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The periodically supported Timoshenko beam subjected to moving forces has been investigated by numerous researches. The existed models have been developed for linear supports, and this article presents a new one for nonlinear supports. By using a periodic condition and the Fourier series development, the dynamic equation of the Timoshenko beam leads to a relation between the beam displacements and the reaction forces of the supports. This relation does not depend on the support behavior and it exists also for the Euler-Bernoulli beam. Then, the responses can be obtained by combining this relation and the constitutive law of the supports. A numerical method based on discretization of the time and frequency responses has been developed for nonlinear supports.

Moreover, the influence of the beam model has been studied with numerical examples of linear and nonlinear supports. The results show that the Timoshenko beam should be used for the moving forces with high speed and/or the supports with large stiffness.

Introduction

The periodically supported beam subjected to moving forces has been investigated in numerous publications [START_REF] Mead | Free wave propagation in periodically supported, infinite beams[END_REF][START_REF] Mead | Wave propagation in continuous periodic structures: research contributions from southampton[END_REF][START_REF] Metrikine | Vibration of a periodically supported beam on an elastic half-space[END_REF][START_REF] Vostroukhov | Periodically supported beam on a viscoelastic layer as a model for dynamic analysis of a high-speed railway track[END_REF][START_REF] Belotserkovskiy | On the oscillation of infinite periodic beams subjected to a moving concentrated force[END_REF][START_REF] Sheng | Response of infinite periodic structure to moving or stationary harmonic loads[END_REF][START_REF] Sheng | Vibration analysis of the continuous beam subjected to a moving mass[END_REF][START_REF] Nordborg | Vertical rail vibrations: Pointforce excitation[END_REF][START_REF] Nordborg | Vertical rail vibrations: Parametric excitation[END_REF][START_REF] Hamet | Railway noise: Use of the timoshenko model in rail vibration studies[END_REF]. In these articles, the Euler-Bernoulli or Timoshenko beams resting on identical supports at periodical intervals have been considered in steady-state. The response to moving forces are calculated analytically when the supports are linear. However, these models cannot be extended easily for nonlinear supports. Recently, the dynamics of a periodically supported beam has been represented by the system equivalence [START_REF] Hoang | Dynamical response of railway tracks in tunnel[END_REF] by using a periodic condition of reaction forces. This model could work for nonlinear supports, but the author has not presented a method to compute the dynamical responses. Some other researches have considered the model of beams on nonlinear foundations (i.e. the beam is supported continuously) by using the perturbation technique [START_REF] Ansari | Frequency analysis of finite beams on nonlinear KelvinVoight foundation under moving loads[END_REF][START_REF] Kargarnovin | Response of beams on nonlinear viscoelastic foundations to harmonic moving loads[END_REF][START_REF] Ding | Dynamic response of an infinite Timoshenko beam on a nonlinear viscoelastic foundation to a moving load[END_REF], the Galerkin method [START_REF] Ding | Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load[END_REF] or the numerical methods [START_REF] Chen | Steady state and stability of a beam on a damped tensionless foundation under a moving load[END_REF][START_REF] Sapountzakis | Nonlinear response of shear deformable beams on tensionless nonlinear viscoelastic foundation under moving loads[END_REF]. This article presents a complete analytic model for the dynamics of beams resting on periodic nonlinear supports. A relation between the beam displacement and the reactions forces has been established from the periodic condition and the dynamic equation of the Timoshenko beam. Then, a numerical method has been developed to compute the response form this relation and the constitutive law of the nonlinear supports. Moreover, a comparison between the Timoshenko and Euler-Bernoulli beam models has been performed with numerical examples of linear and nonlinear behaviors.

