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Abstract. Using a method due to G. J. Rieger, we show that for 1 < c < 2 one has, as x tends to infinity

Card{n ≤ x : bncc is cube-free } =
x

ζ(3)
+O

(
x(c+1)/3 log x

)
,

thus improving on a recent result by Zhang Min and Li Jinjiang.
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1. Introduction

The Segal-Piatetski-Shapiro sequence of parameter c (in short SPSc) is the sequence (bncc)n, where
buc denotes the integral part of the real number u. Those sequences have been introduced by B.
I. Segal in 1933 [Se33] who studied their additive properties. In 1953, I. I. Piatestki-Shapiro [Pi53]
proved that for 1 < c < 12/11, the sequence SPSc contains infinitely many primes, with the expected
density.

Of interest for us, here, we recall some steps in the study of squarefree and cube-free numbers in
the sequence SPSc. To our knowledge, I. E. Stux [St75] was the first to study the squarefree numbers
in SPS sequences; in 1975, he showed a result which among others implies that, as x tends to infinity,
one has

Card{n ≤ x : bncc is squarefree} = (ζ(2)−1 + o(1))x for 1 < c < 4/3. (1.1)

Shortly after, G. J. Rieger [Ri78] proved that (1.1) holds true for 1 < c < 3/2 with an explicit error
term implying a polynomial saving and mentioned that his approach could be extended to cube-
free values. In 1998, X-D. Cao and W-G. Zhai [CaZh98] improved the range of validity of (1.1) to
1 < c < 61/36. In 2008, [CaZh08], they showed that for 1 < c < 149/87, the sequence SPSc contains
infinitely many squarefree numbers.

Building on the method of Cao and Zhai, M. Zhang and J-J. Li proved a very general result which
implies that for any ε less that 10−10, one has

Card{n ≤ x : bncc is cube-free} = (ζ(3)−1 + o(x−ε))x for 1 < c < 11/6. (1.2)

Using the approach of Rieger, we prove the following

Theorem 1. For 1 < c < 2 one has, as x tends to infinity

Card{n ≤ x : bncc is cube-free} =
x

ζ(3)
+O

(
x(c+1)/3 log x

)
. (1.3)
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The key ingredient in the proof is a good estimate for the number of integers n up to x such that
bncc belongs to an arithmetic progression. Such a result has been announced in [Des73, Théorème 1]
which is equivalent to the following statement

Claim 1. Let c be in (1, 2), x be a real number and q and a be two integers such that 0 ≤ a < q ≤ xc.
One has ∣∣∣∣Nc(x; q, a)− x

q

∣∣∣∣�c min

(
xc

q
,
x(c+1)/3

q1/3
,
x(c+4)/7

q1/7

)
, (1.4)

where
Nc(x; q, a) = Card{n ≤ x : bncc ≡ a (mod q)}. (1.5)

For proving Theorem 1, we simply need the weaker form

Theorem 2. Let c be in (1, 2), x be a real number and q and a be two integers such that 0 ≤ a <
q ≤ xc. One has ∣∣∣∣Nc(x; q, a)− x

q

∣∣∣∣�c min

(
xc

q
,
x(c+1)/3

q1/3

)
. (1.6)

Since the note [Des73] does not give complete proofs, we shall prove Theorem 2 in Section 3. and
give a hint on how to prove Claim 1. In the next Section, we show how to deduce Theorem 1 from
Theorem 2.

We end this introduction with a general remark concerning the study of the intersection of SPSc
with a given sequence A: one can use a direct approach, namely starting with the elements of SPSc
and asking whether they are in A, or an inverse one: starting with the elements of A and asking
whether they are in SPSc. The popularity of the inverse approach may be due to the fact that it is -
up to now - the only one to be successful for detecting primes in SPSc: indeed, Piatetski-Shapiro was
looking at elements of SPSc in the sequence of primes! In the above-mentioned results, Stux uses the
inverse approach, whereas Rieger uses the direct one; Cao and Zhai, as well as Zhang and Li, use the
inverse one and we use Rieger’s, i.e. the direct one. By the way, in the study of the distribution of
SPSc in arithmetic progressions, [Des73] uses the direct method and improves on previous results by
Rieger [Ri67] and Somayajulu [So71].

