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We state well-known abc-conjecture of Masser-Oesterlé and its explicit version, popularly known as the explicit abcconjecture, due to Baker. Laishram and Shorey derived from the explicit abc-conjecture that (1.1) implies that c < N 1.75 . We give a survey on improvements of this result and its consequences. Finally we prove that c < N 1.7 and apply this estimate on an equation related to a conjecture of Hickerson that a factorial is not a product of factorials non-trivially.

Introduction

For a positive integer ν, we define the radical N (ν) of ν by the product of primes dividing ν and ω(ν) for the number of distinct prime divisors of ν. The letter p always denote a prime number in this paper. We denote the radical of abc by N = N (abc) = p|abc p unless otherwise specified. Further we write ω = ω(N ) for the number of distinct prime divisors of N .

The well known abc-conjecture was formulated by Joseph Oesterlé [Oe88-89] and David Masser [START_REF] Masser | Note on a conjecture of Szpiro, Les pinceaux de courbes elliptiques[END_REF] in 1988. It states that for any given > 0 there exists a computable constant κ depending only on such that if

a + b = c, (1.1)
where a, b and c are coprime positive integers, then

c ≤ κ N 1+ .
We see when ω ∈ {0, 1} or N is odd then (1.1) does not hold. Therefore we always have N even and ω ≥ 2 unless (a, b, c) = (1, 1, 2). We understand that log 2 x = log log x for x ≥ 2 and log 3 x = log log log x for x ≥ 3. The number κ need not be explicit which is not desirable if, for example, we wish to solve an equation completely using abc-conjecture. We state the following explicit version of abc-conjecture due to Baker [START_REF] Baker | Experiments on the abc-conjecture[END_REF].

The explicit abc-conjecture: The explicit abc-conjecture states that (1.1) implies that c < 6 5

N (log N ) ω ω! for N > 2.
(1.2) for some θ > 0 and K = K(θ), a computable constant. We observe that N > (log N ) ω ω!

+ (log N ) ω+1 (ω+1)! > 6(log N ) ω 5ω!
since log N ≥ ω+1 5 and thus (1.2) implies that c < N 2 for N ≥ 1 (1.3) which was conjectured in Granville and Tucker [START_REF] Granville | It's as easy as abc[END_REF]. Replacing the exponent 2 by a smaller exponent is always good for applications. We give a survey on improvements in the exponent of N in (1.3) in Section 2 and in Section 3 we give a short survey on consequences of explicit abc-conjecture.

In Section 4, we give our improvement on (1.3) and in Section 5, we consider an equation on product of consecutive positive odd integers and improve the bounds for the solution of the equation under the explicit abc-conjecture using our improved estimate on (1.3).

Survey on improvements in (1.3)

We begin this section with a result of Laishram and Shorey [START_REF] Laishram | Baker's explicit abc-conjecture and applications[END_REF].

Theorem 2.1. Assume the explicit abc-conjecture and (1.1) holds. Then

c < N 7 4
for N ≥ 1.

Further for every > 0, there exists ω depending only on such that when N = N (abc) ≥ N = Further Chim, Shorey and Sinha [ChShSi] proved the following result.

Theorem 2.2. Assume the explicit abc-conjecture. Then (1.1) implies that for N ≥ 1, c < N 1.72 .

(2.4)

The bound c < 10N 1.62991 compares with the following example given by E. Reyssat [START_REF] Reyssat | Bart de Smit -ABC triples -by quality[END_REF]. Consider a = 2, b = 3 10 × 109 and c = 23 5 . Then a + b = c with N = N (abc) = 15042 and c > N 1.62991 . The exponents in the above inequalities of Theorem 2.2 can be sharpened if N is sufficiently large. For this, we introduce functions G(N ) and G 1 (N ) as follows:

For integer N > 2, let

A(N ) = log 2 N -log 3 N, A 1 (N ) = A(N ) + log A(N ) -1.076869
and

G(N ) = 1 + log A(N ) A(N ) .
Further for integer N ≥ 40, let

G 1 (N ) = 1 + log A 1 (N ) A 1 (N ) .
We observe the following for G(N ) and G 1 (N ).

