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We study theoretically the propagation of a crack
front in mode I along an interface in a disordered
elastic medium, with a numerical model considering a
thermally activated rheology, toughness disorder, and
long range elastic interactions. This model reproduces
the large scale dynamics of the crack front position
in fast or creep loading regimes, but also the small
scale self-affine behavior of the front. Two different
scaling laws are predicted for the front morphology,
with a Hurst exponent of 0.5 at small scales, and a
logarithmic scaling law at large scales, consistently
with experiments. The prefactor of these scaling laws
is expressed as function of the temperature, and of
the quenched disorder characteristics. The cross-over
between these regimes is expressed as function of
the quenched disorder amplitude, is proportional to
the average energy release rate, and to the inverse
of temperature. This model captures as well the
experimentally observed local velocity fluctuations
probability distribution, with a high velocity tail
P (v)∼ v−2.6. This feature is shown to arise when
the quenched disorder is sufficiently large, whereas
smaller toughness fluctuations lead to a lognormal-
like velocity distribution. Overall, the system is
shown to obey a scaling determined by two distinct
mechanisms as function of scale: namely, the large
scales display fluctuations similar to an elastic line in
an annealed noise excited as the average front travels
through the pinning landscape, while small scales
display a balance between thresholds in possible
elastic forces and quenched disorder.
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1. Introduction
The propagation of cracks in disordered elastic media is a widely studied physical phenomenon,
with applications in engineering, and in mechanical hazards in natural media [Bonamy &
Bouchaud(2011)]. This fundamental phenomenon rules the failure of man made structures, or
of natural materials in Earth science (e.g. [Anderson(1995),Scholz(2002)]). It involves different
physical processes, such as long range elastic interactions, thermally activated processes, and
heterogeneous material properties.

Modeling of slow crack front propagation at a finite temperature where long range elastic
interactions are dominant, is of crucial importance to fill the gap between experiments and
models. Experimentally, there has been a number of studies on the advance of crack fronts
in mode I, which have shown to present a morphology following scaling laws different
at small and large scales [Santucci et al.(2010)], an average dynamics compatible with an
Arrhenius law [Lengliné et al.(2011b)], and a velocity distribution displaying a heavy power-
law tail P (v)∼ v−2.6, [Måløy et al.(2006),Tallakstad et al.(2011),Santucci et al.(2018)], with
important consequences for the large scale behavior of the crackling activity [Tallakstad
et al.(2013)Tallakstad, Toussaint, Santucci & Måløy].

These experimental features are still not reproduced together by a unifying theoretical model,
although a number of numerical and theoretical models have been proposed (see review
[Bouchaud(1997),Bonamy & Bouchaud(2011)]).

Most of the numerical and theoretical models so far have focused on so-called quasi-static
models, defined by force equilibrium, corresponding to a temperature T = 0. Some models also
consider a rheology with a viscous term linear in velocity [Bonamy & Bouchaud(2011),Patinet
et al.(2013)]. Such models give rise to an intermittent local activity characterized by a depinning
transition and can be viewed as a critical phenomenon [Bonamy & Bouchaud(2011)]. However,
these models fail to reproduce experimental conditions as no temperature is introduced in the
system. They produce crack velocities limited to a bimodal distribution (either the front is pinned
or the front advance is instantaneous), and for most of them, front morphology does not display
any cross-over length. These two features are in contradiction with the experimental observations
( [Lengliné et al.(2011b),Santucci et al.(2010)]). Quasistatic fiber bundle models have recently been
shown to give rise to a cross-over between two scaling regimes ( [Gjerden et al.(2013)]). Elastic
line models have also shown to display two scaling regimes, that can be detected in avalanche
distributions or in front morphology, and the cross-over was found to be proportional to the
Larkin length ( [Laurson et al.(2010)]). Some elastic line models with small disorder lead to
logarithmic scaling for the front roughness growth ( [Ben-Zion & Morrissey(1995)]). However,
cracks in both kinds of models are still immobile when under a critical force threshold, unlike
experimental ones that show a creep regime. Adding temperature into the system produces
a thermal rounding of the depinning transition, allowing movement of the elastic line below
the pinning force (e.g. [Bustingorry et al.(2008)]). This slow, or creeping regime, has been
extensively documented from numerous experiments, notably in the context of rock mechanics
(e.g. [Atkinson(1987)]). The mechanism of creep in random environments has also been studied
both theoretically and numerically (e.g. [Chauve et al.(2000),Chen & Marchetti(1995)]). Creep
models often arise as a generalization, at a finite temperature, T , of the models defined in the zero
temperature limit. The thermal rounding of the depinning transition however modifies several
statistical features compared to extremal models; it notably induces a temperature-dependent
correlation length defining scales at which annealed dynamics is dominating [Vandembroucq
et al.(2004),Bustingorry et al.(2008),Kolton et al.(2009)]. Little work has however been done on
elastic line models at finite temperatures with long range interactions (non local kernel) in
heterogeneous media– modelling has been done on the creep of elastic lines following a Paris
law, which characterizes the mechanics of fatigue [Lazarus(2011)]. These features of creep of
elastic line at finite temperature are of fundamental importance to render the crack propagation
under realistic environmental conditions and are necessary for comparisons with experimental
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Figure 1. Geometry of the modeled configuration. The square of dimension Lr × Lr represents the area where we

model the crack front propagation.

observations. We propose here a model comprising an annealed noise, represented by an
Arrhenius law, quenched disorder, i.e. a random distribution of local toughness, and long-range
elastic interactions. Our numerical scheme incorporating these properties differs from those
models used to solve similar problems at zero temperature, e.g. the extremal dynamics model
[Schmittbuhl et al.(1995)] or the BKL algorithm [Rosso & Krauth(2002)].

In order to test the validity of our model, we compare its results with features reported in
experiments during interfacial crack propagation. This experimental setup is of particular interest
as it has allowed the direct observation of the crack propagation and led to characterization of
numerous robust properties of the crack dynamics. We show that our model is in agreement with
all reported properties, namely the distribution of the local speeds, the roughness of the crack
front line and the macroscopic evolution of the crack. In addition to this numerical model, we
also provide theoretical developments, that explain the observed scaling laws, and predict their
prefactors and crossover as function of the elastic parameters, quenched disorder distribution,
and temperature.

2. Model and Method
We define the modeled interface as a square of dimension Lr × Lr over which a crack front,
a(x, t), is propagating as a function of time t, in the direction y perpendicular to x. We note L0 the
distance between the loading point and the bottom edge of the modeled area. The crack front is
thus bounded betweenL0 andL0 + Lr . The crack is lying on the middle of two plates of thickness
h and width Lr (Fig. 1).

Fluctuations of the fracture energy,Gc(x, y), over the interface are defined on a set ofN discrete
sites of size dl=Lr/N , using a Gaussian distribution of mean µGc and standard deviation σGc
(Fig.2).

