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provided a criterion for the set equidistribution of residue classes of subgroups in (Z/nZ) * . In this article, using similar methods, we study set equidistribution for some class of subsets of (Z/nZ) * . In particular, we study the set equidistribution modulo 1 of cosets, complement of subgroups of the cyclic group (Z/nZ) * and the subset of elements of fixed order, whenever the size of the subset is sufficiently large.

Introduction

We say (as defined in [START_REF] Murty | Effective equidistribution of eigenvalues of Hecke operators[END_REF]) that a sequence of finite multisets A n with A n ⊆ [0, 1] and |A n | → ∞ is set equidistributed mod 1 with respect to a probability measure µ, if for every continuous function f on [0, 1], we have

lim n→∞ 1 |A n | t∈An f (t) = 1 0 f (x)dµ.
(1.1)

In order to verify this condition, it suffices to check that this limit exists on a dense family of functions f in C[0, 1]. Here, we shall make use of the family of Bernoulli polynomials. Murty and Thangadurai [START_REF] Murty | The class number of Q( √ -p) and digits of 1/p[END_REF] proved that the elements of the subgroup H n of (Z/nZ) * , are set equidistributed modulo 1, whenever |H n |/ √ n → ∞ as n → ∞. Motivated from this, one may ask the following natural question: If S n is a subset of (Z/nZ) * such that |S n | > n 1 2 + , are the elements of the subset S n of (Z/nZ) * set equidistributed modulo 1, as n → ∞? In other words, does the result of [START_REF] Murty | The class number of Q( √ -p) and digits of 1/p[END_REF] apply for subsets and not just subgroups?

In general, the answer is not affirmative. For instance, if S n = {a 1 , a 2 , . . . , a m } ⊂ (Z/nZ) * where m = [n 1 2 + ] + 1 and a i 's are the first m integers ≤ n with (a i , n) = 1, then the elements of S n := S n /n are close to 0 in [0, 1] for all integers n → ∞ and hence these sets are not set equidistributed mod 1. However, for many arithmetical subsets like the set of all quadratic non-residues modulo p (which is not a subgroup of (Z/pZ) * ), and the set of all generators of (Z/nZ) * , whenever it is cyclic, the above question makes sense.

In this article, we give a partial answer to the above question. More precisely, we prove the following theorems: Theorem 1.1. Let be a given number with 0 < < 1/12. Consider an integer n = p k or 2p k for some odd prime p, some integer k ≥ 1 and a positive divisor f of n satisfying φ(n)/f ≥ n 1/2+3 . Let S n,f be a subset of (Z/nZ) * which consists precisely of those elements whose index is f in (Z/nZ) * and take the representatives S f,n as integers, say,

s n with 1 < s n ≤ n -1 and (s n , n) = 1. Let S f,n = {s/(n -1) : s ∈ S n,f } ⊂ [0, 1].
Then the sets S f,n 's are set equdistributed in [0, 1] with respect to the Lebesgue measure.
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In Theorem 1.1, when we take f = 1, then trivially the hypothesis is true. Hence, when n runs through numbers of the form n = p k or 2p k for an odd prime p and for some integer k ≥ 1, we find that the sets of generators of (Z/nZ) * are set equidistributed modulo 1.

Theorem 1.2. For an integer n = p k or 2p k for some odd prime p and for some integer k ≥ 1, let S n be a subset of (Z/nZ) * such that its complement is a subgroup of (Z/nZ) * and we take the representatives S n as integers, say, s n with 1 < s n ≤ n -1 and (s n , n) = 1. Let S n = {s/(n -1) :

s ∈ S n } ⊂ [0, 1]. For a given > 0, if |S n |/n 1 2 +2 → ∞ as n → ∞,
then the S n s are set equdistributed in [0, 1] with respect to the Lebesgue measure.

As an application of Theorem 1.2, we have the following corollary.

Corollary 1.3. Let r ≥ 2 be an integer. For any prime number p such that p ≡ 1 (mod r), let H p = {a ∈ (Z/pZ) * : a p-1 r ≡ 1 (mod p)} ⊂ (Z/pZ) * and let the representatives of H p be {h 1 , . . . , h (p-1)/r } as a subset of {1, 2, . . . , p -1}. Let S p = {a/p : a ∈ {1, 2, . . . , p -1} and a = h i for any i}.

Then, as p → ∞ such that p ≡ 1 (mod r), the sets S p 's are set equdistributed in [0, 1] with respect to Lebesgue measure. In particular, when r = 2, we get the set of all quadratic non-residues modulo p, are set equidistributed in [0, 1].