Periodically supported Timoshenko beam

Dynamical equations in steady-state

Let's consider an infinite Timoshenko beam resting on identical supports at periodical intervals as shown in Figure 1. The beam is subjected to the moving forces Q j characterized by the distance to the first force D j . Let R n (t) be the reaction force of a support at the coordinate x = nl (with n ∈ Z).
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Figure 1: Forces applied on a periodically supported beam

In steady-state, we suppose that all supports are equivalent and their responses are described by the same function, but with a delay which equals to the time for the forces to cover the distance between them. In other words, the reaction force repeats when the moving forces pass from one support to another

R n (t) = R t - nl v (1) 
where R(t) is the reaction force of the support at the origin of the reference system x = 0. The total force applied on the beam can be represented with the help of the Dirac functions

F (x, t) = ∞ n=-∞ R t - x v δ(x -nl) - K j=1 Q j δ(x + D j -vt) (2) 
In addition, we have the dynamic equations of the Timoshenko beam

       ρS ∂ 2 w r ∂t 2 = κSG ∂ 2 w r ∂x 2 - ∂φ r ∂x + F (x, t) ρI ∂ 2 φ r ∂t 2 = EI ∂ 2 φ r ∂x 2 + κSG ∂w r ∂x -φ r (3) 
where w r , φ r are the displacement and the rotation of the section of the beam;

ρ, E are the density, the Young's modulus and S, I, κ, G are the section, the 30 inertia, the shear coefficient and the shear modulus of the beam.

Equations ( 2) and (3) define the dynamics of the beam and its supports in the steady-state. Thereafter, we will resolve these equations by performing a Fourier transform with regard to the time t, and then using the Fourier series development with regard to x. Let's denote ∂ t , ∂ x the derivations with regard to t and x. By performing the Fourier transform of equation ( 3) with regard to t, we obtain

     κSG ∂ x φr = κSG ∂ 2 x ŵr + ρSω 2 ŵr + F -κSG ∂ x ŵr = EI ∂ 2 x φr -(κSG -ρIω 2 ) φr (4) 
where the hat stands for the Fourier transform with regard to t. Particularly, we obtain the following result from equation ( 2)

F = e -iω v x   R(ω) ∞ n=-∞ δ(x -nl) - K j=1 Q j v e -iω v Dj   (5) 
Thus, e iω v x F is periodic with regard to x. Therefore, if we put

ŵr = Ψ(x, ω)e -iω v x
and φr = Φ(x, ω)e

-iω v x (6) 
equation ( 4) becomes

     κSG ∂ x Φ -iω v Φ = κSG ∂ 2 x Ψ -2 iω v ∂ x Ψ -ω 2 v 2 Ψ + ρSω 2 Ψ + e iω v x F κSG iω v Ψ -∂ x Ψ = EI ∂ 2 x Φ -2 iω v ∂ x Φ -ω 2 v 2 Φ -(κSG -ρIω 2 )Φ (7) 
By the Floquet's theorem [START_REF] Walter | Ordinary differential equations[END_REF], equation [START_REF] Sheng | Vibration analysis of the continuous beam subjected to a moving mass[END_REF] has a periodic solution. We can find this solution by using the Fourier series developments of Φ and Ψ (see Appendix A). Thereafter, by combining the results of Ψ and Φ with equation ( 6) we obtain

         ŵr (x, ω) = R(ω) ∞ n=-∞ pn e ix( 2πn l -ω v ) -p0 l v K j=1 Q j e -iω v (x+Dj ) φr (x, ω) = R(ω) ∞ n=-∞ qn e ix( 2πn l -ω v ) -q0 l v K j=1 Q j e -iω v (x+Dj ) (8) 
where pn , qn (n ∈ Z) are the Fourier coefficients of Ψ, Φ calculated by equation (A7) in Appendix A. We can reduce equation ( 8) by defining η(x, ω), γ(x, ω) as

follows          η(x, ω) = ∞ n=-∞ pn e ix( 2πn l -ω v ) γ(x, ω) = ∞ n=-∞ qn e ix( 2πn l -ω v ) (9) 
Indeed, η, γ in the last equation can be reduced to simple analytical functions as shown in equations (B11) and (B14) of Appendix B. Then, by substituting equation ( 9) into equation [START_REF] Nordborg | Vertical rail vibrations: Pointforce excitation[END_REF], we obtain

