mod r) |µ(d 0 ρ) (log z 2 /d 0 ρ) µ(e 0 ρ) (log z 2 /e 0 ρ) |.

N r log rz i z j N 4 .

 4 [d,e]≤N/r |Λ i (d)Λ j (e)| Proof. Set ρ = (d, e). Thus, the sum is de≤N ρ/r |Λ i (d)Λ j (e)| = d |Λ i (d)| ρ|d e≤N ρ/rd ρ|e (e/ρ,d/ρ)=1 |Λ j (e)|. Write d = d 0 ρ and e = e 0 ρ. Then the above is

  (log 2z 2 /u) -4 + O(σ -1 2 (ur) 2 (log 2z 2 /u) -8 ) + O log rz ) 2 log log z 2 .7. Proof of Theorems 3.1 and 3.2As described in §3, we have writtenn≤N n≡b (mod r) A + S B + O(S C ),where in S A , we require that [d, e] > N/r. By Proposition 4.1, we deduce that r) 2 + rz 2 .As for S C , we have by Proposition 5(log 2z 2 ) -4 ) + O((log rz 2 2 /N ) 5 ) .This proves Theorem 3.1.For Theorem 3.2, as in §2, we have to estimate three sums of the form S i,j = n≤N n≡b (mod r)

Estimation of S A

Estimation of S A