(i) G(N ) is decreasing for N ≥ 16 (ii) G 1 (N ) is decreasing whenever N ≥ 297856 (iii) G(N )
is positive valued function that tends to zero as N tends to infinity (iv) G 1 (N ) tends to zero as N tends to infinity

(v) G(N ) ≥ G 1 (N ) for N ≥ 1.5 × 10 36 (vi) G(N ) ≤ G 1 (N ) for 297856 ≤ N ≤ 10 36 .
Further Chim, Shorey and Sinha [ChShSi] proved that Theorem 2.3. Assume the explicit abc-conjecture. Then (1.1) implies that c < 6 5 N 1+G(N ) for N > 2 and c < 6 5 N 1+G 1 (N ) for N ≥ 297856.

On the other hand, Stewart and Tijdeman [START_REF] Stewart | On the Oesterlé-Masser Conjecture[END_REF] showed that G(N ) and G 1 (N ) cannot be replaced by a function F (N ) such that lim

N -→∞ F (N ) 1 √ (log N ) log 2 (N ) = 0.

Some Consequences of explicit abc-conjecture

We give a short survey on applications on explicit abc-conjecture in Section 2.

3.A. A conjecture of Hickerson and Erdős

We consider

a 1 !a 2 ! • • • a t ! = n! in integers n > a 1 ≥ a 2 • • • ≥ a t > 1, t > 1. (3.5)
We always assume that n ≥ a 1 +2 otherwise (3.5) is satisfied for any positive integers a 2 , a 3 , . . . , a t , a 1 = a 2 ! . . . a t ! -1 and n = a 1 + 1. This equation, which we call the equation of Hickerson and Erdős, has solutions given by 7!3! 2 2! = 9!, 7!6! = 10!, 7!5!3! = 10!, 14!5!2! = 16!.

3. Some Consequences of explicit abc-conjecture 146 3. Some Consequences of explicit abc-conjecture Hickerson (see [START_REF] Erdős | Old and new problems and results in combinatorial number theory[END_REF]) conjectured that the largest solution of (3.5) is given by n = 16. This is a difficult problem and even the case a 1 = n -2 and t = 2 remains open. Luca [START_REF] Luca | On factorials which are products of factorials[END_REF] proved that (3.5) has only finitely many solutions whenever abc-conjecture holds. The proof depends on the theory of linear forms in logarithms and it does not allow to determine all the solutions of (3.5). Nair and Shorey [START_REF] Nair | Lower bounds for the greatest prime factor of product of consecutive positive integers[END_REF] confirmed the conjecture for n ≤ e 80 . Further, under Baker's explicit abc-conjecture, they confirmed the conjecture of Hickerson completely. We delete a 1 ! on both sides of (3.5) and let y = a 1 + 1, m = n -a 1 ≥ 2. Then (3.5) can be re-written as

a 2 ! • • • a t ! = y(y + 1) • • • (y + m -1).
Since y > a 1 ≥ a 2 , we see that all the terms y, y + 1, . . . , y + m -1 are composite. The proof also uses the following sharpening of a theorem of Sylvester due to Nair and Shorey [START_REF] Nair | Lower bounds for the greatest prime factor of product of consecutive positive integers[END_REF].

Theorem 3.1. Assume that x > 100 and x, x + 1, • • • , x + k -1 are all composite integers. Then

P (x(x + 1) • • • (x + k -1)) > 4.42k unless x = 125, 224, 2400, 4374 if k = 2 and x = 350 if k = 3.
The first result in this direction is due to Sylvester [Sy1912] that a product of k consecutive positive integers each exceeding k is divisible by a prime greater than k.