2. Proof of Theorem 1

Let χ3 denote the indicator function of cube-free numbers. It is readily seen that one has

χ3(n) =
∑
d3|n

µ(d);

indeed both terms are mutiplicative functions of n which coincide on prime powers. Let us denote by
Ac(x) the number of integers n at most equal to x such that bncc is cube-free. We have

Ac(x) =
∑
n≤x

∑
d3|bncc

µ(d) =
∑

d≤xc/3
µ(d)Nc(x; d3, 0).

Using Theorem 2, we get

Ac(x) = x
∑

d≤xc/3
µ(d)/d3 +O

 ∑
d≤xc/3

min

(
xc

d3
,
x(c+1)/3

d

) . (2.7)
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For the first sum, we have

x
∑

d≤xc/3
µ(d)/d3 − ζ(3)−1x = O

x ∑
d>xc/3

d−3

 = O
(
x1−2c/3

)
. (2.8)

We break the sum in the error term of (2.7) at xc/3−1/6 and get

∑
d≤xc/3

min

(
xc

d3
,
x(c+1)/3

d

)
≤

∑
d≤xc/3−1/6

x(c+1)/3

d
+

∑
d>xc/3−1/6

xc

d3
� x(c+1)/3 log x. (2.9)

Theorem 1 simply comes from (2.7), (2.8) and (2.9).

3. Proof of Theorem 2

3.A. The case of a dyadic interval

The key ingredient in the proof of Theorem 2 is the following.

Proposition 1. Let c be in (1, 2). There exists a real Kc such that for any real number M and
integers a and q satisfying

0 ≤ a < q < M c−1/2, (3.10)

one has ∣∣∣∣∣∣∣∣
∑

M<m≤2M
bmcc≡amod q

1− M

q

∣∣∣∣∣∣∣∣ ≤ Kc
M (c+1)/3

q1/3
. (3.11)

Proof. One has the equivalence

bncc ≡ a (mod q) ⇔
{
nc

q

}
∈
[
a

q
,
a+ 1

q

)
,

where {u} denotes the fractional part of the real number u. Thanks to the Erdős-Turán inequality
(in the form given in [Mon94]), we have for any positive integer H∣∣∣∣∣∣∣∣

∑
M<m≤2M
bmcc≡amod q

1− M

q

∣∣∣∣∣∣∣∣
≤ M

H + 1
+ 2

H∑
h=1

(
1

H + 1
+ min

(
1

q
,

1

πh

)) ∣∣∣∣∣∣
∑

M<m≤2M

e

(
hnc

q

)∣∣∣∣∣∣ , (3.12)

where e(u) = exp(2πiu). For the estimation of the trignometric sum occuring in (3.12), we use one
of the first results of van der Corput (cf. [GrKo91], p. 8, Theorem 2.2). Since the second derivative
of the function t 7→ (h/q)tc is t 7→ c(c− 1)(h/q)tc−2, van der Corput’s theorem leads to∑

M<m≤2M

e

(
hnc

q

)
�c (h/q)1/2M c/2 + (q/h)1/2M1−c/2. (3.13)

We let
H = bq1/3M (2−c)/3c. (3.14)
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We have
M/(H + 1) ≤M (c+1)/3/q1/3,

which leads to an admissible contribution to (3.11).

For the contribution of the second part of (3.12), we consider two cases according to the values of q.

First case, q < M1−c/2. This inequality is equivalent to q < H. We break the sum over h in
(3.12) at q.
For the contribution of the terms h ≤ q, we use

1

H + 1
+ min

(
1

q
,

1

πh

)
≤ 2

q
.

By (3.13), we have

q∑
h=1

1

q

∣∣∣∣∣∣
∑

M<m≤2M

e

(
hnc

q

)∣∣∣∣∣∣�c

q∑
h=1

h1/2q−3/2M c/2 +

q∑
h=1

(qh)−1/2M1−c/2.

The first sum from the RHS has the order M c/2 which is admissible since q < M1−c/2. The second
sum has the order M1−c/2, which is admissible since c > 1. For the contribution of the terms with
q < h ≤ H, we use

1

H + 1
+ min

(
1

q
,

1

πh

)
≤ 2

h
.

By (3.13), we have

H∑
h=q+1

1

h

∣∣∣∣∣∣
∑

M<m≤2M

e

(
hnc

q

)∣∣∣∣∣∣�c

H∑
h=q+1

(qh)−1/2M c/2 +
H∑

h=q+1

q1/2h−3/2M1−c/2.

The first sum from the RHS has the order H1/2q−1/2M c/2 = M (c+1)/3/q1/3 which is admissible. By
the way, the contribution of this term explains the choice of H. The second sum has the order M1−c/2,
which is admissible, as we have seen earlier.

Thus, Proposition 1 is proved in the case q < M1−c/2.

Second case, q ≥M1−c/2. This inequality is equivalent to q ≥ H. In this case, we have

1

H + 1
+ min

(
1

q
,

1

πh

)
≤ 2

H
.

By (3.13), we have

H∑
h=q+1

1

H

∣∣∣∣∣∣
∑

M<m≤2M

e

(
hnc

q

)∣∣∣∣∣∣�c

H∑
h=1

H−1(h/q)1/2M c/2 +

H∑
h=1

H−1(q/h)1/2M1−c/2.

The first sum from the RHS has the order H1/2q−1/2M c/2 = M (c+1)/3/q1/3, which is admissible. The
second sum has the order H−1/2q1/2M1−c/2 = q1/3M (2−c)/3 which is admissible since q ≤M c−1/2.

Thus Proposition 1 is also proved in the second case.
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3.B. Proof of Theorem 2

The number Nc(x; q, a) does not exceed the number of natural integers which are at most equal
to xc and which are congruent to a modulo q; we thus have 0 ≤ Nc(x; q, a) ≤ xc/q which implies
|Nc(x; q, a) − x/q| ≤ 2xc/q. Since we have x(c+1)/3/q1/3 ≥ 4xc/q when q ≥ (1/8)xc−1/2, in order to
prove Theorem 2, it is enough to prove the inequality

|Nc(x; q, a)− x/q| �c
x(c+1)/3

q1/3
(3.15)

under the condition
q < (1/8)xc−1/2 (3.16)

which we now assume to hold.

We cover the interval [2, x] with the union of intervals (x/2`, 2x/2`], for ` from 1 to L = blog x/ log 2c.
We define κ by the relation x/2κ = q2/(2c−1) and check that our assumption on q implies κ > 2.

For each positive integer ` which is at most equal to κ, we use Proposition 1 and obtain∣∣∣∣∣∣∣∣∣
∑

x/2`<m≤2x/2`

bmcc≡amod q

1− x

2`q

∣∣∣∣∣∣∣∣∣ ≤ Kc
x(c+1)/3

(2`(c+1)q)1/3
. (3.17)

Since the series
∑

2−`(c+1) converges, there exists a constant K ′c depending only on c such that∣∣∣∣∣∣∣∣∣
∑

x/2bκc<m≤x
bmcc≡amod q

1− x− x/2bκc

q

∣∣∣∣∣∣∣∣∣ ≤ K
′
c

x(c+1)/3

q1/3
. (3.18)

By the definition of κ, we have

q =
( x

2κ

)c−1/2
≥
(

x

2× 2bκc

)c−1/2

>
1

8

( x

2bκc

)c−1/2
(3.19)

Using the trivial estimate mentioned at the beginning of this subsection, we have∣∣∣∣∣∣∣∣∣
∑

1≤m≤x/2bκc
bmcc≡amod q

1− x/2bκc

q

∣∣∣∣∣∣∣∣∣ ≤ 2
(x/2bκc)c

q
≤ 8

(x/2κ)c

q
=

8

q1/3

(x/2κ)c

q2/3
.

By the definition of κ and relation (3.16), we have

(x/2κ)c

q2/3
≤ q(2c+2)/(3(2c−1)) ≤ x(c+1)/3

which leads to ∣∣∣∣∣∣∣∣∣
∑

1≤m≤x/2bκc
bmcc≡amod q

1− x/2bκc

q

∣∣∣∣∣∣∣∣∣ ≤ 8
x(c+1)/3

q1/3
.

From the last upper bound and relation (3.18) we obtained the expected relation (3.15) under the
condition (3.16), thus ending the proof of Theorem 2.
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3.C. Towards Claim 1

After having proved Theorem 2, in order to prove Claim 1 it is enough to prove that for c in (1, 2)
and 0 ≤ a < q ≤ xc−5/4, one has ∣∣∣∣Nc(x; q, a)− x

q

∣∣∣∣�c
x(c+4)/7

q1/7
.

The proof is similar to that of Theorem 2 except that we use another result of van der Corput, based
on the theorem we used and the Weyl - van der Corput inequality, namely Theorem 2.6 of [GrKo91].

Acknowledgement: We are thankful to the Harish-Chandra Research Institute and the Infosys
foundation who gave us, among others, this opportunity to return to the arithmetic properties of the
Segal-Piatetski-Shapiro sequences.
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