The crack front is then loaded by a macroscopic energy release rate, Ḡ(t), based on the
geometry of the experimental setup [Lengliné et al.(2011b)], assuming a perfectly elastic behavior
of the bulk, and neglecting mode II loading [Lengliné et al.(2011a)]:

Ḡ(t) =
3u(t)2Eh3

8(L0 + ā(t))4
, (2.1)

where E is the Young modulus of the plate, h its thickness and u(t) and ā(t) are the deflection of
the beam and the average front position at time t, respectively [Lawn(1993)]. The local fluctuations
of the energy release rate along the crack front a(x, t) are expanded from the macroscopic values
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Figure 2. (a) Example of a generated interface with N = 2048. The colors refer to the local values of Gc and the dark

line is the crack front line propagating from bottom to top. The average position of the front along the x direction is noted

ā. (b) Distribution of the local values of Gc for the surface shown in (a). In this example we set µGc = 200 J m−2 and

σGc = 50 J m−2. (c) Zoom on a sub-part of the interface around the crack front line. The area is represented by a black

rectangle in (a).

following [Gao & Rice(1989)]:

G[γ](x, t) = Ḡ(t) (1 + γ[a](x, t)) , (2.2)

where γ[a](x, t) is the influence function that reflects the static elastic interactions among sites
owing to the roughness of the front line:

γ[a](x, t) =
1

π
PV

∫∞
−∞

a(x′, t)− a(x, t)

(x′ − x)2
dx′, (2.3)

where PV denotes the principal value.
However Eq. (2.3) is not suitable for numerical implementation, due to the inverse square

(hyper) singularity. We also want to use periodic boundary conditions along x to avoid edge
effects. Eq. (2.3) may be reformulated using an integration by parts ( [Gao & Rice(1989)]) to the
weakly singular and more usual expression

γ[a](x, t) =− 1

π
PV

∫+∞

−∞

∂a(x′, t)/∂x′

x− x′ dx′. (2.4)

Its corresponding expression for Lr-periodic boundary conditions, obtained after a similar
integration by parts, is (simply writing

∫+∞
−∞ =

∑+∞
n=−∞

∫(n+1)Lr
nLr

and assuming a(x, t) is Lr-

periodic along x) γ(x, t) =− 1
Lr

PV
∫Lr

0
∂a(x′,t)/∂x′

tan[π(x−x′)/Lr]
dx′. However, the spectral formulation

introduced by [Perrin et al.(1995)], consisting in expressing a(x, t) in (2.4) as a Fourier series of
periodLr , is a very natural way of modeling periodic boundary conditions. As a test, we compute
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the energy release rate for simple front shapes, expressed from the real space and from the Fourier
space formulations, to known analytical solution. We find that this spectral method provides more
accurate results than our implementations of the other mathematically equivalent formulations
above, so this is what is used for the numerical results shown in this paper.

Specifically, inserting the Fourier series a(x, t) =
∑+∞
n=−∞An(t)e2iπnx/Lr in (2.4), and noting

that PV
∫+∞
−∞ exp(2iπnx′/Lr)/(x− x′)dx′ =−iπsign(n) exp(2iπnx/Lr), one gets

γ[a](x, t) = (2.5)

− 1

π
PV

∫+∞

−∞

(∂/∂x′)(
∑+∞
n=−∞An(t)e2iπnx

′/Lr )

x− x′ dx′

= − 1

π

+∞∑
n=−∞

PV

∫+∞

−∞

(2iπn/Lr)An(t)e2iπnx
′/Lr

x− x′ dx′

= − 1

π

+∞∑
n=−∞

(2iπn/Lr)(−iπsign(n))An(t)e2iπnx/Lr

= −2(π/Lr)

+∞∑
n=−∞

|n|An(t)e2iπnx/Lr

(see also [Cochard & Rice(1997)] section 5). For numerical implementation, the summation is
truncated to some large integer, N , and the Fourier coefficients An are computed using the same
number of sampled values aj(t) = a(j × dl, t) through the Discrete Fourier Transform (DFT):

γj(t) =−
int(N/2)∑

n=−int((N−1)/2)

2π|n|
Lr

1

N

 int(N/2)∑
m=−int((N−1)/2)

am(t)e−
2iπnm
N

 e+
2iπnj
N , (2.6)

remembering that, for N even, the (single) Nyquist component of the DFT, at j =N/2, contains
information of both the positive and negative Nyquist frequencies: DFT[a(t)]N/2 =A−N/2 +

AN/2 = 2<(AN/2(t)). In more compact form,

γ(t) = DFT−1[K DFT[a(t)]],

K(n) = −2π|n|
Lr

, (2.7)

the DFT being evaluated with the FFTW Fast Fourier Transform algorithm [Frigo &
Johnson(2005)], keeping in mind that the discrete frequency n∈ [0, N/2] for N even and n∈
[0, (N − 1)/2] for N odd.

We then assume that the propagation of the crack at the local scale (i.e. the mesoscopic scale)
is controlled by a process which is defined by an activation energy mechanism. As derived from
numerous experiments [Atkinson(1987)] and as verified directly on the considered experimental
setup [Lengliné et al.(2011b)], the advance rate of the crack tip ȧ(x, t) is dependent on the
temperature T , on the energy release rateG, and on an activation energy which is here assimilated
to the fracture energy Gc:

ȧ(x, t) = v(x, t) = v1 exp[λ (G(x, t)−Gc(x, t))], (2.8)

with λ= α2

kBT
, where α is an atomic length scale associated to the energy barrier of the fracturing

process, kB is the Boltzmann constant and v1 is related to the velocity for breaking microscopic
bonds.

This law arises from basic thermodynamics (see [Lawn(1993)] for kinetic crack growth): for
each atomic site undergoing potentially an irreversible breaking transition, there is an activation
threshold in free energy ∆Fc = Fc − F0, below which the material bond only vibrates without
breaking - where F0 is the energy of the non excited unbroken state of this site. This free energy
is site dependent, according to the material properties of this bond. Writing it as proportional
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to a surface energy, one gets ∆Fc = α2Gc, where α is the separation along the surface of the
elementary breaking sites. The probability that an energy level F above the basic energy state
is reached, is according to statistical physics, a Boltzmannian distribution of the free energy:
it is proportional to e−F/kBT . If the density of energetical states is (roughly) constant – as for
example for a quantized harmonic oscillator –, the total probability that the element considered
reaches a free energy allowing the breaking transition, above the activation energy ∆Fc, is:∫
F>Fc

(e−F/kBT dF )/
∫
F>F0

(e−F/kBT dF ) = e−∆Fc/kBT . If this activation energy is exceeded,
the site considered along the front can either break irreversibly, with a transition energy to the
next state of basic energyF1, with a probability proportional to e−(F1−F )/kBT . It can alternatively
unexcite without breaking, and come back to the unbroken state, towards states of basic energy
F0, with a probability proportional to e−(F0−F )/kBT . The probability that it transitions to
a broken state, if the activation energy is reached, is thus e−(F1−F )/kBT /[e−(F0−F )/kBT +

e−(F1−F )/kBT ] which approximates to e−(F1−F0)/kBT , assuming that the broken state is
sufficiently energetically favorable compared to thermal noise level, i.e. that (F0 − F1)� kBT .
Since the energy difference between the broken and unbroken states is equal to the mechanical
energy release over the surface α2 along the plane crack covered by the site, one has (F0 − F1) =

α2G.
The state of activating and breaking irreversibly the site is thus

pbreak = e−∆Fc/kBT e−(F1−F0)/kBT = exp[α2/(kBT ) (G(x, t)−Gc(x, t))].

This transition can happen at this basic probability with a characteristic microscopic attempt
frequency ν (molecular collisional frequency arising from the characteristics of the phonons in
the material, the "thermal bath"), and if the bond irreversibly breaks, the front advances locally
by the length α. Hence, with v0 = αν, the speed of the front, averaged over a few attempt periods
1/ν, is v= ανpbreak = v0 exp[α2/(kBT ) (G(x, t)−Gc(x, t))]., which is the Arrhenius law in Eq.
2.8.

We also assume that the temperature is homogeneous and remains constant during the
whole crack propagation. This approximation should hold if the temperature variations during
the process are smaller than the laboratory absolute temperature, which is around 300 K. For
such constant temperature situations, the choice of Gc and v1 in the rheology, Eq. 2.8, presents
a redundancy: any change of these parameters preserving v1 exp ([−λGc(x, t))] leads to an
identical behavior. In this manuscript, the choice done to raise the invariance under such change
is to fix the value of Gc around the characteristic value during the fast stages of the considered
situation. In other situations where variable temperatures would be considered, more details on
the physico-chemistry of the material would be needed to fix independently Gc and the prefactor
v1.