3.B. Triples of consecutive powerful integers

An integer ν is called powerful if ν > 0 and p2 |ν whenever p|ν for every prime p. Golomb [START_REF] Golomb | Powerful numbers[END_REF] proved in 1970 that there are infinitely many pairs of consecutive powerful integers and there exists no four (or more) consecutive powerful integers. Erdős conjectured that there is no three consecutive powerful integers. Trudgian [START_REF] Trudgian | Baker's explicit ABC conjecture implies there is no hat-trick of powerful numbers[END_REF] proved, under explicit abc-conjecture, that t < 10 20000 whenever (t -1, t, t + 1) is a triple of consecutive powerful integers. 2 We recall the result of Mollin and Walsh [START_REF] Mollin | A note on powerful numbers, quadratic fields and the Pellian[END_REF]. Assume t -1, t, t + 1 are powerful. Put

P = t, Q = (t -1)(t + 1) = my 2
where m is squarefree. Then t ≡ 0 (mod 4) which implies that m ≡ 7 (mod 8) and (t, y) is a solution of x 2 -my 2 = 1. Let m = 7. Then Mollin and Walsh [START_REF] Mollin | A note on powerful numbers, quadratic fields and the Pellian[END_REF] proved that t > 10 10 8 .

(3.6)

Hence, together with the result by Trudgian [START_REF] Trudgian | Baker's explicit ABC conjecture implies there is no hat-trick of powerful numbers[END_REF], under explicit abc-conjecture, there is no triple (t -1, t, t + 1) of consecutive powerful integers such that t 2 -7y 2 = 1. In [ChShSi], Chim, Shorey and Sinha checked that when m ∈ {15, 23, 31, 39, 47, 55, 87}, then (3.6) can be replaced by t > 10 3×10 13 .

Therefore, combining with the result by Trudgian [START_REF] Trudgian | Baker's explicit ABC conjecture implies there is no hat-trick of powerful numbers[END_REF] and explicit abc-conjecture, there is no triple (t-1, t, t+1) of consecutive powerful integers such that t 2 -my 2 = 1 with m ∈ {7, 15, 23, 31, 39, 47, 55, 87}.

If (t-1, t, t+1
) is a triple of powerful integers, then N (t(t 2 -1)) < t3/2 . It was also proved in [ChShSi], that the above inequality does not hold for all sufficiently large t whenever explicit abc-conjecture holds. More precisely, they proved Theorem 3.2. If t > 10 51075 , then explicit abc-conjecture implies that

N (t(t 2 -1)) > t 1.52
where N is the square free part of t(t 2 -1). This is obtained by using c < 32N 1.6 from Theorem 2.2 and c < N 1+G 1 (N ) from Theorem 2.3 with N = 10 77544 and N = 10 77785 .

3.C. Generalised Fermat's equation

Let p, q, r be positive integers ≥ 2 with (p, q, r) = (2, 2, 2). The equation

x p + y q = z r , (x, y, z) = 1 with integers x > 0, y > 0, z > 0 (3.7)
is called the generalized Fermat equation. We consider (3.7) with p ≥ 3, q ≥ 3, r ≥ 3. For solving (3.7), there is no loss of generality in assuming x > 1, y > 1 and z > 1 since otherwise (3.7) is completely solved by Mihȃilescu [START_REF] Mihȃilescu | Primary Cyclotomic Units and a proof of Catalan Conjecture[END_REF].

Let [p, q, r] denote all permutations of the ordered triple (p, q, r). Let

Q = {[3, 5, p] : 7 ≤ p ≤ 23, p prime} ∪ {[3, 4, p] : p prime}.
Then Laishram and Shorey [START_REF] Laishram | Baker's explicit abc-conjecture and applications[END_REF] proved that (3.7

) with x > 1, y > 1, z > 1, p ≥ 3, q ≥ 3, r ≥ 3 implies that [p, q, r] ∈ Q such that max (x p , y q , z r ) < e 1758.3353
whenever explicit abc-conjecture holds. Chim, Shorey and Sinha [ChShSi] sharpen the above result using Theorem 2.2 as follows.

Theorem 3.3. Assume explicit abc-conjecture. Let

Q 1 = {[3, 5, p] : 7 ≤ p ≤ 19} ∪ {[3, 4, p] : p ≥ 11}
where p is a prime number. Then (3.7)

with x > 1, y > 1, z > 1, p ≥ 3, q ≥ 3 and r ≥ 3 implies that [p, q, r] ∈ Q 1 .
Further for each [p, q, r] ∈ Q 1 , they gave the following upper bound for max(x p , y q , z r ).

