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An elementary property of correlations

Giovanni Coppola

To the memory of S. Srinivasan

Abstract. We study the “shift-Ramanujan expansion” to obtain a formulae for the shifted convolution sum Cf,g(N, a) of general

functions f, g satisfying Ramanujan Conjecture; here, the shift-Ramanujan expansion is with respect to a shift factor a > 0.
Assuming Delange Hypothesis for the correlation, we get the “Ramanujan exact explicit formula”, a kind of finite shift-Ramanujan

expansion. A noteworthy case is when f = g = Λ, the von Mangoldt function; so CΛ,Λ(N, 2k), for natural k, corresponds to

2k-twin primes; under the assumption of Delange Hypothesis, we easily obtain the proof of Hardy-Littlewood Conjecture for this
case.
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1. Introduction and statement of the results

We define for any arithmetic functions f, g : N→ C their correlation (or shifted convolution sum) of
shift a:

Cf,g(N, a)
def
=
∑
n≤N

f(n)g(n+ a), for all a ∈ N.

Notice in passing that it is an arithmetic function itself, of argument a ∈ N, the shift. In fact, in §5
of [CoMu18] we introduced the shift-Ramanujan expansion, i.e. (see (1) in [CoMu18] for c`(a), the
Ramanujan sum):

Cf,g(N, a) =
∞∑
`=1

Ĉf,g(N, `)c`(a), for all a ∈ N.

Any arithmetic function F : N → C may be written as F (n) =
∑

d|n F
′(d), by Möbius inversion

[Ten95], with a uniquely determined F ′
def
= F ∗ µ (see [Ten95] for ∗, µ), its Eratosthenes transform

(Wintner’s [Win43] terminology).

We shall, hereafter, truncate g(m) =
∑

q|m g
′(q) as gN (m)

def
=
∑

q|m,q≤N g
′(q); in fact, our calcu-

lations will be shorter, with an a-independent truncation at a small cost, i.e. the error is small:

Cf,g(N, a)−Cf,gN (N, a) =
∑

N<q≤N+a

g′(q)
∑
n≤N

n≡−a mod q

f(n)� max
n≤N
|f(n)|· max

N<q≤N+a
|g′(q)|·a, for all a ∈ N, (1)

which, in the case f and g satisfy the Ramanujan Conjecture,1 is Oε (N ε (N + a)ε a), uniformly
for all a ∈ N.

We thank episciences.org for providing open access hosting of the electronic journal Hardy-Ramanujan Journal
1Ramanujan Conjecture for f says: f(n) �ε nε, as n → ∞. Hereafter Vinogradov’s � is equivalent to Landau’s

O-notation, [Ten95], also, �ε says, like Oε, that the constant may depend on arbitrarily small ε > 0.

http://episciences.org
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We say, by definition, that a correlation Cf,g(N, a) is fair when the dependence on the shift a
is only inside the argument of g, n + a, but not in f , g, neither in their supports. Assuming “g has
range Q”, i.e.,

g(m) = gQ(m)
def
=

∑
q|m,q≤Q

g′(q) =
∑
`≤Q

ĝ(`)c`(m), where ĝ(`)
def
=

∑
q≡0 mod `

g′(q)

q

(that is, compare [CoMuSa17], gQ finite Ramanujan expansion), with Q independent of a, then
Cf,g(N, a) is

Cf,g(N, a) = Cf,gQ(N, a) =
∑
q≤Q

ĝ(q)
∑
n≤N

f(n)cq(n+ a), for all a ∈ N, (2)

where the ĝ(q) are above Ramanujan coefficients of g. This correlation is fair if and only if all the
f(n), the ĝ(q) and their supports don’t depend on a, i.e.: a-dependence is only in cq(n + a)! We
define:

C ′f,gN (N, `)
def
=
∑
t|`

Cf,gN (N, t)µ

(
`

t

)
,

which has part in the following Delange Hypothesis, for the truncated correlation Cf,gN (N, a):

∞∑
d=1

2ω(d)

d

∣∣C ′f,gN (N, d)
∣∣ <∞, (DH)

where the arithmetic function ω(d) counts the prime factors of d, whence 2ω(d) is the number of
square-free divisors of d, that has bound

2ω(d) �ε d
ε, as d→∞,

since it is bounded by the number of divisors of d (and divisor function also satisfies Ramanujan
Conjecture).

It is very well known that for general arithmetic functions (see following result) Delange Hypothesis
implies Carmichael’s Formula: here we apply this to our truncated correlation, getting for it, from
the above hypothesis (DH), the formula

Ĉf,gN (N, `) =
1

ϕ(`)
lim
x→∞

1

x

∑
a≤x

Cf,gN (N, a)c`(a), (CF)

where ϕ(`)
def
= |{n ≤ ` : (n, `) = 1}| is the Euler function. Actually, the implication (DH)⇒(CF)

follows from a result of Wintner (of 1943 [Win43]) and a result of Delange (published in 1976, [De76])
that we quote here from [ScSp94] Theorem 2.1 in Chapter VIII on Ramanujan expansions (restating
and selecting properties), for all arithmetic functions F :

Wintner-Delange Formula. Let F : N→ C satisfy Delange Hypothesis, namely

∞∑
d=1

2ω(d)

d

∣∣F ′(d)
∣∣ <∞.

Then the Ramanujan expansion
∞∑
q=1

F̂ (q)cq(n)
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converges pointwise to F (n), for all n ∈ N, with coefficients given by the formula

F̂ (q) =
∑

d≡0 mod q

F ′(d)

d
, for all q ∈ N

(where the series on RHS, right hand side, converges pointwise, for all q ∈ N) and also by Carmichael 2

formula

F̂ (q) =
1

ϕ(q)
lim
x→∞

1

x

∑
n≤x

F (n)cq(n), for all q ∈ N

(where the limit on RHS exists, for all q ∈ N)

We don’t need, actually, to prove this result, as it follows from (quoted) Th.2.1 of [ScSp94]. In the
case F (a) = Cf,gN (N, a), assuming the above (DH) (i.e., Delange Hypothesis for present F ), then
Wintner-Delange formula implies the above (CF) (i.e., Carmichael Formula for F ); this, in turn,
is condition (ii) of Theorem 1 in [CoMu18] which is equivalent, choosing Q = N , to the following
Ramanujan exact explicit formula (as we named condition (iii) in Theorem 1 [CoMu18]) for Cf,gN ,
that is also uniform in a ∈ N:

Cf,gN (N, a) =
∑
`≤N

 ĝ(`)

ϕ(`)

∑
n≤N

f(n)c`(n)

 c`(a). R.e.e.f.

This part of our original correlation Cf,g, for general f, g : N→ C satisfying Ramanujan Conjecture,
has a lot of structure (it’s a truncated divisor sum!); adding the other part, we estimated above in (1),
we get, for fair correlations with (DH), the following “structure + small error”−elementary property
(that gives name to the paper).

Theorem. Let f, g : N→ C satisfy the Ramanujan Conjecture and be such that, for the N -truncated
divisor sum gN (m) defined above, the correlation Cf,gN is fair and satisfies (DH). Then

Cf,g(N, a) =
∑
`≤N

 ĝ(`)

ϕ(`)

∑
n≤N

f(n)c`(n)

 c`(a) +Oε (N ε (N + a)ε a) ,

uniformly in a ∈ N.

What we said up to now suffices to prove the Theorem (notice: (1) & (2), Wintner-Delange result
above and Theorem 1 in [CoMu18] are the whole proof ). QED3

However, thanks to the importance and generality (in §3 we have, say, a huge application too) we
will provide a step-by-step proof in next section, §2.

In a perfectly similar fashion to the proof of Corollary 1 [CoMu18], from Theorem 1 [CoMu18],
we can prove (but we will not do) the following consequence.

Corollary 1. Assume f, g : N → C satisfy Ramanujan Conjecture, where furthermore f is a D-

truncated divisor sum, say f(n) = fD(n)
def
=

∑
d|n,d≤D

f ′(d), with logD
logN < 1−δ. Also, let the correlation

Cf,gN be fair, with (DH). Then

Cf,g(N, a) = Sf,g(a)N +O
(
N1−δ

)
+Oε (N ε (N + a)ε a) ,

2 The name given here is in honour of Carmichael [Ca32]: compare [Mu13, pp.26-27] for details
3In this paper, QED(=Quod Erat Demonstrandum=What was to be shown) is not the end of the story, in a proof

(we use for it); also, in the following, it will indicate an involved, smaller, part of proof ending
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uniformly in a ∈ N, where the “singular sum”, here, is defined with f, g Ramanujan coefficients as

Sf,g(a)
def
=
∑
q≤N

f̂(q)ĝ(q)cq(a), for all a ∈ N.

Before an “unnecessary”, but beautiful, proof of our Theorem (that, actually, will prove even the
above Wintner-Delange formula), we apply our Theorem, in section §3, to the noteworthy case of
2k-twin primes, assuming (DH) for them. Also, we realised later that this noteworthy case also comes
from our Theorem 1 [CoMu18]. In fact, truncating g at Q = N (in Theorem 1) and considering a
kind of approximation, to original correlation, as given above in equation (1), everything works fine!

2. The detailed proof of our Theorem

Proof. Starting from (1), we are left with the task of proving the R.e.e.f. above, i.e.,

∑
n≤N

f(n)
∑

q|n+a,q≤N

g′(q) =
∑
`≤N

 ĝ(`)

ϕ(`)

∑
n≤N

f(n)c`(n)

 c`(a).

The hypotheses of our Theorem ensure that the LHS, namely Cf,gN (N, a), satisfies (DH) above.
Now, we need to infer (DH) ⇒ (CF) (see the above), namely, get the Carmichael formula for our
Cf,gN (N, a), so to have in the following, say, a way to infer the R.e.e.f.! However, we’ll supply even
more, by providing a proof, for the above “Wintner-Delange formula”. (Hence, in the immediate
following we’ll import arguments from [De76] & [ScSp94].)

In order to prove it, we wish to prove that the following double series, over `, d summations, is
absolutely convergent; so, we may write the equation expressing it in two ways (first summing over
`, then d and the vice versa):

∞∑
d=1

∑
`|d

F ′(d)

d
c`(n) =

∞∑
`=1

∑
d≡0 mod `

F ′(d)

d
c`(n), for all n ∈ N, (∗)

namely, exchange sums. In fact,
1

d

∑
`|d

c`(n) = 1d|n, for 1℘ = 1 if and only if ℘ is true (0 otherwise),

[CoMuSa17, Lemma 1] gives LHS

∞∑
d=1

F ′(d)

d

∑
`|d

c`(n) =
∑
d|n

F ′(d) = F (n),

with on RHS the Wintner-Delange coefficients∑
d≡0 mod `

F ′(d)

d
, for all ` ∈ N

thus supplying a proof of the first (Wintner-Delange’s!) formula and also ensuring pointwise conver-
gence of Ramanujan expansion, with these coefficients:

(∗) ⇒ F (n) =
∞∑
`=1

( ∑
d≡0 mod `

F ′(d)

d

)
c`(n), for all n ∈ N.
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Absolute convergence of double series comes from the fact that LHS with moduli, for all d, ` ∈ N, are
bounded by

∞∑
d=1

|F ′(d)|
d

∑
`|d

|c`(n)| ≤ n
∞∑
d=1

|F ′(d)|
d

2ω(d) <∞, for all n ∈ N,

coming as we know from Delange Hypothesis, starting from the optimal bound, proved by Hubert
Delange: ∑

`|d

|c`(n)| ≤ n · 2ω(d),

for which we refer to Delange’s original paper [De76] (also, for comments about optimality).
Left to prove, for Wintner-Delange formula above, is the fact that above coefficients (Wintner-

Delange’s, which we know, now, to be our Ramanujan coefficients!) are given also by the Carmichael
formula:

1

ϕ(q)
lim
x→∞

1

x

∑
n≤x

F (n)cq(n) =
∑

d≡0 mod q

F ′(d)

d
,

our task, now; for which we plug (in LHS), for a large K ∈ N, the decomposition:

F (n) =
∑

d|n,d≤K

F ′(d) +
∑

d|n,d>K

F ′(d)

rendering in the LHS the following (again, sums exchange is possible because F ′ can’t depend on n):

1

x

∑
n≤x

F (n)cq(n) =
∑
d≤K

F ′(d)
1

x

∑
m≤x/d

cq(dm) +
∑
d>K

F ′(d)
1

x

∑
m≤x/d

cq(dm),

in which, now, we apply two different treatments, depending on d ≤ K or d > K. For low divisors d,∑
d≤K

F ′(d)
1

x

∑
m≤x/d

cq(dm) =
∑
d≤K

F ′(d)
∑

j≤q,(j,q)=1

1

x

∑
m≤x/d

eq(jdm)

=
∑
d≤K

F ′(d)
∑

j≤q,(j,q)=1

1

d
· 1d≡0 mod q +O

1

x

1 +
1d 6≡0 mod q∥∥∥ jdq ∥∥∥

 = ϕ(q)
∑
d≤K

d≡0 mod q

F ′(d)

d
+O(1/x),

from familiar exponential sums cancellations, with a final O-constant not affecting the x-decay, while
for high divisors d: ∑

d>K

F ′(d)
1

x

∑
m≤x/d

cq(dm)� ϕ(q)
∑
d>K

|F ′(d)|
d

,

uniformly in x > 0, using the trivial bound |cq(n)| ≤ ϕ(q), for all n ∈ Z. In all,

1

x

∑
n≤x

F (n)cq(n) = ϕ(q)
∑
d≤K

d≡0 mod q

F ′(d)

d
+O(1/x) +O

(
ϕ(q)

∑
d>K

|F ′(d)|
d

)
,

entailing

1

ϕ(q)
lim
x→∞

1

x

∑
n≤x

F (n)cq(n) =
∑
d≤K

d≡0 mod q

F ′(d)

d
+O

(∑
d>K

|F ′(d)|
d

)
,

actually, giving the required equation, since from Delange Hypothesis the series
∑∞

d=1
|F ′(d)|
d converges,

so errors in O are infinitesimal with K, an arbitrarily large natural number (also, present LHS doesn’t
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depend on it!). At last, this also proves the convergence in RHS of these, say, d ≤ K-coefficients (as
K →∞).

QED (Wintner-Delange Formula)

Let’s turn to the application of this formula to our case F (a) = Cf,gN (N, a), getting that (since we
are assuming (DH) in hypotheses) we have the Carmichael formula, (CF) above. Now (mimicking the
proof of [CoMu18] Theorem 1, (ii) ⇒ (iii), exactly) we’ll get the Reef above; in fact, let’s calculate,
since we know that the shift Ramanujan expansion converges (again, from (DH) implying this by just
proved Wintner-Delange), its shift-Ramanujan coefficients, for correlation Cf,gN (N, a), namely

Ĉf,gN (N, `) =
1

ϕ(`)
lim
x→∞

1

x

∑
a≤x

Cf,gN (N, a)c`(a).

Plugging (2) with Q = N inside this RHS, we get for it:

1

x

∑
a≤x

Cf,gN (N, a)c`(a) =
∑
q≤N

ĝ(q)
∑
n≤N

f(n)
1

x

∑
a≤x

cq(n+ a)c`(a),

present exchange of sums being possible thanks to the hypothesis: Cf,gN (N, a) is fair. Then,

1

ϕ(`)
lim
x→∞

1

x

∑
a≤x

Cf,gN (N, a)c`(a) =
1

ϕ(`)

∑
q≤N

ĝ(q)
∑
n≤N

f(n) lim
x→∞

1

x

∑
a≤x

cq(n+ a)c`(a), (∗∗)

since all we are exchanging with lim
x→∞

are finite sums (again, we’re implicitly using fairness); then,

the orthogonality of Ramanujan sums (first proved by Carmichael in [Ca32], that’s why (CF) bears
his name), namely Theorem 1 in [Mu13]:

lim
x→∞

1

x

∑
a≤x

cq(n+ a)c`(a) = 1q=` · cq(n), for all `, n, q ∈ N,

gives inside (∗∗) whence for quoted (CF) the shift-Ramanujan coefficients

Ĉf,gN (N, `) =
1

ϕ(`)
ĝ(`)

∑
n≤N

f(n)c`(n)

and this, thanks to the finite support of ĝ, up to Q = N , here, gives the R.e.e.f.! QED

One last detail: equation (2), actually, we didn’t prove; but it follows from m = n+ a in (another
unproven) ∑

q|m,q≤Q

g′(q) =
∑
`≤Q

ĝ(`)c`(m),

that is: the gQ (see the beginning of the paper) finite Ramanujan expansion (f.R.e.) (for which we
referred to [CoMuSa17], of course), with Ramanujan coefficients

ĝ(`)
def
=

∑
q≡0 mod `

g′(q)

q
.

This can be proved at once, from quoted Lemma 1 of [CoMuSa17], that we also prove (briefly) here:

1q|m =
1

q

∑
`|q

c`(m),
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because: the orthogonality of additive characters [Da00] (rearranging by g.c.d.) gives

1q|m =
1

q

∑
r≤q

eq(rm) =
1

q

∑
`|q

∑
r≤q,(r,q)=q/`

eq(rm) =
1

q

∑
`|q

∑
j≤`,(j,`)=1

e`(jm), with c`(n)
def
=

∑
j≤`

(j,`)=1

e`(jn).

Then from this divisibility condition we prove gQ f.R.e.:

∑
q|m,q≤Q

g′(q) =
∑
q≤Q

g′(q)

q

∑
`|q

c`(m) =
∑
`≤Q

ĝ(`)c`(m),

simply exchanging sums and using above definition of f.R.e. coefficients, ĝ(q). QED (for equation
(2), too.)

3. The well-known case f = g = Λ, a = 2k > 0 of our Theorem:
2k-prime-twins

Assuming (DH) for f = g = Λ, Hardy-Littlewood heuristic (Conjecture B and (5.26) [HaLi23]) is a
Theorem.

Corollary 2. Assuming Delange Hypothesis for CΛ,ΛN
(N, a), i.e.

∞∑
d=1

2ω(d)

d

∣∣C ′Λ,ΛN
(N, d)

∣∣ <∞,
we get a kind of Hardy-Littlewood asymptotic formula, with an absolute constant c > 0, for all fixed
k ∈ N

CΛ,Λ(N, 2k) = SΛ,Λ(2k)N +O
(
Ne−c

√
logN

)
.

Proof. We apply the calculations for Ramanujan coefficients of the N -truncated von Mangoldt
function ΛN , from the classical [Da00] von Mangoldt Λ = (−µ log) ∗ 1, [Ten95], defined as usual in
terms of primes p ∈ P:

Λ(n)
def
=
∑
k∈N

∑
p∈P

1n=pk log p ⇒ Λ(n) =
∑
d|n

(−µ(d) log d), ΛN (n) =
∑

d|n,d≤N

(−µ(d) log d),

entailing

ΛN (n) =
∑
q≤N

Λ̂N (q)cq(n), Λ̂N (q)
def
= −

∑
d≤N

d≡0 mod q

µ(d) log d

d
� log2N

q
,

where now these are, thanks to §4 of [CoMu18], with an absolute c > 0,

Λ̂N (q) =
µ(q)

ϕ(q)
+O

(
1

q
exp

(
−c
√

logN
))

, for all q ≤
√
N,

thanks to the zero-free region of Riemann zeta-function (actually, we are not using most recent one).
Now,

CΛ,Λ(N, a) =
∑
`≤N

Λ̂N (`)

ϕ(`)

∑
n≤N

Λ(n)c`(n)

 c`(a) +Oε (N ε (N + a)ε a) ,
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from our Theorem: CΛ,ΛN
is fair & assume (DH), f = g = Λ. Set a = 2k > 0, log k

logN < 1 − δ,
δ ∈ (0, 1/2) fixed:

CΛ,Λ(N, a) =
∑
`≤
√
N

µ(`)

ϕ2(`)

∑
n≤N

Λ(n)c`(n)

 c`(a) +O

exp
(
−c
√
L
) ∑
`≤
√
N

(a, `)

`ϕ(`)

∑
n≤N

Λ(n)(n, `)



+O

L2
∑

√
N<`≤N

(a, `)

`ϕ(`)

∑
n≤N

Λ(n)(n, `)

+O
(
N1−δ

)
,

where we have applied well-known |cq(n)| ≤ (q, n), see Lemma A.1 in [CoMu18], and above bounds for

ΛN , abbreviating hereafter L
def
= logN . In the main term, applying PNT(Prime Number Theorem)

[Da00], [Ten95]:∑
n≤N

Λ(n)c`(n) = µ(`)
∑
n≤N

(n,`)=1

Λ(n) +O
(
Lϕ(`)

∑
p|`

log p
)

PNT
== µ(`)N +O

(
Ne−c

√
L
)

+O (Lϕ(`) log `) ,

from well known [Da00]:
∑

p|` log p ≤
∑

n|` Λ(n) = log `; here, we need to bound the n-sum in
remainders as∑
n≤N

Λ(n)(n, `) =
∑
d|`

d
∑
n≤N

(n,`)=d

Λ(n)�
∑
d|`

d
∑
n≤N

n≡0 mod d

Λ(n)� N+`L
∑
k∈N

∑
pk|`

log p� NL2, for all ` ≤ N,

by Čebičev bound [Ten95]:
∑

n≤N Λ(n)� N . Then, using [Ten95]: ϕ(`)� `/ log `, changing time
to time c > 0,

CΛ,Λ(N, a) = N
∑
`≤
√
N

µ2(`)

ϕ2(`)
c`(a) +O

Ne−c√L ∑
`≤
√
N

(a, `)

`2
+NL5

∑
√
N<`≤N

(a, `)

`2
+N1−δ



= N

∞∑
`=1

µ2(`)

ϕ2(`)
c`(a)+O

N∑
`>
√
N

log2 `

`2
(a, `)

+O

Ne−c√L ∑
`≤
√
N

(a, `)

`2
+NL5

∑
√
N<`≤N

(a, `)

`2
+N1−δ


being, by the definition of classic singular series for a = 2k-twin primes,

SΛ,Λ(a)
def
=

∞∑
`=1

µ2(`)

ϕ2(`)
c`(a)

and, also, by following bounds: (use (A + B)2 � A2 + B2, then, [Ten95]:
∑

d|a 1 �ε aε and∑
d≤x 1/d� log x)

∑
`>
√
N

log2 `

`2
(a, `)�

∑
d|a

d≤
√

N

1

d

∑
m>
√
N/d

log2 d+ log2m

m2
+
∑
d|a

d>
√
N

1

d

∞∑
m=1

log2 d+ log2m

m2
�ε a

ε L
2

√
N
,

∑
`≤
√
N

(a, `)

`2
�

∑
d|a

d≤
√
N

1

d

∑
m≤
√
N/d

1

m2
� L,

∑
√
N<`≤N

(a, `)

`2
�

∑
d|a

d≤
√
N

1

d

∑
√
N/d<m≤N/d

1

m2
+
∑
d|a

d>
√
N

1

d

∑
m≤N/d

1

m2
�ε

aε√
N
,
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uniformly in a = 2k, k ∈ N, with log k
logN < 1 − δ, for a fixed δ ∈ (0, 1/2), proves Hardy-Littlewood

Conjecture4

CΛ,Λ(N, 2k) = SΛ,Λ(2k)N +O
(
Ne−c

√
logN

)
.

We don’t have time to go deeper (but we’ve plenty of margins5).
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