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Sixty years ago the first named author gave an example [Sch58] of a circle passing through an arbitrary number of integral points. Now we shall prove: The number N of integral points on the circle (x -a) 2 + (y -b) 2 = r 2 with radius r = 1 n √ m, where m, n ∈ Z, m, n > 0, gcd(m, n 2 ) squarefree and a, b ∈ Q does not exceed r(m)/4, where r(m) is the number of representations of m as the sum of two squares, unless n|2 and n • (a, b) ∈ Z 2 ; then N ≤ r(m).

Sixty years ago the first named author gave an example [START_REF] Schinzel | Sur l'existence d'un cercle passant par un nombre donne de points aux coordonnees entieres[END_REF] of a circle passing through an arbitrary number of integral points. If the center of a circle is not a rational point (i.e. not both coordinates are rational numbers) then it passes through no more than 2 rational points. In fact, the equation of the perpendicular bisector of a segment joining two rational points has rational coefficients, hence the circumcenter of a triangle with rational vertices has to be rational as well. From now on we will consider only circles Lemma 0.2. Assume that β, γ 1 , γ 2 ∈ Z[i] and c ∈ N satisfy

(x -a) 2 + (y -b) 2 = r 2 , ( 0 
N (γ 1 ) = N (γ 2 ) = c 2 , (0.2) βγ 1 ≡ βγ 2 (mod c), (0.3)
if a rational prime t divides c then t |βγ 1 and t |βγ 2 . (0.4)

Then γ 1 ∼ γ 2 in Z[i].
Proof. We assume from the beginning that γ 1 = γ 2 .

1. Case gcd(β, c) ∼ 1: We can divide the congruence (0.3) by β and obtain

γ 1 -γ 2 = cδ with δ ∈ Z[i], δ = 0. Further N (γ 1 ) + N (γ 2 ) -γ 1 γ 2 -γ 2 γ 1 = c 2 N (δ). If we put γ 1 γ 2 = f + gi with f, g ∈ Z then by equation (0.2) we obtain 2f = (2 -N (δ))c 2 .
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Hence f = u 2 • c 2 with u ∈ Z, u ≤ 1. Because f 2 + g 2 = N (γ 1 γ 2 ) = c 4 by (0.2)
one obtains

g 2 = c 4 -f 2 = c 4 (1 - u 2 4 ). It follows u ∈ {-2, -1, 0, 1} but u ∈ {-1, 1} would lead to g ∈ Q. Hence u ∈ {0, -2}. If u = 0 then f = 0, g = ±c 2 hence γ 1 γ 2 = ±c 2 i what gives γ 1 c 2 = ±c 2 iγ 2 ,
and finally

γ 1 = ±iγ 2 . If u = -2 then f = -c 2 ,g = 0 hence γ 1 γ 2 = -c 2 and γ 1 = -γ 2 .
2. Case N (gcd(β, c)) = d > 1: We adopt inductive method and assume that the assertion of lemma holds for N (gcd(β, c)) < d. Let π be a prime element of the ring Z[i] satisfying π|β and π|c. By condition (0.4) (and (0.2)) N (π) = p is a rational prime of the form 4k + 1. By (0.2) π|γ 1 or π|γ 1 , but the latter is excluded by (0.4), hence π 2l ||γ 1 where p l ||c. In the same way π 2l ||γ 2 . Rewrite the initial equality

βγ 1 -βγ 2 = δc with δ ∈ Z[i], δ = 0 in the form β γ 1 π 2l -β γ 2 π 2l = δπ 2l p l • c p l
where all fractions are algebraic integers. Using the inductive assumption finishes the proof of lemma.

Proof of Theorem. The considered circle (0.1) is given by the equation 

N = card{(x, y) ∈ Z 2 |(Cx -A) 2 + (Cy -B) 2 = c 2 m}. Each solution (x, y) ∈ Z 2 to the equation (Cx -A) 2 + (Cy -B) 2 = c 2 m (0.6) is encoded by the equality (Cx -A) + (Cy -B)i = β • γ (0.7) with β, γ ∈ Z[i] and N (β) = m, N (γ) = c 2 .
Assume now to the contrary that the number of solutions (x, y) ∈ Z 2 to the equation (0.6) exceeds r(m)/4. It follows that there exist

β 1 , β 2 , γ 1 , γ 2 ∈ Z[i] satisfying β 1 ∼ β 2 , N (β 1 ) = N (β 2 ) = m, N (γ 1 ) = N (γ 2 ) = c 2 , γ 1 β 1 ≡ γ 2 β 2 (mod c) and γ 1 β 1 = γ 2 β 2 .
Adjusting γ 1 , γ 2 for a unit (if necessary) we may assume that there are β, γ 1 , γ 2 ∈ Z[i] satisfying

N (β) = m, N (γ 1 ) = N (γ 2 ) = c 2 , βγ 1 ≡ βγ 2 (mod c), γ 1 = γ 2 .
Now we infer by Lemma that γ 2 ∈ {-γ 1 , iγ 1 , -iγ 1 }.

((0.4) is fulfilled by the assumption (A, B, C) = 1.) In all above cases we get 2βγ 1 ≡ 0 (mod c). 

(nx 2 -A) + (ny 2 -B)i = i k [(nx 1 -A) + (ny 1 -B)i] hence (1 -i k )(A + Bi) ≡ 0 (mod n).
It follows n|(2A, 2B) and since (A, B, n) = 1 we infer that n|2.

Remark. The number 1/4 in our theorem is optimal and here is an example. Let m be of the form 3k + 2 and satisfying r(m) > 0. The equality m = x 2 + y 2 implies x ≡ ±1 (mod 3), y ≡ ±1 (mod 3). It follows that (x -1/3) 2 + (y -1/3) 2 = m/9 has r(m)/4 integer solutions.

  .1) with a, b ∈ Q and we shall prove Theorem 0.1. The number N of integral points on the circle (0.1) with radius r = 1 n √ m, where m, n ∈ Z, m, n > 0, gcd(m, n 2 ) squarefree does not exceed r(m)/4, where r(m) is the number of representations of m as the sum of two squares, unless n|2 and n • (a, b) ∈ Z 2 ; then N ≤ r(m).

  a = A/C, b = B/C, where A, B, C ∈ Z, C > 0, (A, B, C) = 1. It follows that n|C and hence C = nc with c ∈ N. The number N of integral points on the circle (0.5) satisfies

For c > 2

 2 this contradicts the condition (A, B, C) = 1. In case c = 2, for any integers A, B and C ≡ 0 (mod 2) the conditions (A, B, C) = 1 and (Cx -A) 2 + (Cy -B) 2 = 4m are incompatible. Concluding: N > r(m)/4 is possible only for c = 1. In case c = 1, C = n and by (0.6) one gets N ≤ r(m). It remains to deduce n|2 from N > r(m)/4. It follows from the last inequality that there exist integers x 1 , x 2 , y 1 , y 2 and k ∈ {1, 2, 3} satisfying
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