[p, q, r] max(x p , y q , z r ) < [p, q, r] max(x p , y q , z r ) < 

3.D. Conjecture of Erdős and Woods

Under explicit abc-conjecture, Shorey and Tijdeman [START_REF] Shorey | Arithmetic properties of blocks of consecutive integers, From arithmetic to zeta functions[END_REF] proved the conjecture of Erdős and Woods [START_REF] Erdős | How many pairs of products of consecutive integers have the same prime factors[END_REF] which states that there are no positive integers m < n such that for i = 0, 1, 2 the numbers m + i and n + i have the same prime factors. On the other hand, there are infinitely many pairs (m, n) with m = n such that m, n and m + 1, n + 1 have the same prime factors. For example, for h ≥ 2, if we take (m, We give a short description on how explicit abc-conjecture is used in the proof of [START_REF] Shorey | Arithmetic properties of blocks of consecutive integers, From arithmetic to zeta functions[END_REF]. Assume that for i = 0, 1, 2 the numbers m + i and n + i have the same prime factors. We have (n + 1) 2 = n(n + 2) + 1.

n) = (2 h -2, 2 h (2 h -2)), then (m + 1, n + 1) = (2 h -1, (2 h -1) 2 ).
Using Theorem 2.1 with a = n(n + 2), b = 1 and c = (n + 1) 2 , we get

n 2 < c <   p|(n-m) p   7 4 ≤ (n -m) 7 4 < n 7 4 ,
which is a contradiction.

3.E. Equation of Nagell and Ljunggren

Nagell-Ljunggren equation is the equation

y q = x n -1 x -1 (3.8) in integers x > 1, y > 1, n > 2, q > 1.
This equation has solutions given by

3 5 -1 3 -1 = 11 2 , 7 4 -1 7 -1 = 20 2 , 18 3 -1 18 -1 = 7 3 .
These are called exceptional solutions and any other solution is termed as non-exceptional solution.

For an account of results on (3.8), see Shorey [START_REF] Shorey | Exponential diophantine equations involving products of consecutive integers and related equations, Number Theory[END_REF] and Bugeaud and Mignotte [START_REF] Bugeaud | L'equation de Nagell-Ljunggren x n -1 x-1 = y q[END_REF]. It is conjectured that there are no non-exceptional solution and Laishram and Shorey [START_REF] Laishram | Baker's explicit abc-conjecture and applications[END_REF] confirmed this under explicit abc-conjecture.

3.F. Ideal Waring's Conjecture

For each integer k ≥ 2, denote by g(k) the smallest integer g such that any positive integer is the sum of at most g integers of the form x k . A result of J. A. Euler implies that a lower bound for g(k) 

is 2 k + 3 2 k -2.

New improvement on (1.3)

Now we give a sharpening to (2.4) as follows.

Theorem 4.1. Assume the explicit abc-conjecture. Then (1.1) implies that for N ≥ 1, c < N 1.7 . (4.9)

The improvement depends crucially on the records of ABC-triples in [START_REF] Reyssat | Bart de Smit -ABC triples -by quality[END_REF], and on the recent work of Matschke and von Känel [MaKä18a, [START_REF] Matschke | Solving S-unit, Mordell, Thue, Thue-Mahler and generalized Ramanujan-Nagell equations via Shimura-Taniyama conjecture[END_REF][START_REF] Matschke | Source code for the datas for S-unit equations[END_REF] for solving S-unit equations via Shimura-Taniyama conjecture which is confirmed in [START_REF] Breuil | On the modularity of elliptic curves over Q: wild 3-adic exercises[END_REF].

4.A. Lemmas

For any real number x > 0, let Θ(x) = p≤x p and θ(x) = log(Θ(x)). In 1983, G. Robin [START_REF] Robin | Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n[END_REF] proved the following lemma for θ(x).

Lemma 4.2. Let p n be the nth prime. Then

θ(p n ) ≥ n log n + log 2 n -1.076869 for n > 1.
For given 0 < θ < 1, m ≥ 2 and K > 0, let

f (x) = (log x) m m! -Kx θ .
Then

g(x) = x 1-θ (m -1)!f (x) = (log x) m-1 x θ -Kθ(m -1)! and g (x) = (log x) m-2 x 1+θ m -1 -θ log x .
Then we have the following Lemma.