Once discretized, Eq. (2.8) is in the form of a classical system ofN coupled ordinary differential
equations (ODE) with time t as the independent variable; it is solved using an 8th order Dormand-
Prince Runge-Kutta method as described in [Hairer et al.(1993)]. We introduce a flat initial crack
front, a(x, t= 0) = 0, in the system at time t= 0, and a(x, t) is then represented at evenly spaced
intervals over Lr along the x axis. As values of Gc(x, y) are only defined at discrete sites, local
values of the fracture energy, for arbitrary positions of a along y, are obtained through cubic spline
interpolation along y. We tested that different interpolation functions or even no interpolation
do not change significantly all the obtained results. We keep a snapshot of the front position
every 1 ms in order to mimic what is obtained during experiments with a high speed camera
( [Måløy et al.(2006)]). A direct visual comparison between crack dynamics shows at first order
a good agreement between simulations and experiments (Fig. 3). We recover in the simulation
a similar heterogeneous pattern of the front speed which varies of the same order of magnitude
in simulations and experiments. In order to draw more quantitative comparisons between our
model and experiments we will then examine some well defined properties of the experimental
crack fronts.
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Figure 3. (top) Simulation of a crack front propagation obeying Eq. 2.8. The front propagates from bottom to top, and the

displayed interface has a dimension of 5.6 mm along x and 1.4 mm along y. The grayscales refer to the local crack front

speed. (bottom) Crack front speed obtained during an experiment from [Tallakstad et al.(2011)]. The dimension of the

interface are identical to (top).

3. Macroscopic crack evolution
We aim at testing the validity of our model by comparing its predictions with several independent
experimental behaviors. We first set several a priori parameters of the model in order to match the
experimental setting. Young modulus is set to E = 3.2 GPa. Geometrical parameters are defined
as: h= 5 mm, Lr = 2.84 cm, for the plate thickness and width, respectively. We set N = 2048.
The average fracture energy is µGc = 200 J m−2 as a representative value of the experiments
[Lengliné et al.(2011b)]. We invert for the values of v1 and λ from the macroscopic behavior of
the crack front by comparing the results of simulations with an experiment reported in [Lengliné
et al.(2011a)] with two loading phases: Phase I at a constant loading speed Vl = u̇(t) = 62µm s−1

for 230 s, and phase II for which the deflection of the beam is maintained constant. The initial
front position is L0 = 107.7 mm. We checked that higher values of N induce no change in
the macroscopic evolution of the crack. Experimental data are well reproduced by the model
when setting λ= 0.15 m2 J−1 and v1 = 0.031 m s−1 (Fig. 4). This suggests that the Arrhenius law
remains valid on a scale larger than the one at which it was set in the model [Lengliné et al.(2011b)].
It should also be noted that the value of λ corresponds to the value inferred experimentally
by [Lengliné et al.(2011b)], who found λ= 0.15 m2J−1, averaging over multiple experiments. The
average velocity along the front v as function of the average energy release rate Ḡ, shown in Fig. 4
right, was computed using the same technique as the experiments, using the velocity derived via
the WTM (Waiting Time Matrix) at a similar pixel scale (as in Fig. 3). This Waiting Time Matrix
analysis is based on the following: on a discrete regular grid, Wij is defined as the number of
times a front is observed to cross this given pixel ij during an experiment. The front velocity
while the front was at this position is then obtained as vij =∆x/(∆tWij), where∆x is the spatial
lattice step, and ∆t the interval between two subsequent front positions (the frame rate in the
experiments or the simulations). Alternatively, using instead directly the instantaneous velocities
computed leads to a more disperse average velocity as function of Ḡ, with the same average value
at a given Ḡ. This instantaneous front velocity reduces to a similar behavior as the one obtained
via the WTM when this velocity is averaged over time windows of 0.03 s or larger.
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Figure 4. Left: Evolution of the crack front position during an experiment (blue line from [Lengliné et al.(2011b)]) and

from the simulation (red line) using λ= 0.15 m2 J−1 and v1 = 0.031 m s−1. The vertical black line separates phase I

at constant loading rate and phase II, the relaxation phase. Right: Evolution of average crack speed v̄ as a function of the

energy release rate Ḡ for the experimental data (blue dots) and for the simulation (red dots). The dashed line shows that

a fit of the form of Eq. (2.8) with λ= 0.15 m2 J−1 and v′1 = 0.013 m s−1. v′1 is slightly lower than v1 (the difference

between v1 and v′1 decreases slowly with σGc here taken as σGc = 50 J m−2).

4. Distribution of local speeds
At the local scale, we evaluate the distribution of the crack front speeds in our model. As reported
in [Måløy et al.(2006),Tallakstad et al.(2011),Lengliné et al.(2011b)], the distribution of local speeds
higher than the average crack front velocity is found to decay as a power law with exponent
η=−2.55. We selected a period when the average speed of the crack is approximately constant
and computed the local speed distribution similarly to the procedure introduced by [Måløy
et al.(2006)]. Exploring the parameter space, we observed that the simulated distributions are
controlled by the parameter (σGc/µGc)

2λ= 1/ρ (as illustrated in Fig. 5 where several toughness
distributions produce the same velocity distribution). Moreover, N does not have a significant
influence on the value of η. For ρ' 125 J m−2, we find that the power law decay of the distribution
at high velocities exhibits a slope compatible with the experimental observations, i.e., η=−2.55.
Given the value of λ= 0.15 m2 J−1 as deduced from the macroscopic evolution of the crack
we then deduce σGc = 50 J m−2 for µGc = 192 J m−2. It is worth mentioning that the standard
deviation σGc = 50 J m−2 matches the one observed experimentally [Lengliné et al.(2011b)]. At
higher values of ρ, i.e. lower quenched disorder, the logarithm of the probability distribution
function is closer to a quadratic function of log(v) around its maximum, i.e. the distribution
is close to lognormal - see insert of Fig. 5, ρ= 500J/m2. When the quenched disorder is large
enough, a power law tail at high velocities is observed over around two decades for the
distribution of velocities, the observed exponent is in the range η between 2.2 and 3 for the probed
values of ρ.

5. Front morphology
We also investigated the scaling of the crack front morphology. Previous experimental studies
reported that the crack front is self-affine with a roughness exponent ζ ' 0.6 (e.g. [Schmittbuhl
& Måløy(1997),Delaplace et al.(1999)]). More recent data extracted from numerous experiments
and at various scales show that actually two distinct regimes emerge depending on the scale
of investigation: at small scales the scaling regime is characterized by a roughness exponent
ζ− ' 0.60 while at large scale the exponent is lower and is found around ζ+ ' 0.35 [Santucci
et al.(2010)]. From simulations at constant loading velocity, we first investigate the scaling of
energy release rate profiles, G(x), before turning to the scaling of a(x). These profiles correspond
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Figure 5. Probability density functions (pdf) of the local crack velocity computed from simulations. Local crack velocity

is normalized for each simulation by the average crack front velocity 〈v〉. Collapse of four distributions for the same

ρ' 125 J/m2 (4: λ= 0.13, µGc = 200, σGc = 50; ◦: λ= 0.2, µGc = 200, σGc = 40; �: λ= 0.08, µGc = 200,

σGc = 63; ?: λ= 0.13, µGc = 160, σGc = 40). Black dots correspond to experimentally obtained speed distributions

taken from [Tallakstad et al.(2011)]. A power law with an exponent η=−2.55 (dashed line) is consistent with the pdf

tail for v/〈v〉> 1 as observed experimentally [Måløy et al.(2006)]. Insert: pdfs for two other values of ρ: 500 J/m2 and

62.5 J/m2.

to the local values of energy release rate for all points on the crack front. We compute the
scaling properties of the crack energy release rate profile after averaging 1000 power spectra
evenly time-spaced (after a transient regime from an initial condition of flat front). The crack
energy release rate along the front is defined as G(x, t) =G(x, a(x, t)), expressed from Eq. (2.2)
along the modeled fronts of shape a(x, t). We first look at its spatial Fourier power spectrum,
PG(k) for a simulation running with parameters deduced from previous tests, namely we use
λ= 0.13 m2J−1, µGc = 200 J/m2 and σGc = 50 J/m2. We see in Fig. 6 that PG(k) becomes flat
in the high wavenumber domain, reaching the value σ2