Theorem 1.4. For any integer n ≥ 2, let H n be a subgroup of (Z/nZ) * and take the representatives of H n as integers, say,

h such that 1 ≤ h < n and (n, h) = 1. Let H n = {h/n : h ∈ H n } be a finite subset of [0, 1]. If |H n |/ √ n → ∞ as n → ∞, then for any given g n ∈ (Z/nZ) * , the cosets g n H n 's are set equidistributed in [0, 1] with respect to the Lebesgue measure in [0, 1].

Preliminaries

In order to prove the sets S n are set equidistributed, it suffices to determine the behaviour of sums of the form

|Sn| k=1 f m (g k ),
for any suitable family of polynomials f m of degree m for each integer m ≥ 1, with g k ∈ S n . It is convenient to take the Bernoulli polynomials which are defined as

B m (X) = m k=0 m k B k X m-k ,
for each integer m ≥ 1 where B k denotes the kth-Bernoulli number, because the set of all finite Q-linear combinations of {B m (X)} is a dense subset of C[0, 1] (see [START_REF] Apostol | Introduction to Analytic Number Theory[END_REF]). Therefore, we consider the sum

|Sn| k=1 B m g k n
and we would like to prove that

lim n→∞ 1 |S n | |Sn| k=1 B m g k n = 1 0 B m (t)dt.
A well-known result states that (for instance, see [START_REF] Murty | Problems in Analytic Number Theory[END_REF], page 19)

2. Preliminaries 120 2. Preliminaries Lemma 2.1. For any integer m ≥ 1, we have

1 0 B m (t)dt = 0.
Thus, by Lemma 2.1, in order to prove that the sequence of sets {S n } are set equidistributed mod 1, it is enough to prove that

lim n→∞ 1 |S n | |Sn| k=1 B m g k n = 0.
The way to understand this sum,

|Sn| k=1 B m g k n
, is through the generalized Bernoulli numbers (see for instance [START_REF] Washington | Introduction to cyclotomic fields[END_REF]) which are defined as follows. For any Dirichlet character χ : (Z/nZ) * → C * and for any integer m ≥ 1, we define the m-th generalized Bernoulli number B m,χ as

B m,χ = n m-1 n a=1 χ(a)B m a n .
Then we get the connection between B m,χ and the Dirichlet L-function with character χ at s = m and use the estimates of the special values of L-functions. For more information, we refer to Murty [START_REF] Murty | Problems in Analytic Number Theory[END_REF]. Indeed, we need the following Lemma which can be found in [START_REF] Murty | Problems in Analytic Number Theory[END_REF], pp 122.

Lemma 2.2. We have the following;

1. For any character χ on (Z/nZ) * and for any integer m ≥ 1, we have

L(1 -m, χ) = - B m,χ m .
2. If χ is any character on (Z/nZ) * , then, there exists a positive constant C(m), depending only on m such that

|L(1 -m, χ)| ≤ C(m)n m-1 2
for all integers m ≥ 1 and for all n > e 17 . (Proof of this fact can be seen in the proof of Theorem 2 in [START_REF] Murty | The class number of Q( √ -p) and digits of 1/p[END_REF]).

The following lemma is standard and we shall state as follows.

Lemma 2.3. Let σ 0 (n) denote the number of positive divisors n. Then, we have σ 0 (n) ≤ n for all large enough integers n, for any given > 0. Also, we know that

φ(n) n 1-
for any given > 0, where φ stands for the Euler's totient function.

We need the following two crucial lemmas for the proof of Theorems 1.1 and 1.2 (see Lemma 3 in [START_REF] Johnsen | On the distribution of powers in finite fields[END_REF]).

Lemma 2.4. Let R be a finite ring such that R * is the cyclic group of order n for some integer n ≥ 2 and let f be a positive divisor of n. For any a ∈ R, we define

I f (a) = 1 if a ∈ R * and a is of index f in R * ; 0 otherwise,
where the index of an element a ∈ R * means the index of the subgroup generated by a in R * . Then, for any a ∈ R * , we have,

I f (a) = 1 f d|(n/f ) µ(d) d χ f d = χ 0 χ(a),
where µ is the Möbius function and the inner summation runs over all the multiplicative characters χ of R of order at most f d.

The following lemma computes the characteristic function for a given subset S of a cyclic group G such that its complement is a subgroup.

Lemma 2.5. Let G be a cyclic group of order n for some integer n ≥ 2. Let S be a finite subset of G such that G\S is a subgroup of G. Let R = {r ∈ N : r is the index of a ∈ S for some a} = {r 1 , . . . , r } be the finite subset of N.

Then i=1    1 r i d| n r i µ(d) d χ r i d =χ 0 χ(a)    =    1 if a ∈ S;
0 otherwise, where µ is the Mobius function and the inner sum runs over the multiplicative characters χ of G of order at most r i d.