Lemma 4.3. Assume that there exist positive numbers x 0 and x 1 with 1 < x 1 ≤ x 0 such that f (x 0 ) < 0, g(x 0 ) < 0 and g (x 1 ) < 0. (4.10)

Then f (x) < 0 for x ≥ x 0 .
Proof. The proof is in [ChShSi, Lemma 2.8].

4.B. Proof of Theorem 4.1

First, by following the same proof as in [LaSh12, Theorem 1], we have ω 1 = 20 and ω = 19 for = 0.7 such that

≥ 1 + log X 0 (i) X 0 (i) for i ≥ ω 1 and i!Θ(p i ) θ(p i ) i > √ 2πi for i ≥ ω holds.
Here we have X 0 (i) = log i + log 2 i -1.076869, then θ(p i ) ≥ iX 0 (i) by Lemma 4.2 and i!N

(log N ) i > i!Θ(p i ) θ(p i ) i
. Therefore, we have (4.9) for ω ≥ 19.

Next, we check that for 13 ≤ ω < 19, we have

ω!Θ(p ω ) θ(p ω ) ω > 6 5 .
Thus we get (log N ) ω ω! < 5 6 N 0.7 for N > 2, 13 ≤ ω < 19.

Therefore, for 13 ≤ ω < 19, we also have (4.9). Now we consider ω ≤ 12. We apply Lemma 4.3 with x 1 = x 0 , K = 5/6 and θ = 0.7. Then N 's lies in the range p≤pω p, x 0 . (i). We observe that for 2 ≤ ω ≤ 3, we may choose x 1 = x 0 = p≤pω p so that (4.10) is satisfied. Then (4.9) follows by Lemma 4.3 with K = 5/6. (ii). For 4 ≤ ω ≤ 12, we choose x 1 = x 0 as given in Table 1 so that (4.10) is satisfied and we perform SAGE computation to extract all square free N with ω(N ) = ω that lie in the range p≤pω p, x 0 . Hence we obtain Table 1.

By (1.2), for each N = Q 1 Q 2 • • • Q ω where Q 1 , Q 2 , . . . , Q ω are distinct primes and 4 ≤ ω ≤ 12, it suffices to restrict c ∈ N 1.7 , 6 5 N (log N ) ω ω!
otherwise (4.9) holds. We observe that c < 10 20 in order to

have c ∈ N 1.7 , 6 5 N (log N ) ω ω!
for those N ∈ [L, U ) for 4 ≤ ω ≤ 10 in Table 1. We refer to the website [START_REF] Reyssat | Bart de Smit -ABC triples -by quality[END_REF] maintained by de Smit in which a complete list of (a, b, c) with q = log c log N > 1.4 and c < 10 20 extracted by various mathematicians are recorded. It is found that all have q < 1.7 and hence satisfy c < N 1.7 . Therefore, (4.9) holds for 4 ≤ ω ≤ 10.

Besides referring to the results from [START_REF] Reyssat | Bart de Smit -ABC triples -by quality[END_REF], we adopt the results from the work of Matschke and von Känel [START_REF] Matschke | Data for S-unit equations[END_REF], in connection to their work [START_REF] Matschke | Solving S-unit, Mordell, Thue, Thue-Mahler and generalized Ramanujan-Nagell equations via Shimura-Taniyama conjecture[END_REF], to tackle the cases in Table 1 with 11 ≤ ω ≤ 12. They have a record of

a + b = c, 0 < a ≤ b < c, gcd(a, b, c) = 1, rad(abc)|2 • 3 • 5 • 7 • 11 • 13 • 17 • 19 • 23 • 29 • 31 • 37 • 41 • 43 • 47 • 53. (4.11)
For all the (a, b, c) recorded in [START_REF] Matschke | Data for S-unit equations[END_REF], all satisfy c < N 1.7 . For the case when ω = 12, the 9 values of N ∈ [L, U ) extracted are 7420738134810, 8222980095330, 8624101075590, 9426343036110, 9814524629910, 10293281928930, 10491388397490, 10629705976890 and 11003163441270. It is observed that they all have prime factors not exceeding 53. Therefore according to the results from [START_REF] Matschke | Data for S-unit equations[END_REF], (4.9) is fulfilled.

