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When are Multiples of Polygonal Numbers again

Polygonal Numbers?

Jasbir S. Chahal, Michael Griffin and Nathan Priddis

To the memory of S. Srinivasan

Abstract. Euler showed that there are infinitely many triangular numbers that are three times other triangular numbers. In
general, it is an easy consequence of the Pell equation that for a given square-free m > 1, the relation ∆ = m∆′ is satisfied by

infinitely many pairs of triangular numbers ∆, ∆′.
After recalling what is known about triangular numbers, we shall study this problem for higher polygonal numbers. Whereas

there are always infinitely many triangular numbers which are fixed multiples of other triangular numbers, we give an example that

this is false for higher polygonal numbers. However, as we will show, if there is one such solution, there are infinitely many. We

will give conditions which conjecturally assure the existence of a solution. But due to the erratic behavior of the fundamental unit
of Q(

√
m), finding such a solution is exceedingly difficult. Finally, we also show in this paper that, given m > n > 1 with obvious

exceptions, the system of simultaneous relations P = mP ′, P = nP ′′ has only finitely many possibilities not just for triangular
numbers, but for triplets P , P ′, P ′′ of polygonal numbers, and give examples of such solutions.
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1. Introduction

For an integer ` ≥ 3, the r-th polygonal number or r-th `-gonal number P (`, r), r ≥ 1, is defined by

P (`, r) =
(`− 2)r2 − (`− 4)r

2
.

It is the total number of dots that are used to enlarge recursively a single dot, representing the
first `-gonal number, to a regular `-gon with each side having r dots. In the process the first dot
remains the only common vertex of successive `-gons with each side having r dots (cf. Figure 1).

P (3, 5) = 15 P (5, 4) = 22

Figure 1: Representation of polygonal numbers for ` = 3 and ` = 5.
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Thus

P (3, r) =
r(r + 1)

2
= 1, 3, 6, 10, 15, . . .

are the triangular numbers,
P (4, r) = r2 = 1, 4, 9, 16, 25, . . .

are the (perfect) squares, whereas

P (5, r) =
r(3r − 1)

2
= 1, 5, 12, 22, 35, . . .

are the pentagonal numbers, and so on.
These numbers, especially the triangular and the pentagonal numbers, have been studied since

antiquity (cf. [Dic71]). In 1638 Fermat stated without proof his Polygonal Number Theorem: Every
positive integer is a sum of at most ` `-gonal numbers. The case ` = 4 is a well-known theorem of
Lagrange (every positive integer is a sum of at most four squares), proved by Jacobi and independently
by Lagrange in 1772. Gauss discovered it for ` = 3 as noted in his diary on 10 July 1796. Fermat’s
Polygonal Number Theorem for all ` was finally proved by Cauchy in 1813.

Euler determined all triangular numbers that are three times another triangular number. Given
an integer m > 1, it is interesting to study which triangular numbers are m times another triangular
number. In this paper, we recall the answer to this question (see [ChaD93]) and determine, more
generally, which `-gonal numbers are m times another `-gonal number.

It is an easy consequence of the Pell equation, as we recall, that for any given square-free m > 1,
the relation ∆ = m∆′ is satisfied by infinitely many pairs of triangular numbers ∆ and ∆′. However,
this is not true for higher `-gonal numbers. We will give an example such that P = mP ′ has no
solution in `-gonal numbers (see Example 3). Indeed, we will state a condition that, when satisfied,
determines infinitely many solutions. We conjecture that no solutions exist when the stated condition
fails.

In contrast, we also prove that, given m > n > 1, the simultaneous relations{
P = mP ′

P = nP ′′

have only finitely many possibilities, not just for triangular numbers but for triplets P , P ′, P ′′ of
`-gonal numbers for all ` ≥ 3 except when ` = 4 and m and n are both perfect squares. Table 2 gives
several non-trivial examples of this phenomenon for small `, m, and n.

2. The Pell equation and polygonal numbers

The diophantine equations (after Diophantus of Alexandria, a third century AD Greek mathematician
and the author of a series of books called Arithmetica) are polynomial equations with integer coeffi-
cients. The solutions sought are integers or sometimes rationals. One of the most famous diophantine
equations is the so–called Pell equation.

x2 −my2 = 1. (2.1)

Because the square factors of m can be absorbed by y2, the integer m 6= 0 is generally assumed to be
square-free. We will not assume this in this article. We only assume that m is not a perfect square.

This equation is named after the Englishman John Pell (1611–1685), who contributed nothing
to its study. Due to an error by Euler, the name Pell was given to this diophantine equation, and,
according to Weil ([Wei84, p. 174]), “traditional designation [of equation (2.1)] as Pell’s equation is
unambiguous and convenient.”
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Table 1: Fundamental solution to the Pell equation for small m

m (x, y) m (x, y) m (x, y)

2 (3,2) 10 (19,6) 46 (24335,3588)
3 (2,1) 11 (10,3) 47 (48,7)
5 (9,4) 12 (7,2) 94 (2143295,221064)
6 (5,2) 13 (649,180) 95 (39,4)
7 (8,3) 30 (11,2)
8 (3,1) 31 (1520, 273)

The Pell equation has a very long and rich history going at least as far back as Archimedes
(cf. [Len00], [Nel80], [Wei84]). His complicated “cattle problem” reduces to the Pell equation (2.1)
with m = 4, 729, 494. Its first nontrivial solution (i.e. with y 6= 0) was found by computer search
(cf. [Nel80]) not too long ago (in 1980).

If we write (2.1) as
(x+ y

√
m)(x− y

√
m) = 1,

and assume that m is square–free, then solving the Pell equation is equivalent to finding the units
of Z[

√
m], a special case of the Dirichlet unit theorem for the ring of integers of a number field.

(Actually, this is true only if m ≡ 0, 2, 3 (mod 4), if m ≡ 1 (mod 4), it needs slight modification
(cf. [Cha88, pp. 78–89]) but is not an issue here.)

The solution (x, y) with smallest x = x1 > 0 (hence the smallest y = y1 > 0) is called the
fundamental solution of (2.1). Correspondingly, x1 + y1

√
m is called the fundamental unit of Z[

√
m]

or by abuse of language, that of the real quadratic field Q(
√
m).

Finding the fundamental solution of (2.1) is still a very challenging problem, with no apparent
pattern to it (cf. [Var97, Wei84]). The most obvious way of finding it is to put y = 1, 2, 3, . . . in
1 +my2 and stop as soon as it becomes a perfect square. For example, if m = 2, x1 = 3, y1 = 2 and
if m = 3, x1 = 2, y1 = 1. Likewise, if m = 11, x1 = 10, y1 = 3. Already for m = 13, this method is
not very efficient. Table 1 shows the erratic behavior of the fundamental solution for certain integers.

Brahmagupta (598–670 AD), the first to solve the quadratic equation ax2 + bx + c = 0 the way
we do it today, Jayadeva (9th century AD), and Bhaskara II (1114–1185 AD) were the first to study
the Pell equation systematically. They showed that (for m > 1) infinitely many solutions can be
obtained from a given nontrivial solution by using the so-called Brahmagupta identity (the product
of two numbers of the form a2 + mb2 is itself a number of this form). The Fibonacci identity (the
set of the sums of two squares is closed under multiplication), which already occurs in Diophantus’
Arithmetica, is a special case of the Brahmagupta identity.

This school of Indian mathematicians devised a method (cf. [Var97, pp. 25–38]) they called
chakravala (or circular), which they used to solve (2.1) for many values of m. For example, for
m = 61 they found the smallest solution x = 1766319049, y = 226153980. The efficiency and the
simplicity of this method impressed even André Weil, one of the greatest number theorists of the
20th century, who wrote (cf. [Wei84, p. 24]), “to have developed chakravala and to have it applied
successfully to such difficult numerical cases as N = 61 or N = 67 had been no mean achievement.”
(His N is our m.)

The Indians assumed that a nontrivial solution always exists. Lagrange was the first to prove
the existence of a nontrivial solution for all m > 1. We now have several proofs of this fact based
on different disciplines of number theory. The most common (cf. [NiZuMo91, pp. 336–356]) given in
first courses in number theory uses the techniques from diophantine approximations and continued
fractions (cf. [Nag64]).

Although by Lagrange’s theorem we know that sooner or later 1 +my2 becomes a perfect square,
the random size of x1, y1 makes it very difficult to predict how far we must go for arbitrarily given m.
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For example, if m = 63, x1 = 8, y1 = 1, whereas, for m = 61, in the smallest solution (x1, y1) above,
y1 runs into nine (decimal) digits. Although there are better methods available—such as the method
of continued fractions—there is still no last word on solving the Pell equation, or equivalently, on
finding the fundamental unit of a real quadratic field (cf. [Len00], [Wil02]).

It is easy to check that the set G of integer solutions of (2.1) with x > 0 forms an abelian group
under the binary operation

(x, y) ∗ (x′, y′) = (xx′ +myy′, xy′ + x′y) (2.2)

with (1, 0) as its identity and (x,−y) the inverse of (x, y). The group law (2.2) is suggested by
multiplying (x+ y

√
m)(x′+ y′

√
m) = X + Y

√
m and comparing the rational (respectively irrational)

parts in this equation. By the Dirichlet theorem, G is a cyclic group generated by the fundamental
solution g = (x1, y1).

If (xn, yn) = gn = g ∗ · · · ∗ g︸ ︷︷ ︸
n times

, it is easy to see that the integers y1 < y2 < y3 < · · · increase

quadratically and soon yn is so large that 1/y2
n is almost zero. Thus (xn/yn)2 is almost equal to m,

giving a very good rational approximation to
√
m.

Example 1. If m = 2, g = (x1, y1) = (3, 2) and it takes less than a minute to compute by hand and
see that (x5, y5) = (3363, 2378). It is amazing that the approximation x5/y5 = 3363/2378 to

√
2 is

the same as given by a handheld calculator.

2.A. Triangular numbers

As an application of the above discussion of the Pell equation, we recall from [ChaD93] the follow-
ing generalization of Euler’s work regarding which triangular numbers are three times some other
triangular numbers.

Theorem 1. For a non-square integer m > 1, the equation

∆′ = m∆ (2.3)

is satisfied by infinitely many triangular numbers ∆, ∆′.

Proof. We first remark that if the norm form equation

(x+ y
√
m)(x− y

√
m) = d (2.4)

has a solution (x, y), infinitely many solutions are obtained by multiplying α = x + y
√
m with the

units of the form x′ + y′
√
m in Z[

√
m]. Equation (2.4) is called a norm form equation because the

quadratic form x2−my2 is the norm N(α) = αᾱ of α = x+ y
√
m in Z[

√
m], ᾱ = x− y

√
m being the

conjugate of α.

Since the triangular numbers are the numbers ∆ = r(r+1)
2 , r = 1, 2, 3, . . ., the equation (2.3) is the

same as
s(s+ 1) = mr(r + 1)

which again on completing squares is the same as

(2s+ 1)2 −m(2r + 1)2 = 1−m.

So we have to find infinitely many solutions of

X2 −mY 2 = 1−m (2.5)
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with X, Y > 0 both odd. One such solution, namely (1, 1), is obvious; this, however, does not give
us a solution to (2.3). But we can use this solution to find others.

If (xn, yn) is a solution of the Pell equation (2.1), then it can be checked that xn, yn are of opposite
parity (i.e. one odd the other even). Moreover, in case m is even, it is xn that is odd. Therefore,
(Xn, Yn) = (xn, yn) ∗ (1, 1) = (xn +myn, xn + yn) is a solution of (2.5) with both Xn, Yn odd. Thus
solutions of (2.3) can be obtained from (Xn, Yn) with n > 0.

Remark 1. There is another solution to (2.5) that will yield solutions to (2.3) different from those
mentioned in the proof, namely (−1, 1) as we will see later. In fact for certain m (depending on the
class number of m), one can show that these are the only solutions to (2.3).

Suppose a > b ≥ 1 are square-free integers which are mutually coprime. A slight modification of
the above argument with m = ab in the Pell equation (2.1) yields the following stronger result. We
omit its proof.

Theorem 2. The equation
a∆ = b∆′

has infinitely many solutions in triangular numbers ∆, ∆′.

2.B. Generalization to `-gonal numbers

Equation (2.3) becomes more interesting if ∆, ∆′ in it are replaced by higher polygonal numbers
resulting in the equation

P (`, r) = mP (`, s) (2.6)

with ` ≥ 5. In this more general setting, the existence of solutions of (2.6) depends on the existence
of solutions of the Pell equation (2.1) satisfying certain congruence equations, which may or may
not happen. In fact, whether the conditions are satisfied or not seems to happen randomly (cf.
[ChaPri11, Pri09]). Before we describe these conditions, we need the following preparatory lemma.

Lemma 1. If (x, y) is a solution to (2.1) with x > 0 and y > 0, then x > y and my > x.

Proof. Since x2 = 1 +my2 and m ≥ 2 it is clear that x > y. Furthermore, m2y2 + 1 > my2 + 1 = x2.
Hence m2y2 > x2.

For every solution (x, y) to (2.1) with x > 0 and y > 0, we also have solutions (±x,±y) in any
combination of positive and negative. If we compose these solutions with (1, 1) we obtain

(1, 1) ∗ (±x,±y) = (±x±my,±x± y).

From the lemma, we see that only (x + my, x + y) has both entries positive. We can do something
similar with (−1, 1) and we see that of the four possibilities only

(−1, 1) ∗ (x, y) = (−x+my, x− y)

has both entries positive. We could do something similar with (−1,−1) and (1,−1), but these are
simply the negatives of what we have already done.

Theorem 3. Given m > 1 not a perfect square and ` ≥ 5 there exists a solution to (2.6) if there
exists a solution to (2.1) with

x+my ≡ −1 (mod q)

x+ y ≡ −1 (mod q)

}
(2.7)
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or
my − x ≡ −1 (mod q)

x− y ≡ −1 (mod q)

}
. (2.8)

Here q = 2` − 4, ` − 2, and `/2 − 1 according as ` ≡ 1, 3 (mod 4), 2 (mod 4), and 0 (mod 4), resp.
Moreover, if one solution exists, then there are infinitely many.

Proof. We consider only the case ` ≡ 1, 3 (mod 4). The other two cases are dealt with similarly.
Writing exactly what the two sides of (2.6) stand for and completing squares, we obtain the generalized
Pell equation

X2 −mY 2 = (1−m)(`− 4)2 (2.9)

with

X = (2`− 4) r − (`− 4)

and

Y = (2`− 4) s− (`− 4).

Clearly (2.6) has a solution if and only if the generalized Pell equation (2.9) has a solution with X,
Y ≡ −(`− 4) mod (2`− 4) and X,Y > 0.

One obvious solution to (2.9) is (X,Y ) = (` − 4, ` − 4). We may obtain further solutions by
composing this solution with the solutions (x, y) of the Pell equation (2.1):

X = (`− 4)(x+my)

and

Y = (`− 4)(x+ y).

Since ` ≡ 1, 3 (mod 4), ` − 4 and 2` − 4 are coprime, so ` − 4 is a unit (mod 2` − 4). Hence the
requirement X,Y ≡ −(`− 4) (mod 2`− 4) for the solutions of (2.9) leads to the conditions

x+my ≡ −1 (mod 2`− 4)

and

x+ y ≡ −1 (mod 2`− 4)

for a solution (x, y) to (2.1).

Based on the discussion above, we consider (−(`− 4), `− 4) also a solution to (2.9). Composing
with (x, y) we obtain

X = (`− 4)(−x+my)

and

Y = (`− 4)(x− y).

By Lemma 1, X,Y > 0. This leads to conditions (2.8).

As soon as we have one solution (X0, Y0) to (2.9) satisfying one of the stated congruence relations,
we can find infinitely many solutions. In fact, the cyclic group of solutions to (2.1) modulo q becomes
a finite cyclic group with identity the class of solutions to (2.1) with x ≡ 1 (mod q) and y ≡ 0
(mod q) (cf. [ChaPri11]). There are infinitely many such solutions. Let (xs, ys) be such a solution
with xs, ys > 0. Then (X0, Y0) ∗ (xs, ys) is a solution to (2.9) satisfying the required congruence
relations. Each of these yields a solution to (2.6).
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Remarks:

1. One can see from its proof, that the converse of Theorem 3 is also true if, for a given m > 1, any
two solutions to (3) are related by a unit (and therefore a solution to (2.1)). This is related to the
class number problem. In this case, we can recover all polygonal numbers which satisfy (2.6). This is
the case, for example, with ` = 5, m = 2 as we will see in Example 2.

2. We can reformulate (2.7) in the following way.

(m− 1)x ≡ −(m− 1) (mod q)

and

(m− 1)y ≡ 0 (mod q).

Let d = gcd(m − 1, q). If d is odd, we see there is only one solution to (2.7), namely x ≡ −1
(mod q), y ≡ 0 (mod q). If d is even, one can check, there is an additional possible solution (modulo
q) satisfying (2.1), which is x ≡ q

2 − 1 (mod q) and y ≡ q
2 (mod q). Only one of these is possible, and

these are the only possibilities satisfying (2.7).

3. In [ChaPri11, Pri09] the authors investigated Gm,q, the group modulo q of solutions to (2.1). It
is a finite cyclic group and its order is denoted gm(q). Solutions to (2.7) are closely related to the
order of this group. Indeed from the previous remark, we see that solutions to (2.7) correspond with
elements of Gm,q of order 2. Thus for example, we have no solutions to (2.7) if gm(q) is odd.

We now give some examples to show that the Equations (2.7) and (2.8) are often satisfied but
not always. We emphasise we differentiate between solutions to (2.7) or (2.8) from the theorem and
solutions to the original problem in (2.6). When no solution to (2.7) or (2.8) exists, it does not imply
the same about the original problem. Verifying there are no solutions to (2.6) can be much more
involved.

In the following examples, we focus mostly on solutions to (2.7) and (2.8), but in Example 3, we
see in fact that there are no solutions to the original problem (2.6). Also in Example 2 we show that
for certain choices of ` and m, Theorem 3 yields all solutions to (2.6).

Example 2. Consider ` = 5 (so q = 6). These correspond to pentagonal numbers. For m = 2, the
fundamental solution to (2.1) is (3, 2). This does not satisfy (2.7) or (2.8). However if we look at
powers of this fundamental solution, we see that the next solution is (17, 12), which satisfies (2.7)
and the third solution is (99, 70), which satisfies (2.8). Hence there are infinitely many pentagonal
numbers which are two times another pentagonal number. In fact, if we consider the ring Z[

√
2], then

the pentagonal numbers which are twice another pentagonal number correspond to solutions to

x2 − 2y2 = −1,

which in turn are units in Z[
√

2]. The units in Z[
√

2] are powers of (1+
√

2)—which in the notation of
the Pell equation we would write as (1, 1) as in the proof of the theorem—negatives, and conjugates
of such powers. Hence, we have actually found all solutions to (2.6) with ` = 5 and m = 2.

With ` = 5, we can do similar computations for m = 3, 4, 5, 6, 7 finding infinitely many solutions to
(2.6) via the conditions in (2.7). With m = 12, there is no solution to (2.7); however, the fundamental
solution (7, 2) satisfies (2.8), and so we obtain infinitely many solutions in this case as well.

For m = 10, 11, 13, one can easily check that there are no solutions to (2.7) or (2.8) as set out in
the theorem. Indeed, in the notation introduced in the Remark above, g10(5) = 1 and g13(5) = 1.
That means that every solution to (2.1) is congruent to (1, 0) mod q. Furthermore, g11(5) = 2, so
we only need to check the conditions on the fundamental solution. Again, this does not necessarily
mean there are no solutions to (2.6), although we conjecture that there are not.
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Example 3. Consider ` = 6 (hence q = 4). With m = 2. This Pell equation has fundamental
solution (3, 2), and as we have seen the next solution is (17, 12). Neither of these solutions satisfies
either (2.7) or (2.8). Since (17, 12) is congruent to (1, 0) (mod q), (i.e. g2(4) = 2) these are the only
solutions we must consider. In fact we will now demonstrate that there are no hexagonal numbers
which are twice another hexagonal number.

In this case, we look for solutions to

X2 −mY 2 = (1−m)( `−4
2 )2

with X,Y ≡ − `−4
2 (mod q), which becomes

X2 − 2Y 2 = −1.

Any solution to this equation corresponds to a unit in Z[
√

2] with norm −1—that is to say a unit
with norm 1 multiplied by either (1 +

√
2) or (−1 +

√
2). But these are exactly the solutions to (2.1)

multiplied by either (1, 1) or (−1, 1) as we have seen. Hence there are no solutions.

With ` = 6 we can find solutions to (2.7) or (2.8) with m = 3, 6, 7, 8, 11, but not for m =
2, 5, 10, 12, 13. Again, we conjecture that there are no solutions for these last choices of m.

Example 4. Finally, consider ` = 8 (hence q = 3). In this case we have solutions to (2.7) or (2.8)
when m = 2, 3, 5, 6, 7, 8, 12, but not when m = 10, 11, 13. (Again, this does not necessarily mean there
are no solutions to (2.6) for these choices of m.)

3. Elliptic Curves and Polygonal Numbers

In what follows, by an elliptic curve we mean a diophantine equation

dy2 = x3 + ax2 + bx+ c (3.10)

with a, b, c, d in Z, d ≥ 1 and the right-hand side of (3.10) having no repeated root. The rational
solutions of (3.10), more precisely the set E(Q) of rational points on the elliptic curve E defined by
(3.10) together with the point O at infinity is, by the Mordell-Weil theorem (cf. [Cha88, p. 125]), a
finitely generated abelian group with O as its identity, under the group law given by P +Q+R = O
if the points P , Q, R on (3.10) are collinear. Thus the torsion subgroup (i.e. the subgroup of points
of finite order) of E(Q) is finite. By the Lutz-Nagell theorem (cf. [Cha88, p. 136]), a torsion point can
have only integer coordinates. However, a point with integer coordinates need not be a torsion point.
A priori it is possible for (3.10) to have infinitely many integer solutions. But the next theorem (a
special case of Siegel’s theorem) from the theory of diophantine equations (cf. [Mor69, p. 255]) states
that this is not possible.

Theorem 4. The elliptic curve (3.10) has only finitely many points on it with integer coordinates.

However, (3.10) may or may not have infinitely many rational solutions. In fact, both the cases are
believed to occur with equal probability (cf. [Sil01]).

We now prove the following fact about polygonal numbers.

Theorem 5. Given ` ≥ 3 and m > n > 1 (m or n square-free in case ` = 4), there are only finitely
many triplets r, s and t such that

P (`, r) = mP (`, s) = nP (`, t). (3.11)
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Proof. We assume ` 6= 4 (the trivial case). The relation (3.11) is the same as the diophantine equations

(`− 2)r2 − (`− 4)r = m((`− 2)s2 − (`− 4)s)

= n((`− 2)t2 − (`− 4)t).

Setting a = 2(`− 2) and b = (`− 4) and completing squares, these equations become

(ar − b)2 −m(as− b)2 = −(m− 1)b2

(ar − b)2 − n(at− b)2 = −(n− 1)b2.

}
(3.12)

Let
u = ar − b, v = as− b, w = at− b,

and
X = m2nv2. (3.13)

Then (3.12) implies
X −A = mnu2, X −B = mn2w2 (3.14)

where A = mn(m− 1)b2 and B = mn(m− n)b2.

Now set Y = m2n2uvw. Multiplying (3.13) with both equations in (3.14), we find

Y 2 = X(X −A)(X −B). (3.15)

By our assumption on m, n and `, (3.15) is an elliptic curve with integer coefficients. So by 4, it
has only finitely many points with integer coordinates. Consequently, (3.11) has only finitely many
possibilities.

Example 5. Consider ` = 5, m = 6 and n = 3. We have seen that there are infinitely many solutions
to each of P (r, 5) = 6P (s, 5) and P (r, 5) = 3P (t, 5). However, following the proof of Theorem 5,
finding simultaneous solutions to both can be reduced to finding integer points on the elliptic curve

Y 2 = X(X − 90)(X − 54).

This curve has several integer points, however in order to correspond to an integer solution to
(3.11), we must have m2n = 108 divide X, and m2n2 = 324 divide Y . Only three such points
exist: (0, 0), (108, 324), and (90828, 27351756). The first point gives v2 = 0, which does not yield
an integer value for s. The second point gives v2 = u2 = t2 = 1, which yields only the trivial
solution (r, s, t) = (0, 0, 0). The third point gives v = ±29, u = ±71, and w = ±41, which yields
only the solution (r, s, t) = (12, 5, 7). Hence the only simultaneous solution in pentagonal numbers to
P = 6P ′ = 3P ′′ is P = P (5, 12) = 210, P ′ = P (5, 5) = 35, and P ′′ = P (5, 7) = 70.

Table 2 gives several other examples. In each case listed, the solution is unique for the given `, m
and n.

Remark 2. Relations (3.12) are a variation of equations considered by Fibonacci in his book on
squares [Fib1225]. The reader with some knowledge of algebraic geometry may also see conceptually
that such a pair of equations always defines an elliptic curve. The simultaneous equations

x2 + ny2 = z2

x2 − ny2 = t2

}
(3.16)

considered by Fibonacci are related to the congruent number problem (cf. [Cha88]). The pair of
equations (3.16) defines an elliptic curve with its Weierstrass equation y2 = x3 − n2x.
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Table 2: Solutions to P = mP ′ and P = nP ′′

`-gonal numbers P P ′ P ′′ P = mP ′ = nP ′′

` = 3, triangular 6 1 3 P = 6P ′ = 2P ′′

630 105 210 P = 6P ′ = 3P ′′

105 15 21 P = 7P ′ = 5P ′′

` = 5, pentagonal 210 35 70 P = 6P ′ = 3P ′′

` = 6, hexagonal 120 6 15 P = 20P ′ = 8P ′′

` = 7, heptagonal 12852 1071 6426 P = 12P ′ = 2P ′′
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