Gc . This upper limit corresponds to the
expected power spectrum of a straight 1D line cut through the Gc(x, y) field. It suggests that,
at small scales, fluctuations of energy along the crack front line follow the quenched disorder
variations, with a power spectrum insensitive to the deviations between the curved front and
a straight line at the average front position. For lower wavenumbers, PG(k) deviates from the
constant threshold and becomes a growing function of k (decreasing as k diminishes, as seen in
Fig. 6). We can well render the evolution of PG(k) at these large scales with a relation of the form
PG(k)∝ k.
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Figure 6. Power spectra of the energy release rate, PG(k), computed for different simulations. The spectrum in red is

computed for a simulation with λ= 0.13 m2J−1, µGc = 200 J/m2 and σGc = 50 J/m2. For the other spectra: σGc =

10 J/m2 and λ= 0.21 m2/J for the spectrum in green and λ= 0.05 m2J−1 for the one in blue; for the spectrum in

magenta, we keep λ= 0.13 m2J−1 but change µGc to 100 J/m2. The horizontal dashed lines correspond to σ2
Gc

while

the slanted dashed lines are given by PG(k)∝Cλσ2
Gc
µGck. We note ω+ and ω− the pre-factor of PG(k) at large

scale and the level of PG(k) at small scale, respectively.

We also report in Fig. 6 several simulations where the parameters, λ, µGc and σGc were
modified in order to test their influence on the spectrum of the energy profile. For all simulations
we always observe the threshold at high wavenumbers corresponding to σ2

Gc and also evidenced
PG(k)∝ k at low k. We can evaluate from the tested parameters that at low k, PG(k)∝
Cλσ2

GcµGck, with C a constant – as seen from the consistency of the simulation data and the
dotted lines in Fig. 6. By equating the power-spectra in the two spatial frequency domains, we
infer the cross-over, kδ , above which the energy of the front line follows the energy profile of
the medium. We obtain kδ = 1/(λµGcC), which implies that the cross-over is independent of the
amplitude of the quenched disorder fluctuations, σGc , but varies with the temperature and the
mean toughness of the interface, µGc .

We can now turn to the scaling of the front position. As indicated from Eq. 2.6, the scaling of a
is related to the scaling of G. Indeed, from Eq. 2.7 we have

DFT[γ(t)](n) =K(n) DFT[a(t)](n), (5.1)
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with K(n) =−2π|n|/Lr , and the equivalent formulation in the continuous domain, since the
wavenumber n is related to the wavevector k as kn = 2πn/Lr , is given by

γ̃k =−|k|ãk. (5.2)

where the tilde denotes the Fourier transform defined as f̃(k) =
∫
f(x)e−ikxdx.

Expressing in the Fourier space the link between the energy release rate G and the elastic
Kernel γ, reminding Eq. 2.2, we get for any non zero wavevector k,

G̃(k, t) = Ḡ(t)γ̃(k), (5.3)

since the additive constant term in Eq. 2.2 only contributes to the k= 0 mode, and the
multiplicative prefactor = Ḡ(t) is independent of position.

We thus expect from these last two equalities, for the power spectra Pa(k) and PG(k) of the
front shape a(x) and of the energy release rate G(x):

Pa(k) = ||ãk||2 = ||γ̃k||2/k2 ∝ PG(k)k−2 (5.4)

which, given the observed scaling of PG(k), translates into

Pa(k)∝ k−1 for k < kδ and

Pa(k)∝ k−2 for k > kδ. (5.5)

We indeed observe the aforementioned crack front morphology in our numerical simulations
(Fig. 7), i.e. we obtain the two regimes discussed above. At long wavelengths, the observed
roughness exponent is ζ+ ' 0.0 while, at shorter length scales, ζ− is 0.5. This is compatible
with the experimental observations [Santucci et al.(2010)], where at short length scales, ζ− '
0.5 is determined, while at larger scales, a flattening to lower exponents is observed – which
is compatible with local exponent ζ+ ' 0.3 to 0.4, and also compatible with a slow cross over
towards a flattening ζ+ ' 0 (which corresponds to a subpower law scaling law, as a logarithmic
behavior |a(x+∆x)− a(x)| ∼ log(|∆x|). (This reference mentioned: "At large scales, we observe
a crossover to another scaling regime with a smaller roughness exponent ζ = 0.35± 0.05. Our
data do not rule out a possible slow crossover to a flat front (no disorder regime), at large
scales"). Indeed, in the simulation a local ζ+ ' 0.35 is compatible with the results over one to two
decades of cross over, as illustrates the compatibility with the dash dotted line in Fig. 7 around
the cross-over scales, and as observed in the experiments [Santucci et al.(2010)].

In order to show the influence of temperature on the variation of kδ we show the averaged
power spectra for different temperatures (i.e. different λ) which can be nicely superimposed by
introducing a normalized wavenumber k∗ = k/kref(T ref/T ) where T ref is a reference temperature
and kref a reference wavenumber (see Fig. 7). As will be shown in Section 6, the constant
(T ref/kref) depends on the correlation length lc of the quenched disorder, i.e. the critical energy
release rate Gc, and its average value µGc , as T reff/kref = α2lcµGc/(2kB).

Interestingly, the cross-over Rc = 1/kδ between the two domains can be estimated for λ=

0.13 m2 J−1 and µGc = 200 J/m2 to be ∼ 1 mm, which is comparable to the value reported
experimentally [Santucci et al.(2010)]. The observed dependence of the cross-over length on
temperature has been previously noticed for different models. In the case of short range elastic
interactions, it is found that Rc varies with T with a power-law exponent depending on the
percolation properties of the active sites [Vandembroucq et al.(2004)]. Other studies proposed that
the cross-over length scale might also depend on the difference between the driving force and the
depinning threshold (e.g. [Chauve et al.(2000),Kolton et al.(2009)]). We also observe that changing
the cut-off wavelength of the toughness correlation, lc, influences the cross-over scale Rc, which
can be seen as a temperature effect.
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µGc = 150; σGc = 37.5; λ = 0.20; v1 = 0.023
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Figure 7. (Insert) Average power spectrum (Pa(k)) computed over 1000 crack fronts during simulations when varying

λ= α2/kBT . Units of the parameters in the legend are for Gc, Jm−2, for λ, m2/J and for v1, m/s. (Main) Collapse

of all power spectra at different temperatures after rescaling the wavenumber k∗ = k/kc = (k/kref)(T ref/T )., and the

norm according to the predicted prefactor. The two power-laws corresponding to the continuous curve have slopes −1

and −2, i.e. correspond to Hurst exponents ζ+ = 0 at large scales (small k, logarithmic scaling), and ζ+ = 0.5 at small

scales (large k).

6. Theoretical interpretation of the dominant forces at large and
small scales

The dynamics of the crack front, at finite temperature, is led by the Arrhenius law from Eq. (2.8),
with the energy release rate by Eq. (2.2) as the product of the average value Ḡ from Eq. (2.1), and
the elastic perturbation γ(a), that depends on the shape of the front a(x) as stated by Eq. (2.3):

ȧ(x, t) = v1 exp[λ (G(x, t)−Gc(x, t))], (6.1)

G[a](x, t) = Ḡ(ā, u)(1 + γ[a]). (6.2)

The quenched disorder associated to the material properties corresponds to a spatial distribution
of the critical energy release rate:

Gc(x, t) =Gc(x, a(t)) = Ḡc + δGc(x, a(t)). (6.3)

Inserting Eq. (6.2) and Eq. (6.3) into Eq. (6.1) leads to

ȧ(x, t) = v1 exp
[
λ
(
Ḡ+ Ḡγ[a]− Ḡc − δGc(x, a(t))

)]
. (6.4)

Assuming that the average critical energy release rate along the front during propagation is
around the average value of the quenched distribution in the plane, Ḡc ∼ µGc , we can write

ȧ(x, t) = v̄ exp[λ
(
Ḡγ[a]− δGc(x, a(t))

)
], (6.5)
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where
v̄' v1 exp

[
λ
(
Ḡ− µGc

)]
. (6.6)

This last equation can be expressed with a one dimensional Fourier transform as

ȧ(x, t) =
∑
k

˙̃ake
ikx = (6.7)

v̄ exp

∑
k 6=0

λḠeikx
(
γ̃k(t)− ˜δGck(t)/Ḡ

)=

v̄ Πk 6=0 exp
[
λḠeikx

(
γ̃k − ˜δGck/Ḡ

)]
. (6.8)

The product above can be considered as follows: each of the product terms have a form

exp
[
λḠ<

[
eikx

(
γ̃k − ˜δGck/Ḡ

)]]
·

exp
[
λḠi=

[
eikx

(
γ̃k − ˜δGck/Ḡ

)
,
]]

(6.9)

where <(z) and =(z) refer respectively to the real and imaginary parts of the complex number z.
The second term in the product is the exponential of a pure imaginary number, of norm 1: it does
not affect the norm of the product. The first term in the product can be written as

exp
[
λḠ<

[
eikx

(
γ̃k − ˜δGck/Ḡ

)]]
= exp

[
<
(
||z||eiθeikx

)]
(6.10)

= exp [||z|| cos(θ + kx)] , (6.11)

where z = λḠ
(
γ̃k − ˜δGck/Ḡ

)
and θ= arg(z)

For any k, there are positions x'−θ[2π]/k where the product above reduces to exp [||z||].
Hence, if the norm ||z|| is not significantly smaller than 1, then for certain positions x, the

value of the term in the product, exp(||z||), becomes exponentially large, so that the front speed
will become locally large, and the unpinned front shuffles very fast, during an avalanche, through
new configurations of the quenched disorder – until this term ||z|| becomes small again for all k.

Three cases can be considered to obtain the value of ||z||= ||λḠ
(
γ̃k − ˜δGck/Ḡ

)
|| :

if ||γ̃k|| � || ˜δGck/Ḡ||, this term can be approximated as ||z|| ' ||λ ˜δGck||, and z is given by
z '−λ ˜δGck. The magnitude of this is of order λσGc, which is smaller than one, allowing to
approximate exp(z)∼ 1 + z. When ||γ̃k|| ' || ˜δGck/Ḡ||, the order of magnitude of z is also ||z|| ≤
λσGc, smaller than one. Eventually, if ||γ̃k|| � || ˜δGck/Ḡ|| ' σGc/Ḡ, one has ||z|| ' ||λḠγ̃k|| �
λσGc. Since λσGc is a finite number (around 0.1 to 1 in the simulation examples, that correspond
to the experimental match), this case where ||z|| � λσGc also corresponds to ||z|| � 1, which is
discussed in the previous paragraph: this situation is unstable and corresponds to a large velocity,
an avalanche during a depinning event.

The product of all these exponential terms, in a configuration where they are stabilized in
situations where ||γ̃k|| ' || ˜δGck/Ḡ||, will be denoted R(t), and apart from the fast avalanches, it
will stay constant, around 1.

Conversely, for other values of k, the perturbation due to the elastic interactions will always
be small in front of the quenched disorder, i.e., at all times, we will have

||γ̃k|| � || ˜δGck/Ḡ||, (6.12)

so that for all positions x, at all times, we will have

||λḠ<
[
eikx

(
γ̃k − ˜δGck/Ḡ

)]
|| � 1. (6.13)
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For these modes, with εk = λḠeikx
(
γ̃k − ˜δGck/Ḡ

)
, and ||εk|| � 1, the exponential terms in

the sum can be approximated as exp(εk)' 1 + εk, and the product, to leading order, as

Πk(exp(εk))'Πk(1 + εk)' 1 +Σkεk. (6.14)

For these modes, there will be constantly slow accelerations or decelerations around an average
rate of change.

With these considerations over the two types of modes, the sum over non zero wavenumbers
can thus be approximated as follows in Eq. (6.8): large terms are unstable in this sum, since the
velocity depends exponentially on the sum, and the sum blows up quickly when a term grows
above the average. When the terms of the sum are small with respect to 1, they modulate the
velocity with respect to the average velocity. We conclude that there are two possible cases for the
interaction term: either it is small enough so that

||γ̃k|| � || ˜δGck||/Ḡ, (6.15)

or, after a very short time, the Fourier component jumps to a new value where it is comparable to
the average velocity. Apart from the very short unstable times where the velocity jumps far from
the average, the Fourier modes take random values within the characteristic value:

||γ̃k|| ∼ || ˜δGck||/Ḡ. (6.16)

Considering the case where interactions are small, the velocity, from Eq. (6.8), can thus be
expressed as

ȧ(x, t) =
∑
k

˙̃ake
ikx = v̄R(t)× (6.17)

exp

 ∑
k 6=0;||γ̃k||�|| ˜δGck/Ḡ||

λḠeikx
(
γ̃k − ˜δGck/Ḡ

)
where the sum is limited over wavenumbers that produce a stable propagation of the front.R(t) is
the fluctuating term taking into account the jumps to bring back the argument of the exponential
to the average value by reshuffling the values of γ̃k that go for short periods beyond the saturation
level: it is most of the time around 1, with these short periods of large values above it – intermittent
avalanches.

As introduced above, in the other case for the interaction term, we have a saturation so that
||γ̃k|| ∼ || ˜δGck||/Ḡ. We first focus on this case, which defines the range where elastic interactions
are balancing quenched noise amplitude. The level of saturation is set by the amplitude of the
quenched disorder fluctuations with respect to the average. Indeed, the power spectrum, PG(k),
is given by Eq. (6.2), valid for any k 6= 0:

PG(k) = Ḡ2||γ̃k||2. (6.18)

Since, in the considered case
||γ̃k|| ∼ || ˜δGck||/Ḡ, (6.19)

we can write
PG(k) = || ˜δGck||2 (6.20)

and as || ˜δGck|| ∼ σGc , for non correlated quenched noise, the power spectrum PG(k) scales as

PG(k)∼ σ2
Gc .

This theoretical prediction is satisfied, as shown by the various levels of dashed lines at large
wavenumbers in Fig. 6. This behavior of saturation of the interaction kernel at large k, i.e. at small
scales, is identical to the one expected in a quasi-static model, in which the elastic kernel exactly
balances the quenched disorder. Hence, this model at finite temperature predicts, at small scale,



15

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

front morphologies comparable to those expected in such models [Schmittbuhl & Vilotte(1999),
Favier et al.(2006),Pindra et al.(2009)].

Hence, at small scale, the amplitude of the Fourier mode of the elastic kernel saturates around
a characteristic amplitude. This has a direct consequence on the front morphology: this elastic
kernel can also be expressed as function of the front shape, which in Fourier space reads from
Eq. (5.2) as

||γ̃k|| ∼ |k| ||ãk|| (6.21)

Since, from Eq. 6.20, ||γ̃k|| ∼ |k| ∼ || ˜δGck||/Ḡ, this implys for the Fourier amplitude of the front
shape ãk, at these scales, that

|k| ||ãk|| ∼ ||γ̃k|| ∼ || ˜δGck||/Ḡ, (6.22)

i.e.
||ãk|| ∼ || ˜δGck||/|k|Ḡ, (6.23)

or, for non correlated quenched noise, since || ˜δGck|| ∼ σGc , one expects a power spectrum of the
front as

Pa(k) = ||ãk||2 ∼ σ2
Gc/k

2 = σ2
Gck
−1−2·ζ , (6.24)

i.e. a self affine scaling [Santucci et al.(2010)] with a Hurst exponent ζ such that −2 =−1− 2ζ, i.e.
ζ = 0.5.

On the contrary, for the other case, ||γ̃k|| � || ˜δGck||/Ḡ, i.e. elastic interactions are well below
the quenched noise amplitude. Using this, one can linearize Eq. (6.17), leading to

ȧ(x, t) ' v̄R(t) + λḠv̄R(t)× (6.25)∑
k 6=0;||γ̃k||�|| ˜δGck/Ḡ||

eikx
(
γ̃k − ˜δGck/Ḡ

)
,

which describes the evolution of the crack front line when interactions are small. It will be shown
later that this behavior is observed at large wavelength, i.e. small wavenumber. For this domain,
one has, as shown above, using the average value R(t)∼ 1 as an approximation for R(t), which
is most of the time around such value:

˙̃ak(t) ' λv̄
(
Ḡγ̃k − ˜δGck

)
' λv̄

(
−Ḡ|k|ãk − ˜δGck

)
. (6.26)

This ordinary differential equation can be integrated in time, noting that:

d

dt

(
ãk(t)eλv̄Ḡ|k|t

)
=

(
˙̃ak(t) + λv̄Ḡ|k|ãk

)
eλv̄Ḡ|k|t (6.27)

' −λv̄ ˜δGcke
λv̄Ḡ|k|t, (6.28)

so that, by the variable constant method,

ãk(t)eλv̄Ḡ|k|t = (6.29)

ãk(t= 0)−
∫ t
0
dt′λv̄ ˜δGck(t′)eλv̄Ḡ|k|t

′

and the solution can be expressed as:

ãk(t) = (6.30)

−
∫ t
0
dt′λv̄ ˜δGck(t′)eλv̄Ḡ|k|(t

′−t) + ãk(t= 0)e−λv̄Ḡ|k|t.

The process is thus similar to an anomalous diffusion with a random term arising from the
quenched disorder through which the system goes at average speed, λv̄ ˜δGck(t′). Such anomalous
diffusion systems are common in systems with interactions, e.g. in fluctuating dipolar chains
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[Toussaint et al.(2004),Toussaint et al.(2006)]. The first term represents the convolution of the
random term due to the material variable properties by the response function representing
the memory of the system, e−λv̄Ḡ|k|t. The second term represents the memory of the initial
conditions. For initially straight fronts, it is equal to zero. For large enough propagation times,
one can also write:

ãk(t) =−
∫ t
−∞

dt′λv̄ ˜δGck(t′)eλv̄Ḡ|k|(t
′−t). (6.31)

This system presents a generalization of anomalously diffusing systems in thermal baths with
fat-tail memory [Morgado et al.(2002),Toussaint et al.(2006)]. It is interesting to see that an
annealed-like noise arises from propagating the front through the quenched noise at a certain
speed. Similarly to such anomalously diffusing systems, one can evaluate the amplitude of the
Fourier mode after some time. From the auto-correlation function of a Fourier mode, averaging
over starting time t2, for a fixed time lag t1 − t2, one gets

〈Gkk′(∆t)〉= 〈ã∗k(t2)ãk′(t1)〉t1,t1−t2=∆t (6.32)

= lim
T2→∞

(T2)−1
∫T2

0
dt2

∫ t1
−∞

dt′
∫ t2
−∞

dt′′

λ2v̄2〈 ˜δGc
∗
k′(t
′′) ˜δGck(t′)〉eλv̄Ḡ|k|(t

′+t′′−t1−t2)

where the star denotes the complex conjugate. We will use the fact that the quenched disorder
is uncorrelated above a size lc, to approximate its Fourier transform along the front as the one
obtained for a straight line traveling at speed v̄ in this landscape:

Along such straight fronts at positions (x′, a0 + v̄t′) and (x′′, a0 + v̄t′′) , the values of
Gc(x

′, t′) =Gc(x
′, a0 + v̄t′) and Gc(x

′′, t′′) =Gc(x
′′, a0 + v̄t′′) correspond to a white noise of

square amplitude σ2
Gc that are correlated for spatial distances |x′ − x′′|< lc, and time lags such

that (̄v)|t′ − t′′|< lc (lc is defined as the correlation range of the quenched disorder). Hence,
expressing this condition with a Heaviside function Θ as Θ(lc − v̄|t′ − t′′|), the resulting time
integration Kernel in the equation above can be expressed as

〈Gc(x′′, t′′)Gc(x′, t′)〉 (6.33)

= σ2
GcΘ(lc − |x′ − x′′|)Θ(lc − (̄v)|t′ − t′′|) (6.34)

' σ2
GcΘ(lc − |x′ − x′′|)lc/v̄δ(t′ − t′′), (6.35)

with δ(t′ − t′′) the Dirac function. In Fourier space, with discrete Fourier transform of steps lc,
this corresponds to

〈 ˜δGc
∗
k′(t
′′) ˜δGck(t′)〉= σ2

Gcδkk′ lc/v̄δ(t
′ − t′′),

with δkk′ the Kronecker symbol. We checked in the numerical model the validity of this
approximation.

This can be used in Eq.6.32 to obtain the time correlation of the Fourier modes of the front
shape:

〈Gkk′(∆t)〉= 〈ã∗k(t2)ãk′(t1)〉t1,t1−t2=∆t (6.36)

= lim
T2→∞

(T2)−1
∫T2

0
dt2

∫ t1
−∞

dt′
∫ t2
−∞

dt′′

λ2v̄2σ2
Gcδkk′ lc/v̄δ(t

′ − t′′)eλv̄Ḡ|k|(t
′+t′′−t1−t2)

= lim
T2→∞

(T2)−1
∫T2

0
dt2λ

2v̄σ2
Gcδkk′ lc

∫ t2
−∞

dt′′

eλv̄Ḡ|k|(−2t2+2t′′−∆t)

= lim
T2→∞

(T2)−1
∫T2

0
dt2λ

2v̄σ2
Gcδkk′ lc

∫0

−∞
dt′′′eλv̄Ḡ|k|(2t

′′′−∆t)



17

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

This leads to the auto-correlation function of the front shape after time has led it to saturation:

〈Gkk′(∆t)〉= λσ2
Gcδkk′ lc/(2Ḡ|k|)e

−λv̄Ḡ|k|∆t. (6.37)

The decorrelation time of these Fourier modes is thus scale dependent, with Td(k) = 1/λv̄Ḡ|k|.
The amplitude of the k wave-mode of the front shape is given as

〈||ãk(t)||2〉=Gkk(0) = λσ2
Gclc/(2Ḡ|k|). (6.38)

This corresponds to a self affine behavior with a Hurst exponent 0, as predicted for elastic lines in
annealed noise, as e.g. analyzed by [Perrin & Rice(1994),Favier et al.(2006)], i.e. a total amplitude
for points at separation ∆L along the front scaling logarithmically as W (∆L)∼ log(∆L). For the
elastic interactions for these large scale modes, from Eq. (6.2), this leads to

PG(k) = Ḡ2||γ̃k||2

= Ḡ2|k|2||ãk||2

= λσ2
GclcḠ|k|/2. (6.39)

Assuming that the effective average value of G during propagation scales as the average value
µGc of the quenched disorder Gc, one gets

PG(k) = λlcσ
2
GcµGc |k|/2. (6.40)

This is indeed the scaling found for small k: the amplitude of the Fourier transform of the energy
release rate is proportional to k for large wavelengths, and this theory explains the numerical
findings for the prefactor, i.e. that PG(k) =Cλσ2

GcµGc |k|.
According to these analytical considerations, for small k, we have ||γ̃k|| � || ˜δGck||/Ḡ, and the

front propagates similarly to an elastic line in an annealed noise of average µGc , fluctuations of
standard deviation σGc, and time correlation lc/v̄ (Figure 8). For larger k, the argument of the
exponential in the Arrhenius law saturates, so that ||γ̃k|| ∼ || ˜δGck||/Ḡ: the small scale (large k)
wave-modes are pinned on the quenched disorder, and the front propagation is similar to that of
a quasistatic elastic line model: this corresponds to a flat spectrum of the energy release rate at a
characteristic level PG(k)∼ σ2

Gc ; and the front presents a Hurst exponent of 1/2 (Figure 8).
The system toggles between annealed and quenched behavior at the scale where the energy

spectrum becomes comparable to the large k saturation value, i.e. at a characteristic scale 2π/kc,
so that

PG(kc) = λlcσ
2
GcµGc |kc|/2 = σ2

Gc , (6.41)

i.e.
kc = 2/(lcλµGc). (6.42)

These scalings for the power spectrum of G allow to predict a collapse for the power spectra
of the energy release rate, as PG(k)/σ2

Gc as function of k/kc:

PG(k)/σ2
Gc = |k|/kc for k/kc� 1

PG(k)/σ2
Gc = 1 for k/kc� 1 (6.43)

Indeed, all simulations collapse on the predicted scaling function, as seen on Fig. 9. For the
shape of the front, this scaling predicts the following collapse of the Fourier power spectra of the
front shape a(x):

k2
c 〈G〉2 Pa(k)/σ2

Gc = kc/|k| for k/kc� 1

k2
c 〈G〉2 Pa(k)/σ2

Gc = (kc/|k|)2 for k/kc� 1 (6.44)

Indeed, all simulations collapse in this representation, on scaling functions corresponding to these
predicted prefactors, as seen on Fig. 7.

Recalling that λ= α2/kBT with α a characteristic size between breaking elements projected
over the average plane, kB the Boltzmann constant and T the absolute temperature (in kelvins),
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Figure 8. Comparisons between the predicted values of the energy release rate power spectrumPG(k) and the observed

values in the simulations. Predictions of the values of PG(k) are given at large scale by Eq. (6.40) and are compared to

values extracted from simulations results ω+. At small scale analytical results predicted by Eq. (6.20) are compared to

the values ω− corresponding to the plateau PG(k) in simulations.

and that lc is the correlation length of the quenched disorder and µGc its average value, the critical
length in the system is

Rc = 2π/kc = πlcα
2µGc/(kBT ). (6.45)

Above this size, the system is dominated by thermal fluctuations (i.e. it behaves as if the noise was
annealed), and below it is essentially pinned by the quenched noise: indeed, we have established
above that for scales below Rc, (k larger than kc), the self affine character of the morphology
comes from an equilibrium between the elastic interactions and the quenched disorder (||γ̃k|| ∼
|| ˜δGck||/Ḡ), as in a quasistatic model. Conversely, for the scales above Rc, (k smaller than kc),
the elastic interaction term is small (||γ̃k|| � || ˜δGck||/Ḡ), the dynamic equation for the Fourier
mode of the front ak(t) can be linearized, and the dynamics corresponds to the linear response of
an elastic line in an annealed noise - where this pseudo thermal noise arises from sampling the
quenched noise with a homogeneously advancing front.

Around this scale Rc, the front shape deviates from the small scale self affine scaling with a
Hurst exponent of 0.5, with a progressive flattening of the slope in Fourier mode. This could be the
origin of the smoothening observed at large scales, as reported in [Santucci et al.(2010)]. For the
experimentally determined values λ= α2/kBT ∼ 0.13 m2/J, µGc = 200 J/m2, and a correlation
size of the quenched disorder lc = 2.8 10−2/2048m' 13.7µm, this corresponds to a critical value
Rc around 1 mm. This corresponds indeed to the cross over values seen in Figs. 6 and 7. This
also corresponds, in order of magnitude, to the experimental range, where a softening of the front
scaling is found [Santucci et al.(2010)].

7. Discussion
The results of our numerical simulations show a good agreement with various experimental
observations. We first documented at the macroscopic scale the propagation of the crack that
well renders an Arrhenius law behavior defined by Eq. (6.1) and observed experimentally. It is
noteworthy that even when the elastic energy at the crack tip is lower than a critical threshold
(similar to a Griffith energy criterion) we reproduce the propagation of the crack. This creeping
behavior results from the introduction of a finite temperature in the model compared to quasi-
static simulation defined at T = 0. Our results show that the global response of the system is
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Figure 9. Power spectra of the energy release rate, PG(k), computed for different simulations (insert). Units of the
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σ2
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, and the wavenumbers as k/kc with kc = 2/(lcλµGc ), the power spectra collapse, according to the theory. The

two continuous lines correspond to PG(k)/σ2
Gc

= 1 and PG(k)/σ2
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= k/kc.

similar to the local response imposed at the mesoscale, providing that the fluctuations of the
interface disorder are not too high.

As a second step we turned to comparisons between simulations and experiments at the
local scale. We showed that the shape of the local front velocities distribution is governed by
a parameter ρ= µ2

Gc/(σ
2
Gcλ), with λ= α2/kBT . The higher the relative disorder fluctuation

term (σGc/µGc ) or the lower the temperature, T , the broader the distribution of local speed.
Extrapolating ρ to a very low value will then produce a very intermittent activity with very
fast movements and long repose periods of local velocity. This is expected when the thermal
rounding is very sharp and is similar to a pinning regime. On the other side, for high values of ρ,
i.e. for high temperature or low disorder fluctuations, the velocity becomes more homogeneous
and local sites along the front are all propagating around the mean crack velocity. For a set of
parameters corresponding to the one encountered experimentally we have shown that we are
able to reproduce the correct shape of the velocity distribution, notably we reproduce the correct
power law decay of the pdf tail with exponent η=−2.55. It is remarkable to note that that such
power-law decay is a very robust experimental observation. Indeed, if one interprets this result in
light of our simulations, changing significantly the shape of the velocity distribution requires an
important change of the experimental condition (for example a fourfold decrease of the absolute
temperature for the case reported in Figure 6).

We made a final comparison between our simulations and experimental data concerning
the morphology of the crack front line. We showed that our simulations display a crack front
morphology with a cross-over length separating two regimes : a regime with a Hurst exponent
ζ+ = 0.0 at large scale and a regime with a higher Hurst exponent ζ− = 0.5 at a smaller scale.
This cross over between two regimes has also been reported experimentally, with the transition
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to a higher Hurst exponent at small scale [Santucci et al.(2010)]. We notice that there still exists
a difference between exponents obtained in our simulations and those observed in experiments.
Distinguishing if this discrepancy arises from a limited resolution on the experimental data or if
other phenomena may have been neglected in our model is difficult to assess. We nevertheless
obtained estimates of the roughness exponents quite close to the experimentally observed ones.
Furthermore the cross-over length scale reported in our simulations is in the correct order of
magnitude compared to the one described in experiments. Results of our simulations concerning
roughness exponents of the crack front are also validated by theoretical derivations from the
Arrhenius model. This theoretical analysis also leads us to determine the physical mechanism
operating above or below the cross-over length Rc. In a first regime, at large scale, elastic
interactions are well below the quenched noise amplitude and the front propagates similarly to
an elastic line in an annealed noise. At smaller scale, below Rc, elastic interactions are balancing
quenched noise amplitude and the front propagation is similar to that of a quasistatic elastic line
model. We note that the quasistatic elastic line model gives a Hurst exponent H = 0.35− 0.39,
somewhat lower than the value obtained here at small scale (e.g. [Schmittbuhl et al.(1995)]).
However in this model and in the regime of small fluctuations of the crack front line, the Hurst
exponent gets a higher valueH = 0.5, similar to the one found here [Schmittbuhl & Vilotte(1999)].
It suggests that in the small scale regime, our model is similar to the elastic line model in the
presence of small fluctuations. A speculative explanation for this observation is related to the
different dynamics between our model and the quasistatic elastic line model. In our model, all
points along the crack front line are moving at each time step maintaining the crack front line in
an equilibrium position at each time step. In the quasistatic elastic line model, only one point is
advanced at a time and reaches its new equilibrium position. The dynamics of the crack front line
introduced in our model could thus be an explanation for the H = 0.5 exponent rather than the
value H = 0.35− 0.39.

Recent studies have suggested that the use of the elastic kernel as proposed in [Gao &
Rice(1989)] should be taken cautiously as it is limited to the approximation of an infinite
medium [Legrand et al.(2011)]. Finiteness of the medium is suspected to have an influence on
the reported scaling. However the shape of the elastic kernel computed in [Legrand et al.(2011)] is
the same as in the infinite case for range of interactions smaller than the plate thickness. Since the
experimental data available and compared to the current model are essentially in a scale range
equal or smaller than the thickness, this justifies that the modifications of the kernel due to finite
thickness can be neglected. Preliminary simulations incorporating the elastic kernel computed
in [Legrand et al.(2011)] that accounts for the finiteness of the elastic medium, i.e. for the limited
thickness of the PMMA plate, confirm the validity of this approximation (but analyzing what
happens at large scales, above the thickness, is beyond the scope of the current paper).

A limitation of our study is that it is restricted to cracks propagating at low velocities. This
choice of restricting our simulation to slow speeds is motivated by the main purpose of this article
which aims at comparing the results of the model with experimental crack propagating in the
same velocity range. Although no influence of the velocity was observed on the reported scaling
during our simulations, it is possible that such effects might appear at higher speeds. It is also
readily possible that other effects may manifest at higher speeds when approaching the rupture
velocity of the material. In particular, at the local scale, dynamic rupture might take place, as
observed experimentally by the recording of acoustic emissions [Lengliné et al.(2012)], and might
influence the crack propagation by redistributing elastic stress [Ramanathan & Fisher(1998)].
In our simulations we did not consider any dynamic effect and implicitly hypothesized that
these dynamics effects have a limited influence on the tested crack front features. Limiting the
complexity of our model also allows us to track more easily any individual effect induced by each
of its parameters. We also show that, despite its simplicity, our model is able to reproduce all
reported robust experimental features.

A second approximation made in our model is the hypothesis of a homogeneous and
constant temperature field. It is indeed quite likely that the fracturation process in experiments
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release some heat at the crack tip as observed in PMMA [Fuller et al.(1975)]. Local increases of
temperature have the ability to change the local crack propagation speed in our model as defined
by Eq. 2.8. However we hypothesized that at the scale of investigation this effect can be ignored
in our model. Temperature increase of a few degrees around crack tips was observed or modeled
in the case of fatigue in steel ( [Ranc et al.(2014)]), or locally tenth of degrees or more in the case
of fracture in paper ( [Toussaint et al.(2016)]). This choice of negligible temperature increase at the
crack tip in the current model was done for simplicity as a first approximation, and is shown to
produce some agreement with the experimental observations. Incorporating the impacts of crack
tip temperature elevation is the subject of ongoing further research.

It is also likely that other processes, not taken into account in our model, play some role on
the propagation of cracks in heterogeneous media and may also offer alternative explanations for
some of the observed features. For example, it is noteworthy that [Bonamy et al.(2008),Santucci
et al.(2018)] were able to capture some of the experimental features exposed here, as the velocity
distribution, while not considering the effect of temperature in the crack propagation. The model
of ( [Laurson et al.(2010)]) coud also capture two scaling laws in the front morphology. The cross-
over length found there, proportional to the Larkin length, differed from the one identified in
the model presented here. Interestingly, a recent model of interfacial crack propagation was also
able to capture much of the experimental data tested here (velocity distribution and roughness
exponent) [Gjerden et al.(2013)]. In this model, the cross over of the roughness exponent is related
to the transition from a percolation regime at small scale (giving H = 2/3) to an elastic line model
at larger scale (H = 0.39). It thus remains to distinguish at which scale each of this mechanism is
governing the scaling of the front morphology. This investigation is left for further study.

The results of this model can also be analyzed in the light of the classification between strong
pinning regime and weak pinning regime, reported for elastic lines propagating with a Paris law
creep rheology [Lazarus(2011)]. For these models, smooth values of quenched disorder map lead
to a dynamics whereG=Gc (or equivalently,K =Kc, withK the stress intensity factor) all along
the front: this is termed the weak pinning regime. On contrary, for quasi-static models (as e.g. in
[Schmittbuhl et al.(1995)]), a behavior whereG≤Gc (orK ≤Kc) is observed, which is termed the
strong pinning regime, and attributed to sharp transitions in quenched disorder [Lazarus(2011)].
With respect to this classification, the model presented in the current manuscript is neither in the
weak nor in the strong pinning regime, but rather in one or the other depending on the scales
considered: as shown above, the front at small scales follows a weak pinning regime behavior,
with a scaling dictated by G̃k ' G̃ck for k > kc. On contrary, at large scales, for k < kc, the scaling
is dictated by the thermal noise rather than the quenched disorder, and one has ||G̃k|| � ||G̃ck||,
which in the terminology of [Lazarus(2011)], corresponds to a strong pinning behavior. The exact
scaling at these large scales, as shown in the previous sections, can be computed from the diffusion
of an elastic line in a thermal noise.

Our model have been intentionally limited to a 1D line model in order to test the results
of our simulations with experimental observations of in-situ crack propagation. It is appealing
to generalize the results of our model to higher dimension systems and in particular to fault
systems. Discussing our results in terms of fault mechanics provide an insight into the notion of
seismic coupling. The seismic coupling coefficient is defined as the ratio of seismic to aseismic
deformation on a fault plane in a bounded geographical area. In our configuration, if one
accepts to extrapolate the computed velocity distribution to dynamic rupture speed, then the
ratio of seismic to aseismic deformation would be given by the level of the distribution tail
in the range of dynamic speed. As we have shown, this level is governed by the parameter
ρ. Linking our geometrical configuration to a simple 1D fault model as proposed in [Perfettini
et al.(2003),Schmittbuhl et al.(2003)] we can thus interpret our results in terms of slip on faults.
In particular our results give a possible interpretation for this notion of seismic coupling with
the introduction of the coefficient ρ. This coefficient is shown to vary with temperature which
exhibits large scale variations within the Earth. It is also proposed to vary with the amplitude of
the toughness heterogeneities on the fault plane, due for example to the presence of asperities on
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the interface. Such conclusions are in agreement with the conceptual model proposed in [Bourouis
& Bernard(2007)].

8. Conclusion
In conclusion we presented a model of crack propagation in heterogeneous media governed by
an Arrhenius law. Despite its simple expression, we showed that our model is in full agreement
with all reported features of interfacial crack front propagation in the presence of disorder
(morphology, speed distribution and macroscopic dynamics): the speed distribution is found to
present a non Gaussian power law tail p(v)∼ v−2.6. The front morphology is found to obey a self
affine scaling with a Hurst exponent around H ∼ 0.5 at small scales, and a cross over to H ∼ 0 at
large scales. These features are different from purely quasi-static models, where only quenched
noise is included, without the thermal part: indeed, in such models, the power law distribution
of the local speeds has not been obtained, no large scale flattening is observed. In contrast with
quasi-statis models, our model also predicts the creep behavior, i.e. the correct non zero large-scale
velocity at fixed loading.

The parameters inferred in our model which best reproduce the experimental observations
correspond to realistic values encountered during experiments. Our numerical results are
supported by an analytical analysis explaining why thermal noise plays a role at large scales
and why quenched disorder plays a role at small scales. This theoretical development also
predicts both scaling regimes of the crack shape, and how the cross-over scale depends on
the characteristics of the disorder, on the size of the breaking elements, and on temperature.
We also showed that the existence of a parameter, ρ= µ2

GckBT/(σ
2
Gcα

2), governs the shape of
the local speed distribution. This parameter is defined from the temperature of the system T ,
a size connected to the individual breaking molecular bonds α, and the relative fluctuations
of the quenched disorder σGc with respect to the characteristic energy release rate µGc . We
finally emphasize that our results explain why even in the presence of disorder, macroscopic
observations of slow crack growth are well modeled by an Arrhenius relation, and highlight
the importance of thermal fluctuations in governing the propagation of crack which yields
characteristic properties not only at a global scale but also at a small scale. It also opens some
possibility of inverting physical parameters related to the crack environment from the observation
of its dynamical and morphological features.
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