For the case when ω = 11, it is checked that among all the 81 values of N ∈ [L, U ) extracted, 55 of them have all prime factors not exceeding 53 so that (4.9) is fulfilled by the results from [START_REF] Matschke | Data for S-unit equations[END_REF] again. The list of 26 remaining N 's and their prime factorization is shown in Section 6. (Appendix) for readers' reference. For these 26 values of N , 23 of them yield c < 10 20 when only those c's in N 1.7 , 6 5 N (log N ) ω ω! are considered. Therefore (4.9) is fulfilled according to the results from [START_REF] Reyssat | Bart de Smit -ABC triples -by quality[END_REF]. The remaining three N 's for consideration are listed in Table 2.

Finally, we make use of the SAGE program supplied by Matschke and von Känel [START_REF] Matschke | Data for S-unit equations[END_REF] in [START_REF] Matschke | Source code for the datas for S-unit equations[END_REF] to obtain all coprime (a, b, c) satisfying a+b = c and 0 < a ≤ b < c for the three remaining cases of N in Table 2. They all give q = log c log N < 1.7. Therefore, (4.9) is fulfilled for ω = 11 as well and hence (4.9) holds. The SAGE Program of [START_REF] Matschke | Source code for the datas for S-unit equations[END_REF] depends on new algorithms so that the running time is reduced greatly compared to that of the algorithm applied in the proof of (2.4) in [START_REF] Chim | On Baker's explicit abc-conjecture[END_REF]Section 4]. The executing time for each case of N in Table 2 is less than 2 hours. We consider the following analogue of the equation of Hickerson and Erdős given in Section 3.1. For each non negative integer j, define u j as the product of the odd numbers ≤ j. Thus if j is odd,

u j = 1 • 3 • 5 • • • j = 1 • 2 • 3 • 4 • • • (j -1) • j 2 • 4 • 6 • • • (j -1) = j! 2 j-1 2 j-1 2 ! .
We consider the following equation

u a 1 u a 2 • • • u at = u n in odd integers n > a 1 ≥ a 2 ≥ • • • ≥ a t ≥ 3, t > 1.
(5.12)

If n -a 1 = 2, (5.12) has infinitely many solutions by choosing a 2 , a 3 , . . . , a t arbitrary and

a 1 = u a 2 • u a 3 • • • u at -2.
Therefore we always assume that n -a 1 ≥ 4 since n -a 1 is even. We observe that

u 23 • u 2 5 • u 3 = u 27
and this may be the only solution of (5.12) when n -a 1 ≥ 4. We write x and k for integers satisfying x > 0 and k ≥ 2,

∆(x, 2, k) = x(x + 2) • • • (x + 2(k -1))
and

x = a 1 + 2, k = n -a 1 2 ≥ 2.
(5.13)

We re-write (5.12) as u a 2 u a 3 • • • u at = ∆(x, 2, k). We observe that x > 2 is odd since a 1 > 0 is odd. Further P (u a 2 u a 3 • • • u at ) = P (∆(x, 2, k)) ≤ a 2 . Since x = a 1 +2 > a 2 , we have x, x+2, . . . , x+2(k -1) are all composite. Since x is odd, x + 1, x + 3, . . . , x + 2k -3, x + 2k -1 are all even and therefore the interval [x, x + 2k) contains no prime. Therefore we consider equation

u a 2 u a 3 • • • u at = ∆(x, 2, k) (5.14)
where x is odd and there is no prime in {x, x + 2, . . . , x + 2(k -1)}. We observe that (x, k) = (25, 2) is a solution of (5.14). In [START_REF] Nair | On products from blocks of consecutive odd integers[END_REF], Nair and Shorey proved that (5.14) implies k ≤ 23 under the assumptions of explicit abc-conjecture. Further, they gave the following upper bounds for x when 2 ≤ k ≤ 23 where x and k are given by (5.13). shall use. For more details, we refer to [NaSh18, Section 2]. We count the power of 3 on both sides of (5.14). The power of 3 on the left hand side is at least the power of 3 in u a 2 . In the product on the right hand side of (5.14), we delete a term in which 3 appears to the highest power. The power of 3 in this term cannot exceed log(x+2(k-1)) log 3