         ŵr (x, ω) = R(ω)η(x, ω) -p0 l v K j=1 Q j e -iω v (x+Dj ) φr (x, ω) = R(ω)γ(x, ω) -q0 l v K j=1 Q j e -iω v (x+Dj ) (10) 
Equation ( 10) is a simple relation between the Fourier transforms of the beam displacement and the reaction force. This is a result of the periodicity condition and the dynamic equation of the Timoshenko beam, which do not depend on the support behaviour. Once the reaction force is calculated, this equation can 35 be used to compute the response of the beam. In the next section, we will introduce a system equivalence based on this relation.

System equivalence

In order to calculate the reaction force of the support, we need to compute the displacement of the beam at the support position w(t) = w r (0, t), or its Fourier transform ŵ(ω) = ŵr (0, ω). By substituting x = 0 into equation ( 10),

we have

ŵr (0, ω) = R(ω)η(0, ω) -p0 l v j Q j e -i ω v Dj (11) 
Hence, we can also write

R(ω) = K T ŵ(ω) + Q T ( 12 
)
where K T and Q T are defined by

K T = η -1 (0, ω) and Q T = K T p0 l v K j=1 Q j e -i ω v Dj (13) 
with p0 (ω), η(0, ω) are calculated by equations (A10) and (B15) in the appen-
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Equation ( 12) is a linear relation between the force and the displacement applied on the support at x = 0, and it holds for all supports because of the periodicity condition. This relation is the same as the constitutive law of an equivalent spring with stiffness K T and pre-force Q T . Therefore, we call the system equivalence of a periodically supported Timoshenko beam, which existed also for Euler-Bernoulli beams (see [START_REF] Hoang | Dynamical response of railway tracks in tunnel[END_REF]). Equation ( 12) explains the distribution mechanism of the moving forces Q j to the supports via the beam. When a moving force comes toward and leaves away the support along the direction of the beam, the reaction force of the support increases and decreases respectively.

This process is the same as a force applied on the support via the equivalent spring.

The comparison of the system equivalences with two parameters stiffness and pre-force for Euler-Bernoulli and Timoshenko beams is shown in Table 1.

We see that the stiffness K depends on two parameters λ 1,2 and C 1,2 which are different between the two beam models. However, if the shear modulus κG and the ratio E/ρ tend to infinity, λ 1,2 and C 1,2 of the Timoshenko beam tend to the ones of the Euler-Bernoulli beam. Therefore, the stiffness and pre-force for the two beam models are equivalent when the Timoshenko beam does not include the shear modulus κG and the ratio E/ρ. This phenomenon agrees well with the beam theories. 

R(ω) = K(ω) ŵ(ω) + Q(ω) Q(ω) = K(ω) p0 l v K j=1 Q j e -iω D j v K(ω) = 2EI(λ 2 1 + λ 2 2 ) C1 λ1 sin lλ1 cos lλ1-cos lω v -C2 λ2 sinh lλ2 cosh lλ2-cos lω v -1
Euler -Bernoulli beam Timoshenko beam In other words, the influence of the beam models is more important at high frequencies. In the next sections, we will calculate the responses for two beam 70 models with linear and nonlinear support behaviours in order to compare the two beam models.

λ 2 1,2 = ρSω 2 EI C 1,2 = 1 p0 l = 1 EI ω 4 v 4 -ρSω 2 λ 2 1,2 = ρSω 2 EI + ω 4 4 ρ E -ρ κG 2 ± ω 2 2 ρ E + ρ κG C 1,2 = 1 - ρIω 2 ∓EIλ 2 1,2 κSG p0 l = κSG-ρIω 2 +EI ω 2 v 2 κSG EI ω 4 v 4 -ρSω 2 -ρSI(κG+E-ρv 2 ) ω 4 v 2

Calculation of responses

Linear supports

Let's consider the viscoelastic supports represented by a stiffness k s and a damping coefficient η s . The dynamical stiffness of the supports is K s = k s +iωη s and their constitutive law is given by By combining equations ( 12) and ( 14), we obtains the response of the supports

R(ω) = -K s ŵ(ω) (14) 
       R(ω) = K s Q T K T + K s ŵs (ω) = -Q T K T + K s (15)
Then, by substituting the last results and equation [START_REF] Kargarnovin | Response of beams on nonlinear viscoelastic foundations to harmonic moving loads[END_REF] into equation [START_REF] Hamet | Railway noise: Use of the timoshenko model in rail vibration studies[END_REF] we obtain the response of the beam

       ŵr (x, ω) = Q T K s η(x, ω) K s + K T -η(0, ω)e -i ω v x φr (x, ω) = Q T K s γ(x, ω) K s + K T -γ(0, ω)e -i ω v x (16) 
Equations ( 15) and ( 16) describe completely the responses in the frequency The responses have been calculated for the linear support by using equation [START_REF] Chen | Steady state and stability of a beam on a damped tensionless foundation under a moving load[END_REF] with the beam parameters given in table 2 and the support parameters 80 k s = 20 MN/m, η s = 0.1 MNs/m. Figure 4 shows the reaction force and the displacement of the support in the frequency domain and the time domain.

Although the equivalent stiffness of the two beam models are different, the responses are almost the same because they are affected more by the lower frequencies. Moreover, the larger velocity leads to responses of smaller amplitudes, but of greater frequency range. Next, we will investigate the influence of the beam model on the responses by parametric studies.

Influence of beam models

The Timoshenko beam theory shows that the two beam models can be equivalent in static when EI κl 2 SG ≪ 1. It is remarkable that this value corresponding to the previous example is 0.0715, which is closed to the limit of this condition. Now we consider a system of supports that has a nonlinear behaviour as shown in figure 1. The reaction force of a support is given by

R(t) = -(k s w + η s w ′ + f (w)) (17) 
Combining equations ( 12) and (17) gives a system of two equations with two unknowns R and w. In order to simplify the linear part of the constitutive law, we put

P (t) = R + k s w + η s w ′ (18) 
By performing the Fourier transform, we can also write as follows

P (ω) = R + K s ŵ ( 19 
)
where K s = k s + iωη s . By combining equations ( 19) and ( 18) with equations ( 12) and ( 17) respectively, we obtain

     P = -f (w) P = (K T + K s ) ŵ + Q T (20) 
When f (w) = 0, the last equation is exactly the same result as for linear supports presented in equation [START_REF] Ding | Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load[END_REF]. When f (w) = 0, we got one equation in the frequency domain and the other in the time domain. To resolve this problem, we will discretize the unknown functions P (t) and w(t) and their Fourier transforms. It is remarkable that these functions (and their Fourier Therefore, we can use the Shannon sampling theorem [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF] to discretize these functions.

Numerical method

Suppose that it exists t max , ω max provided that

     P (t) ≃ 0, w(t) ≃ 0 if |t| ≥ t max P (ω) ≃ 0, ŵ(ω) ≃ 0 if |ω| ≥ ω max (21) 
We discretize the responses w(t), P (t) and their Fourier transforms by considering their values at t = nT and ω = nΩ with |n| ≤ N . The discretization has to satisfy the Shannon sampling theorem [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF] 

ω max ≥ π T and t max ≥ π Ω (22) 
Because t max = N T and ω max = N Ω, the last condition becomes

N T Ω ≥ π (23) 
The discretization of the first equation of (20) becomes

P n = -f (w n ) |n| ≤ N (24) 
where P n = P (nT ) and w n = w(nT ). In order to discretize the second equation of (20), we need to compute the Fourier transforms of the discretized responses P n and w n , which are given by (see [START_REF] Mallat | A Wavelet Tour of Signal Processing[END_REF])

       Pd (ω) = n P n e -inT ω = P (ω) T |ω| ≤ π T ŵd (ω) = n w n e -inT ω = ŵ(ω) T |ω| ≤ π T (25) 
Therefore, the discretization of the Fourier transforms ( P , ŵ) is deduced from the last equation

       Pm = P (mΩ) = T n P n e -inmT Ω |mΩ| ≤ π T ŵm = ŵ(mΩ) = T n w n e -inmT Ω |mΩ| ≤ π T (26) 
By combining the conditions of equations ( 23), ( 24) and the last equation, we obtain

N ΩT = π (27) 
and we have

       Pm = T N n=-N P n e -inmT Ω |m| ≤ N ŵm = T N n=-N w n e -inmT Ω |m| ≤ N (28) 
We can also rewrite the last equation in vector forms P = A P and ŵ = A w

where P , w are column vectors of P n , w n (-N ≤ n ≤ N ) and A is a square matrix defined from equation (28). Then, by substituting the last equation into the second equation of (20), we obtain

A P = K A w + Q (30)
where Q is a column vector of Q n = Q T (nΩ) and K is a diagonal matrix of 110

K n = K T (nΩ) + K s (nΩ) (with -N ≤ n ≤ N ).
Finally, by combining equations ( 24) and (30), we obtain

K A w + A f + Q = 0 ( 31 
)
where f is a column vector of

f n = f (w n ).
Equation ( 31) is nonlinear with regard to the unknown w. If f (w) ≡ 0 (linear support), we can obtain the solution of this equation as follows

w 0 ≡ -K A -1 Q = -A -1 K -1 Q (32)
The last result is exactly the discretization of the analytic solution in equation [START_REF] Ding | Convergence of Galerkin truncation for dynamic response of finite beams on nonlinear foundations under a moving load[END_REF]. In a general case, we can use a numerical solver for equation (31). In this article, we use the solver "fsolve" of MATLAB . A difficulty is that this solver does not compute complex solutions. We need to decompose the unknown w into their real and imaginary parts. The initial value of the solver is taken by the linearised solution presented in equation (32).

Example

Let's consider a nonlinear support described by the constitutive law in equation ( 17 shows the results with the two beam models for linear and nonlinear behaviours.

We see that the responses have similar forms for the two beams models and support behaviours. In particular, the reaction forces in the frequency domain have the same maximum pick at zero, but the nonlinear support has larger amplitudes in the high frequencies.

Conclusion

The system equivalence of a periodically supported beam has been developed

for the Timoshenko beam and applied to nonlinear supports. This model has been compared with the existing model for an Euler-Bernoulli beam. Then, a numerical method has been developed for nonlinear supports based on the time-frequency transform which permits a fast calculation of the response of the support systems. Moreover, the numerical examples showed that the influence of the beam model is more important when the speed of the loads is higher and/or the support stiffness is larger.

Remark : We can obtain the expressions of p0 , q0 by substituting n = 0 into equation (A7) 

       p0 = κSG-ρIω 2 +EI ω 2
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 23 Figure 2: Equivalent stiffness of Timoshenko (circle) and Euler-Bernoulli (continuous line) beams with moving velocity 150 km/h (green) and 300 km/h (red)
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 4 Figure 4: Responses of the supports with Timoshenko (circle) and Euler-Bernoulli (continuous line) beams with a moving velocity 150 km/h (green) and 300 km/h (red)

  Therefore, it is necessary to study the influence of the beam model on the dynamic responses. The external parameters which could affect on the responses are the moving force speed and the stiffness of the support. Figures5 and 6
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 56 Figure 5: Influence of the moving force speed on the reaction forces

  105 transforms) have bounded supports (see the numerical examples in section 3.1).

6 FrequencyFigure 7 :

 67 Figure 7: Responses of the supports with Timoshenko (circle) and Euler-Bernoulli (continuous line) beams with a linear (green) and a nonlinear (red) support behaviours
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 244421122 ρSω 2 -ρSI(κG+E-ρv 2 ) ρSω 2 -ρSI(κG+E-ρv 2 ) ω A10) Appendix B: Analytical expressions of η(x, ω) and γ(x, ω) 145 The function z n in equation (A8) is a second-order polynomial with regard to ω v -2πn L 2 and we can rewrite it as follows z n (ω) = κSGEI ω vsimplify the expression of pn , we substitute equation (B1) into the first equation of (A7), we can write pn (taking the equality of the coefficients of two expression of pn in equations (A7) and (B3), we obtain deduce the analytical expression of η(x, ω) in equations (9), we need to calculate the infinite sum of the series which are presented in equation (B5). Let's consider the following functionf (x) = sin λ 1 (l -x) + e -i ωl v sin λ 1 x cos lλ 1 -cos ωl v e i ω v x ∀x ∈ [0, l](B6)Remark : We obtain the expression of η(0, ω) by substituting x = 0 cos lλ 1 -cos ωl v cosh lλ 2 -cos ωl v (B15)

Table 1 :

 1 System equivalence for Euler-Bernoulli and Timoshenko beams

Table 2 :

 2 Parameters of a periodically supported beam

	Mass density	ρ kg/m 3	7850
	Young's modulus	E GPa	210
	Shear modulus	G GPa	81
	Shear coefficient	κ		0.4
	Section	S m 2	7.69e-3
	Flexion inertia	I	m 4	3.055e-5
	Sleeper spacing	l	m	0.6
	Moving force	Q kN	100
	Speed of moving force v	km/h	300

Example

Figures 2 and 3 show an example of the stiffness and the pre-force for the Timoshenko and the Euler-Bernoulli beams with the parameters presented in

Table 2 .

 2 We see that the two beam models give almost the same equivalent pre-
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force. Otherwise, the Timoshenko beam gives a smaller equivalent stiffness than the Euler-Bernoulli beam. It is remarkable that the difference takes place only at the maximum peaks of the stiffness which correspond to high frequencies.
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Appendix A: Calculation of Ψ(x, ω) and Φ(x, ω)

We will find the periodic solution of equation [START_REF] Sheng | Vibration analysis of the continuous beam subjected to a moving mass[END_REF] q n (ω)e i2πn x l (A1) with p n , q n are computed by

It is remarkable that the Fourier coefficients of e i ω v x F in equation ( 5) are calculated by

where δ 0n = 1 if n = 0 and δ 0n = 0 if n = 0. Therefore, by performing the Fourier series development of equation [START_REF] Sheng | Vibration analysis of the continuous beam subjected to a moving mass[END_REF] and by using the last equation, we obtain

Then, the following result is deduced from the second equation of (A4)

Then, by substituting the last equation into equation (A4), we obtain

where pn , qn are calculated by

with

By substituting equation (A6) into equation (A1), we obtain:

Because f (0) = f (l), the Fourier coefficients of this function are calculated by

We can write this function in the Fourier series expansion as follows

By substituting equations (B6), (B7) into the last equation, we obtain

Similarly, we have

Finally, the analytical expression of η(x, ω) in equations ( 9) can be obtained by combining (B3) and the two last results

In the similar way, we can deduce the analytic expression of γ(x, ω) by applying the derivation with regard to x of equations (B9) and (B10)

Then, by combining the two last equations and equations (B4), we obtain the analytical expression of γ(x, ω) in equation ( 9)

cos λ 1 (l -x) -e -i ωl v cos λ 1 x cos lλ 1 -cos ωl v cosh λ 2 (l -x) -e -i ωl v cosh λ 2 x cosh lλ 2 -cos ωl v (B14)