Proof. Suppose a ∈ S and let r j be the index of a for some integer j ∈ {1, . . . , }. Then by Lemma 2.4, we get 1

r i d| n r i µ(d) d χ r i d =χ 0 χ(a) = 1 if i = j 0 otherwise. Therefore, we have i=1   1 r i d|(n/r i ) µ(d) d χ r i d =χ 0 χ(a)   = 1.
Now, let b ∈ G\S and let q be the index of b. Then, we shall show that

1 r i d| n r i µ(d) d χ r i d =χ 0 χ(b) = 0
for all 1 ≤ i ≤ .

To prove this, it suffices to show that q / ∈ {r 1 , r 2 , . . . , r }. Since G is a finite cyclic group, there exists a unique subgroup H q of index q. Since the index of b is q, we conclude that the subgroup generated by b is equal to H q . Also, note that any element in G, which is of index q, is a generator of H q . Since b ∈ G\S and by hypothesis G\S is a subgroup, we conclude that b ∈ H q ⊂ G\S. Since b is arbitrary, we conclude that any element of index q lies in G\S. Therefore, q / ∈ {r 1 , r 2 , . . . , r } and proves the lemma.

Proof of Theorem 1.1

By Lemma 2.4, we have

1 f d| φ(n) f µ(d) d χ f d =χ 0 χ(a) = 1 if a ∈ S f,n 0 otherwise.
Let S f,n = {g 1 , . . . , g |S f,n | } and m ≥ 1 be a given integer. Then consider

|S f,n | k=1 B m g k n = n k=1 B m k n    1 f d| φ(n) f µ(d) d χ f d =χ 0 χ(k)    = 1 f d| φ(n) f µ(d) d   n k=1 B m k n χ f d =χ 0 χ(k)   = 1 f d| φ(n) f µ(d) d   χ f d =χ 0 n k=1 χ(k)B m k n   = 1 f d| φ(n) f µ(d) d   1 n m-1 χ f d =χ 0 B m,χ   .
By Lemma 2.1, it is enough to show that for each integer m ≥ 1, we have

1 |S f,n | |S f,n | k=1 B m g k n → 0 as n → ∞.
Also, by Lemma 2.2 (1), for any character χ, we have

L(1 -m, χ) = - B m,χ m . Therefore, we get, 1 |S f,n | |S f,n | k=1 B m g k n = 1 |S f,n | 1 f d| φ(n) f µ(d) d   1 n m-1 χ f d =χ 0 (-m)L(1 -m, χ)   . ≤ 1 |S f,n | 1 f d| φ(n) f |µ(d)| d   m n m-1 χ f d =χ 0 |L(1 -m, χ)|   = m |S f,n |n m-1 1 f d| φ(n) f |µ(d)| d   χ f d =χ 0 |L(1 -m, χ)|   ≤ C (m) |S f,n |n m-1 1 f d| φ(n) f 1 d   χ f d =χ 0 n m-1 2   ,
for some positive constant C (m) that depends only on m by Lemma 2.2 (2). Therefore, we get,

1 |S f,n | |S f,n | k=1 B m g k n ≤ C (m) √ n |S f,n | 1 f d| φ(n) f 1 d   χ f d =χ 0 1   ≤ C (m) √ n |S f,n | 1 f d| φ(n) f 1 d (f d) = C (m) √ n |S f,n |    d| φ(n) f 1    = C (m) √ n |S f,n | σ 0 φ(n) f .
Since the set S f,n precisely contains the generators of the cyclic subgroup of order φ(n) f , the cardinality of the set S f,n is φ φ(n) f . Therefore, we have

1 |S f,n | |S f,n | k=1 B m g k n ≤ C (m) √ n |S f,n | σ 0 φ(n) f = C (m) √ n φ φ(n) f σ 0 φ(n) f .
For a given > 0, we know that σ 0 (n) = O(n ) and φ(n) > n 1-for all sufficiently large integers n.

Hence, since σ 0

φ(n) f ≤ C φ(n) f for some positive constant C and φ φ(n) f > φ(n) f 1-
. Thus, we get,

1 |S f,n | |S f,n | k=1 B m g k n < C (m)C √ nf 1-2 φ(n) 1-2
.

By hypothesis, we know that φ(n) f ≥ n 1/2+3 , we see that

1 |S f,n | |S f,n | k=1 B m g k n < C (m)C n 2 -6 2
and hence as n → ∞, we get the desired result, as the given satisfies 0 < < 1 12 .

Proof of Theorem 1.2

For each integer n = p k or 2p k , where p is an odd prime and k ≥ 1 is an integer, we let S n be a given subset of (Z/nZ) * such that its complement is a subgroup of (Z/nZ) * . Note that for these values of n, the group of coprime residue classes modulo n is cyclic.

Let n be one such natural number and we consider S n . Suppose r 1 , r 2 , . . . , r be the indices of the elements of S n . By lemma 2.4, we have

i=1    1 r i d| n r i µ(d) d χ r i d =χ 0 χ(a)    = 1 if a ∈ S n 0 otherwise.
Let S n = {g 1 , . . . , g |Sn| } and m ≥ 1 be a given integer. Then consider

|Sn| k=1 B m g k n = n k=1 B m k n i=1    1 r i d| φ(n) r i µ(d) d χ r i d =χ 0 χ(k)    = i=1 1 r i d| φ(n) r i µ(d) d   n k=1 B m k n χ r i d =χ 0 χ(k)   = i=1 1 r i d| φ(n) r i µ(d) d   χ r i d =χ 0 n k=1 χ(k)B m k n   = i=1 1 r i d| φ(n) r i µ(d) d   1 n m-1 χ r i d =χ 0 B m,χ   .
By Lemma 2.1, it is enough to show that for each integer m ≥ 1, we have

1 |S n | |Sn| k=1 B m g k n → 0 as n ∞.
Also, by Lemma 2.2 (1), for any character χ, we know that L(1 -m, χ) = -B m,χ m . Thus, we need to estimate the following

1 |S n | |Sn| k=1 B m g k n = 1 |S n | i=1 1 r i d| φ(n) r i µ(d) d   1 n m-1 χ r i d =χ 0 (-m)L(1 -m, χ)   .
Therefore, by Lemma 2.2 (2), we get

1 |S n | |Sn| k=1 B m g k n ≤ 1 |S n | i=1 1 r i d| φ(n) r i |µ(d)| d   m n m-1 χ r i d =χ 0 |L(1 -m, χ)|   = m |S n |n m-1 i=1 1 r i d| φ(n) r i |µ(d)| d   χ r i d =χ 0 |L(1 -m, χ)|   ≤ C (m) |S n |n m-1 i=1 1 r i d| φ(n) r i 1 d   χ r i d =χ 0 n m-1 2   = C (m) √ n |S n | i=1 1 r i d| φ(n) r i 1 d   χ r i d =χ 0 1   ≤ C (m) √ n |S n | i=1 1 r i d| φ(n) r i 1 d (r i d) = C (m) √ n |S n | i=1    d| φ(n) r i 1    = C (m) √ n |S n | i=1 σ 0 φ(n) r i ≤ C (m) √ n |S n | σ 0 (φ(n)),
where σ 0 (n) stands for the number of divisors of n and C (m) is a positive constant depending only on m. By Lemma 2.3, for any given > 0, we have σ 0

(n) = O(n ). Also, since φ(n) ≤ n, we get, σ 0 (φ(n)) = O(φ(n) ) = O(n ).
Also, since r 1 , r 2 , . . . , r l are the indices of elements of S n and each r i divides we have

≤ σ 0 (φ(n)) = O(φ(n) ) = O(n ).
Thus,

1 |S n | |Sn| k=1 B m g k n ≤ C (m)n 1 2 +2
|S n | , which holds for any > 0. This proves the theorem.

Proof of Corollary 1.3

Let H p be the given subgroup of (Z/pZ) * of cardinality (p -1)/r and S p is the complement of H p . Then,

|S p | = p -1 - p -1 r ≥ p -1 2 ≥ (p -1) 1 2 + ,
for all sufficiently large p and for any with 0 < < 1 2 . Therefore, by Theorem 1.2, the assertion follows.

Proof of Theorem 1.4

For any integer n ≥ 2, we are given a subgroup H n of the group (Z/nZ) * and we take the elements of H n as integers m such that 1 ≤ m ≤ n and (m, n) = 1. Also, it is given that for each integer n ≥ 2, the element g n ∈ (Z/nZ) * . Then consider the subset H n = H n /n of [0, 1].

We want to prove that the sets g n H n are set equidistributed mod 1. For each integer n ≥ 2, we denote H n the group of all Dirichlet characters of (Z/nZ) * which are trivial on the subgroup H n . Therefore, we have a canonical isomorphism H n ∼ = (Z/nZ) * /H n and so,

| H n | = φ(n) |H n | = φ(n) |g n H n | .
Then, we see that 1

| H n | χ∈ Hn χ(a)χ(g -1 n ) = 1 if a ∈ g n H n 0 otherwise.

Proof of Theorem 1.1

Proof of Theorem 1.1

Proof of Theorem 1.2

Proof of Theorem 1.2
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By letting H n = {a 1 , . . . , a |Hn| }, for each integer m ≥ 1, we see that

By Lemma 2.1, it is enough to show that for each m ≥ 1

Since |g n H n | = |H n |, the rest of the proof goes along the proof of subgroup H n proved in [START_REF] Murty | The class number of Q( √ -p) and digits of 1/p[END_REF]. Hence, we omit the proof here.