. Moreover, the power of 3 in the remaining terms does not exceed the power of 3 in (k -1)! which is at most k-1 2 . Thus,

a 2 + 1 4 - log(a 2 + 1) log 3 < k -1 2 + log(2x) log 3 . which implies a 2 1 4 - log(a 2 + 1) a 2 log 3 < k 2 + log x log 3 -0.119. (5.15) Choose distinct x + 2j 1 and x + 2j 2 such that N (x + 2j 1 ) ≤ N (x + 2j 2 ) are the smallest among N (x + 2i) for 0 ≤ i < k. Then N (x + 2j 2 ) ≤   k-1 i=0,i =j 1 N (x + 2i)   1 k-1 ≤ k-1 i=0 N (x + 2i) 1 k-1 ≤ 1 2 exp 1.00008a 2 k -1 + k log k k -1 - log 2 2 . Consider x + 2j 1 d - x + 2j 2 d = 2(j 1 -j 2 ) d
, where d = gcd(x + 2j 1 , (j 1 -j 2 )).

(5.16)

We take

c = x+2j 1 d , a = x+2j 2 d , b = 2(j 1 -j 2 ) d if j 1 > j 2 and c = x+2j 2 d , a = x+2j 1 d , b = 2(j 2 -j 1 )
d if j 2 > j 1 so that (1.1) is satisfied such that a, b, c are relatively prime positive integers. Applying (4.9), we get

x d < N (x + 2j 1 ) N (x + 2j 2 ) 2(j 1 -j 2 ) d 1.7 . Hence log x < 1.7 2.00016a 2 k -1 + 2k log k k -1 + log k -2 log 2 .
(5.17)

The bounds for log x in [START_REF] Nair | On products from blocks of consecutive odd integers[END_REF] were obtained using P = P (∆(x, 2, k)) > 4.7k whenever x > 4.5k and (x, k) / ∈ {(25, 2), (243, 2)}. We consider the cases when P (∆(x, 2, k)) > Ck and P (∆(x, 2, k)) ≤ Ck where C is a constant. This is the crucial step and we choose the values for C appropriately depending on k.

Let k = 23. Consider the case when P = P (∆(x, 2, k)) > 12k. Then a 2 ≥ P > 12k implies a 2 ≥ 277. Consider the function F (a 2 ) = log(a 2 + 1) a 2 log 3 .

This is a decreasing function and thus F (a 2 ) ≤ F (277) ≤ 0.0185 which we use in (5.15), to get a 2 (0.25 -0.0185) < k 2 + log x log 3 -0.119.

(5.18)

We use the bound for a 2 given by (5.18) in (5.17) to get log x < 56. Now we have to consider the case when P ≤ 12k. This will imply either a 2 ≤ 12k or a 2 > 12k. If a 2 > 12k, this will reduce to the earlier case. Therefore, we can always assume that a 2 ≤ 12k. We apply this bound for a 2 in (5.17) to get log x < 57. Thus combining both the cases, we have log x < 57 when k = 23. Similarly for 15 ≤ k ≤ 22, we get the following bounds for log x with a suitable choice for C which determines the cases according as P > Ck and P ≤ Ck. As in the earlier cases of 15 ≤ k ≤ 23, now we consider the cases according as P > 50k and P ≤ 50k along with (5.19) and (5.15) to get log x < 187 and 179 respectively. Thus combining all the cases, we get log x < 351 when k = 14.

  are some values of , ω and N . 37.1101 e 204.75 e 335.71 e 686.163 e 1004.763 e 3894.57 e59365.671 

  Thus m, n and m + 1, n + 1 have the same prime factors. We are not aware of any other infinite family contradicting the above conjecture of Erdős and Woods. But there is an isolated example given by (m, n) = (75, 1215). Then (m, n) = (3 • 5 2 , 3 5 • 5) and (m + 1, n + 1) = (2 2 • 19, 2 6 • 19). It is proved in [BLSW96, Proposition 1 with d = d = 1] that there are only finitely many possibilities of pairs (m, n) of positive integers with m < n such that N (m + i) = N (n + i) for i = 0, 1, 2.

4.

  New improvement on (1.3) 148 4. New improvement on (1.3)

Table 1 :

 1 

	ω	L = p≤pω p	U = x 0	No. of N with N ∈ [L, U )
	4	210	270	0
	5	2310	13500	39
	6	30030	278000	148
	7	510510	5250000	331
	8	9699690	96800000	480
	9	223092870	1773000000	456
	10	6469693230	32600000000	270
	11 200560490130	600000000000	81
	12 7420738134810 11050000000000	9

Table 2 :

 2 

	N 584241427770 2, 3, 5, 7, 11, 13, 17, 19, 23, 37, 71 1.0074 × 10 20 1.0143 × 10 20 Prime factors N 1.7 > 6 5 N (log N ) ω < ω!
	585172598010 2, 3, 5, 7, 11, 13, 17, 19, 23, 43, 61	1.01 × 10 20	1.0166 × 10 20
	586064969490 2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 67 1.012 × 10 20	1.188 × 10 20
	5. Application of Theorem 4.1		

Table 3 :

 3 k log x < k log x < k log x < k log x <In this Section, we considerably improve the bounds for log x for 13 ≤ k ≤ 23 given in Table3as follows. The new bounds are given in Table4. We recall the inequalities from[START_REF] Nair | On products from blocks of consecutive odd integers[END_REF] which we

	2	4042	8	2739	14	1150	20	143
	3	594	9	2168	15	1051	21	115
	4	2766	10	1987	16	443	22	98
	5	587	11	1683	17	362	23	86
	6	1350	12	1458	18	360		
	7	3661	13	1286	19	199		
				Table 4:			
		k log x < k log x < k log x <	
		13	574	17	110	21	68	
		14	351	18	91	22	60	
		15	220	19	85	23	57	
		16	143	20	71			

  Let k = 14. Here we need to consider first when N (abc) < e204.75 . Applying (4.9) in (5.16), we get log x < 1.7 × 204.75 + log k < 351.Therefore we may assume that N (abc) ≥ e 204.75 . Applying Theorem 2.1 with = 7 12 in (5.16), we get

			k C log x < k C log x <	
			22 12	60	18 20	91	
			21 15	68	17 25	110	
			20 15	71	16 35	143	
			19 20	85	15 55	220	
	x d	<	6 √ 5 98π	N (x + 2j 1 ) N (x + 2j 2 )	2(j 1 -j 2 ) d	19 12	.
	This implies as in (5.17) that						
	log x <	19 12	2.00016a 2 k -1	+	2k log k k -1	+ log k -2 log 2 + log	6 √ 5 98π	.	(5.19)

It should be noted that the bound t < 10 20000 can be strengthened to t < 10 14000 if the same deduction as in[START_REF] Trudgian | Baker's explicit ABC conjecture implies there is no hat-trick of powerful numbers[END_REF] with = 1

and ω = 6016 from Theorem 2.1 are applied.

Acknowledgements. The first author is supported by the Austrian Science Fund (FWF) under the project P26114. The second author is supported by NBHM and the third author by INSA Senior Scientist award. The authors would like to thank B. Matschke and R. von Känel for referring the authors to their work of solving S-unit equations in [MaKä18b] and for making the SAGE program [MaKä18c] and the solutions of (4.11) (see [MaKä18a]) available.

6. Appendix 154 6. Appendix

Let k = 13. Assume that N (abc) < e 335.71 . Applying (4.9) in (5.16), we get log x < 1.7 × 335.71 + log k < 574.

Therefore we may assume that N (abc) ≥ e 335.71 . Applying Theorem 2.1 with = 6 11 in (5.16), we get

(5.20)

Now we consider the cases according as P > 100k and P ≤ 100k along with (5.20) and (5.15) to get log x < 326 and 343, respectively. Thus combining all the cases, we get log x < 574 when k = 13.

Appendix

The following provides supplementary information to the proof of Theorem 4.1 in Section 4.B. for readers' reference. For ω = 11, the list of 26 cases of N with prime factors exceeding 53 and their prime factorization is as follows: