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This paper focuses on the role of polarization - and more specifically, the effect of its selection - in 3D quan-
titative imaging obtained from scattered field measurements. Although polarization is now commonly used in
linear imaging procedures (when unknowns are linked by a linear relationship to the measured signal), the in-
fluence of polarization choice is generally ignored in non-linear imaging problems. In this paper, we propose a
formulation to obtain the 3D permittivity map, by a non-linear imaging procedure, from the scattering matrix.
This allows, from the same data set, to select the desired polarization case as input data for the imaging algo-
rithm. We present a study of the influence of the input data polarization choice on the reconstructed permittivity
map. This work shows that a suitable basis choice for the description of the scattering matrix and an appropriate
selection of the element of this scattering matrix can greatly improve imaging results.

I. INTRODUCTION

Electromagnetic wave probing is a powerful tool to reach
the physical features of a scene in a non destructive way and
has a wide area of potential applications in several domains.
Indeed, after interaction with the scene, the radiated field con-
tains the characteristics of the targets (position, shape, elec-
tromagnetic properties). Considering real measurements, the
field can not obviously be measured on an entire surface en-
closing the targets, only some directions of the transmitter and
of the receiver are possible and the data are thus spatially trun-
cated in such problems. It is crucial to exploit any opportunity
to have information on the scene, and an appropriate selection
of polarization is one of them.
The polarimetric information of the electromagnetic wave is
of great interest for imaging purposes and has been used for
several years in radar [1] for radar remote sensing applica-
tions [2], [3], and in light scattering [4], [5] such as, for ex-
ample, for optical biomedical applications [6]. In these last
cases, the recorded signal often allows a direct access to an
image of the scene. To extract as much information as possi-
ble, the recorded signal can be acquired with different polar-
izations for both the transmitter and the receiver. Indeed, the
polarimetric contrast is an interesting way to detect targets [7],
[8]. Different methods have thus been developed to optimize
the polarimetric contrast between two regions of the observed
scene or between the target and the embedding medium [9].
When the recorded signal does not directly provide an image
of the scene and when an imaging procedure is required, po-
larization must be integrated into the imaging process. In the
case where unknowns are linearly related, under certain as-
sumptions, to the measured signal, polarization has been used
for several years to improve images. This is the case, for ex-
ample, with synthetic aperture radar (SAR) [10], [11] scatter-
ing tomography [12] or Optical Coherence Tomography [13].
These procedures provide ”qualitative” maps (except in cases
where the targets are weak scatterers), allowing the targets to
be detected and their positions and shapes to be obtained.

When one want, in addition, a permittivity map of the im-
aged area, ”quantitative” imaging procedures must be used. In
such procedures, a significant difference from the processes
described above is that the unknowns (3D permittivity map)
are related to the measured data by a non-linear relationship.
In these procedures, the influence of polarization is very rarely
taken into account. When different polarizations are taken into
account, they are generally considered to contain the same
amount of information and the processing of each polariza-
tion state is performed in the same way [14], [15], [16], [17].
In this contribution, we are interested in quantitative imag-
ing and we propose a formulation to perform this quantitative
imaging from the scattering matrix (which can be written in
different basis) in order to take polarization into account eas-
ily. For 3D objects that have a high degree of freedom, it is all
the more necessary to make the most of all the available infor-
mation and polarization is important information. We propose
here a study of the influence of the polarization selection on
the reconstructed permittivity map. To focus only on the in-
fluence of polarization, no a priori information (neither on the
object sought nor on the noise disturbing the measurements)
is incorporated into the inversion procedure and no regula-
tion term is added to the cost function. Images are obtained
from both calculations and measurements. Linear and circu-
lar polarizations are studied. For the different cases, we are
interested in the consequence of choosing a given scattering
element of the scattering matrix over another and in the choice
of the basis for writing the scattering matrix. We show that ap-
propriate choices can significantly improve the reconstructed
map.
Part II is devoted to the scattering matrix construction in the
various basis and to the presentation of the different polariza-
tion cases. The imaging algorithm is explained in part III. The
details of the experimental setup and the measurement of the
fields are explained in part IV. The imaging results are pre-
sented in part V and a discussion on these results follows in
part VI. Some concluding remarks are finally given in part
VII.
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II. SCATTERING MATRIX

In far field, for a non-absorbing medium, the complex am-
plitude scattering matrix [SB] describes the relationship be-
tween the incident field vector [Ei

B] and the scattered field
vector [Es

B] [4].

[Es
B] = [SB] [Ei

B] (1)

This complex amplitude scattering matrix depends on the po-
larization type (linear, circular, elliptical) and on the choice
of the basis B for this polarization description. Since far-field
conditions are assumed, the field vector has no radial compo-
nent and is then totally determined by its components along
the two basis vectors. In a multistatic configuration, this scat-
tering matrix [SB] is defined as follows for each direction of
the incident wave vector ki and each direction of the scattered
wave vector ks:(

Esp
Esq

)
=

(
Spp Sqp
Spq Sqq

)(
Eip
Eiq

)
(2)

In this paper, we focused on two linear polarization represen-
tations and one circular polarization (Figure 2).

A. Linear polarization

When a linear polarization is selected, two main conven-
tions are commonly used to express the scattering matrix :
spherical convention - which is widespread in the microwave
community [18] - and Bohren Huffman convention - com-
monly used in the light scattering community - [4].

1. Spherical convention

For a given transmitter/receiver pair, the scattering matrix
can be constructed with a spherical convention (Sp), using the
vectors (eiθ, eiφ) as basis for the incident wave and the vectors
(esθ, esφ) as basis for the scattered wave (Figure 1). Therefore,

FIG. 1: Definition of the spherical convention: coordinate (a)
and the polarization basis (b).

the element Sp,q of the scattering matrix (with p, q ∈ {φ, θ})
corresponds to a scattered field measured along the vector esq
for an incident field Ei polarized along the vector eip (Figure
2(a)).

FIG. 2: Definition of the three basis: (a) Linear - Spherical
convention, (b) Linear - Bohren and Huffman convention and

(c) Circular.

2. Bohren and Huffman convention

In the Bohren and Huffman (BH) definition, the scatter-
ing elements are linked to the scattering plane, i.e, the plane
containing both the incident wave vector ki and the scattered
wave vector ks [19] (see Figure 2(b)). In the far-field region,
the scattered field components (Es‖ and Es⊥) are then linked
to the incident ones (Ei‖ and Ei⊥) by the scattering matrix.
Ei‖ (resp. Ei⊥) corresponds to the parallel (resp. perpendic-
ular) incident field component to the scattering plane and Es‖
(resp. Es⊥) corresponds to the parallel (resp. perpendicular)
scattered field component to the scattering plane. The element
Sp,q of the scattering matrix (with p, q ∈ {⊥, ‖}) corresponds
to a scattered field measured along the esq vector for an inci-
dent field Ei polarized along the eip vector (Figure 2(b)). The
scattered fieldEs⊥ along es⊥ (resp. the scattered fieldEs‖ along
es‖) is also called in polarization S (resp. in polarization P ).
The scattering matrix described in Bohren Huffman conven-
tion can be obtained by a simple basis change from the scatter-
ing matrix described in spherical convention and vice versa.

B. Circular polarization

The left-circular polarized incident (resp. scattered) wave
Eil (resp. Esl ) and right-circular polarized wave Eir (resp. Esr )
can be obtained from a linear combination of the linear polar-
ized incident wave in the Bohren Huffman convention. In the

FIG. 3: Definition of the left and right circular polarization
with the IEEE convention [20].

far field region and with the convention of the Figure 3 (out-
going wavevector for emission and incoming wavevector for
reception) [20], [21], the scattering elements Sp,q of the scat-
tering matrix (with p, q ∈ {l, r}) can thus be expressed from
the linear polarized elements in the Bohren Huffman conven-
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tion:

Srr =
1

2
[(S‖‖ − S⊥⊥)− j (S⊥‖ + S‖⊥)] (3)

Srl =
1

2
[(S‖‖ + S⊥⊥)− j (S⊥‖ − S‖⊥)]

Slr =
1

2
[(S‖‖ + S⊥⊥) + j (S⊥‖ − S‖⊥)]

Sll =
1

2
[(S‖‖ − S⊥⊥) + j (S⊥‖ + S‖⊥)]

III. IMAGING PRINCIPLE

The complex 3D permittivity map of the investigation zone
is extracted from the fields measured in the receiving area by
solving a non-linear inverse problem. In this work we started
from an algorithm already implemented for the different cases
of polarizations expressed in a spherical linear basis [22], [23].
For the current work, our algorithm has been adapted for the
case where the scattering matrix is expressed in other basis. To
do this, the cost functional, which estimates the difference be-
tween the measured scattering matrix element SmB,p,q and the

simulated one ScB,p,q for a given permittivity map εB,p,q (n)
r ,

both expressed in the basis B, are written as follows

F (n)
B,p,q = 1

2NsNr

∑Ns
s=1

∑Nr
r=1|S

c
B,p,q(εB,p,q (n)

r ;rs,rr)−Sm
B,p,q(rs,rr)|2(4)

where Ns (resp. Nr) is the number of source (resp. receiver)
positions and εB,p,q (n)

r is the (nth) 3D reconstructed permit-
tivity map with εB,p,qr = ε′ B,p,qr + jε′′ B,p,qr . During the it-
erative process, this cost functional is minimized by an iter-
ative procedure by modifying the permittivity map. Indeed,
the permittivity of the voxels is updated through a gradient
calculation:

εB,p,q (n+1)
r (r) = εB,p,q (n)

r (r) + α
(n)
B,p,q d

(n)
B,p,q (5)

with α(n)
B,p,q the optimal step, is determined by a classical line

search to minimize the cost functional at each iteration. d(n)
B,p,q

is the descent direction derived from the gradients of the cost
functional∇εrFB,p,q

(n) which are calculated with the adjoint
problem [24]. At each step of the inversion procedure, the
scattered field is calculated for the permittivity map εB,p,q (n)

r .
The calculated scattered field is computed for the entire scat-
tering matrix for the linear polarization in the spherical basis
with a homemade forward problem based on a volume integral
formulation and resolved with a biconjugated gradient stabi-
lized FFT method [25] based on a 1D FFT to improve the
calculation speed and to reduce the memory requirement [26]
(see [27] for more details on this algorithm). The construction
of the scattering matrix in the other basis is then deduced from
the elements of the scattering matrix in the spherical basis.
Initially, the permittivity of the voxels into the investigation
domain is chosen to be very close to one (because of the con-
straint of positivity, a very low constant value is added to this
value in order to avoid the case where the gradients disap-
pear). The final permittivity map is obtained when the cost

functional reaches a minimum.
Very weak a priori information is introduced on the per-
mittivity map during the inversion procedure, i.e., we use
only positivity constraints to ensure physically realistic val-
ues (ε′ B,p,qr ≥ 1 and ε′′ B,p,qr ≥ 0) and, in order to concentrate
only on the polarization effects, no regularization has been
made.

IV. EXPERIMENTS

The measurements, used for the 3D reconstructions, were
made in the anechoic chamber of the CCRM (Centre Com-
mun de Ressources en Microonde) (Figure 4 (left)). A spher-
ical exprimental setup is included in this anechoic chamber,
a sketch of its positioning devices is presented in Figure 4
(right)). Thanks to the different possible azimuthal and ele-
vation displacements of the antennas in the setup, it is pos-
sible to measure the scattered field strength over a large part
of a sphere surrounding the target. The target under test is
placed at the center of a sphere of around 1.7 m diameter on a
vertical expanded polystyrene mast considered transparent to
microwaves. Two horn antennas, which transmit alternately,
are placed on a circular vertical arch and each can have a to-
tal angular range of 180◦. The two transmitting antennas are
in eφ and eθ polarizations respectively. The polarization of
each antenna with respect to the spherical setup is selected by
the antenna rotation as they are linearly polarized. A receiv-
ing horn antenna can also move circularly around the target
in the azimuthal plane to capture the scattered signal, with a
total angular range of 260◦. The target can make a full ro-
tation (360◦) around the vertical axis. More details on this
experimental setup can be found in [28], [29]. In this study,
in order to acquire the measured scattered fields correspond-
ing to the four cases of co-polarization and cross polarization,
two measurements are made. A first measurement with the re-
ceiving antenna polarization fixed at eφ allows to achieve the
φφ and θφ measurement cases, and a second measurement
with the receiving antenna polarization fixed at eθ allows to
achieve the φθ and θθ measurement cases. With the exper-
imental setup, the signal is measured in both magnitude and
phase which allows to obtain the complex value of the electric
field. The scattered electric field Esp,q cannot be obtained in
a unique step, but it is rather obtained from the complex sub-
traction of two different fields: the measured electric field with
the target under test is at its place in the chamber (total field)
and measured electric field with no target (incident field). Af-
ter obtaining the scattered field, a drift-correction procedure
is applied [30] to remove the drift errors that could happen
due to the time delay between the total and incident field. At
the end, the drift corrected scattered field is calibrated, using
a measurement of a reference target, to refer the incident field
to a magnitude equal to one and a null phase at the target’s
center.
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FIG. 4: Experimental setup

V. IMAGING RESULTS

A. Targets

We consider two targets, i.e., the first is a canonical object
with a relatively low permittivity value. It is a small cube with
permittivity equal to εr = 1.45. Its side is equal to 20 mm
(1.2λ at 18 GHz). The results for the first target may, in some
cases, be interpreted with approximations on the induced cur-
rent (see subsection VI B). The second object has a more com-
plicated shape, i.e., two dimensions are very small compared
to the wavelength (< λ

3 at the work frequency). Unlike the
previous object, with this second object, the multiple scatter-
ing effect plays an important role, that cannot be neglected
in the interpretation. This second target is a circular helix,
made by the Centre de Transfert de Technologies du Mans
through additive manufacturing (Figure 5). It can be included
in a sphere of diameter 70 mm (4.2λ at 18 GHz). Its length
is 45 mm and its diameter 40 mm. The wire diameter is 5 mm
(< λ

3 at 18 GHz). The aspect ratio of the equivalent cylin-
der, defined as the ratio between radius and length, is equal to
0.135. This target was built in acrylate and its permittivity was
measured with a method based on the bistatic far-field scatter-
ing patterns of a sphere made with the same material [31] and
was found equal to εr = (2.97± 0.02) + j (0.085± 0.001) at
18 GHz [32].

FIG. 5: Circular helix

B. Reconstructed 3D permittivity maps

This paragraph is devoted to the presentation of the 3D
reconstructed permittivity maps. All the inversions are per-
formed at 18 GHz, with 99 source positions (φs ∈ [30◦ :
10◦ : 130◦], θs ∈ [110◦ : 40◦ : 430◦]) and 53 receivers
(φr = 90◦, θr ∈ [50◦ + θs : 5◦ : 310◦ + θs]). These angles
refer to the spherical coordinates of our experimental setup
(Figure 4). The investigation zone is a cubic zone with a side
of 30 mm (6λ3 at 18 GHz) for the cube and a parallelepipedic
area (49 × 95 × 82) mm3 (83λ3 at 18 GHz) for the circular
helix.
To compare the various reconstructions in a quantitative way,
some criteria are introduced to compare the N voxels of the
reconstructed map with the ones of the theoretical map. It can
be noticed that misalignment errors in the measurements can
introduce a bias in the value of these criteria (but misalign-
ment errors are low, as shown in [18]). Five criteria are consid-
ered, plus one CB that mixes the different effects. The first one
is the classical quadratic norm CL2

B . As we shall see, this cri-
terion is often ”good” even ”very good” and is too weakly sen-
sitive to differences between maps. Two other criteria are also
used, CL2

B,with and CL2
B,empty , that are also quadratic norms,

but calculated by considering only the voxels with material
and only the empty voxels (taking as reference the theoretical
map). The fourth criterion is a crosscorrelation between the
reconstructed and theoretical εr − 1 maps, obtained for the
correct geometrical offset d∗ between the two maps. CcB is
the correlation between the two maps.

Cccεr−1,B(d∗) =

∑
N (εtruer (r + d∗)− 1)(εrecor (d∗)− 1)∑
N (εtruer (r + 0)− 1)(εtruer (0)− 1)

(6)

CcB =

∑
N (εrecor,B (r)− εrecor,B )(εtruer (r)− εtruer )√∑

N (εrecor,B (r)− εrecor,B )2
∑
N (εtruer (r)− εtruer )2

(7)

CB = (1− CL2
B )× Cccεr−1,B × CcB(8)

It can be noticed that for these criteria (1−CL2
B , 1−CL2

B,with,
1− CL2

B,empty , Cccεr−1,B, CcB, CB) the best value is 1.

1. Cube reconstructions

For the cube, we perform the inversion from calculated
scattered fields. These scattered fields were calculated with
the same home-made forward software used for the inversion
procedure, based on a volume integral formulation [27]. To
avoid the ”inverse crime”, the discretization of the target zone
is not similar in this forward problem and in the inversion pro-
cedure. As it is explained in the section VI, we present in this
section only the co-polarization and the well-adapted polar-
ization elements. In figures 6, 7 and 8, the permittivity maps
in the three planes x = 0 mm, y = 0 mm and z = 0 mm are
plotted in the various polarization cases. The criteria values
are summarized in table I.
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FIG. 6: 2D cross section in the (y0z) plane at x = 0mm of
the reconstructed maps in the principal polarization cases

from calculated scattered fields for the cube case. The edges
of the target are superimposed in cyan.

Pola. 1− CL2
B 1− CL2

B,empty 1− CL2
B,with Cc Ccc

εr−1,B CB
φφ 0.973 0.999 0.974 0.837 0.415 0.338
θθ 0.971 0.999 0.973 0.814 0.402 0.318
⊥⊥ 0.952 0.992 0.960 0.688 0.257 0.168
‖‖ 0.961 0.998 0.962 0.796 0.280 0.215
lr 0.960 0.999 0.961 0.656 0.354 0.223
rl 0.960 ≈ 1 0.961 0.656 0.354 0.223

TABLE I: Comparison of the different reconstruction cases
from the calculated scattered field. The target is the cube at

the frequency of 18 GHz. It can be noticed that these criteria
are better when there are 1.

2. Circular helix reconstructions

For this target, the inversion was done both from measured
scattered fields and from calculated scattered fields. The crite-
ria values, summarized in the tables II and III, were calculated
for the reconstructions from the two cases. We present only
the reconstructed maps obtained from the measurements (see
Figure 9 for the 3D views and Figures 10, 11 and 12 for the
permittivity maps).

FIG. 7: 2D cross section in the (x0z) plane at y = 0mm of
the reconstructed maps in the principal polarization cases

from calculated scattered fields for the cube case. The edges
of the target are superimposed in cyan.

Pola. 1− CL2
B 1− CL2

B,empty 1− CL2
B,with Cc Ccc

εr−1,B CB
φφ 0.917 0.993 0.924 0.522 0.159 0.076
θθ 0.921 0.994 0.928 0.542 0.159 0.079
⊥⊥ 0.895 0.986 0.909 0.194 0.103 0.018
‖‖ 0.901 0.987 0.915 0.266 0.120 0.102
lr 0.923 0.992 0.931 0.517 0.213 0.102
rl 0.923 0.992 0.931 0.528 0.205 0.100

TABLE II: Comparison of the different reconstruction cases
from calculated scattered field. The target is the circular helix

at the frequency of 18 GHz.

3. Comparison of the different polarization cases

As it can be seen in Tables II and III, the maps recon-
structed from measurements for the circular helix are close to
those obtained from calculations in the different polarization
cases. However, the maps reconstructed from experimental
fields have higher discrepancy (in particular the θθ case). This
is logical, especially since no information on the experimental
noise is taken into account in the inversion procedure, i.e., no
regularization is carried out in this inversion concerning this
noise [22].
In tables I, II and III, we can see that the quadratic standard
norm calculated on all voxels (1 − CL2

B ) is very good (val-
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FIG. 8: 2D cross section in the (x0y) plane at z = 0mm of
the reconstructed maps in the principal polarization cases

from calculated scattered fields for the cube case. The edges
of the target are superimposed in cyan.

Pola. 1− CL2
B 1− CL2

B,empty 1− CL2
B,with Cc

B Ccc
εr−1,B CB

φφ 0.915 0.992 0.923 0.246 0.143 0.032
θθ 0.915 ≈ 1 0.915 0.297 0.031 0.008
⊥⊥ 0.912 ≈ 1 0.913 0.127 0.017 0.002
‖‖ 0.912 ≈ 1 0.912 0.194 0.002 ≈ 0
lr 0.927 0.990 0.936 0.442 0.227 0.093
rl 0.915 0.989 0.926 0.282 0.220 0.057

TABLE III: Comparison of the different reconstruction cases
from the measured scattered field. The target is the circular

helix at the frequency of 18 GHz.

ues close to one) in all the polarization cases for the two ob-
jects. It is important to note that this criterion is the most
common. Nevertheless, it gives only a global information and
is not very discriminating. Indeed, it mainly provides infor-
mation on empty cells, especially when they are in majority.
Then, to compare the results in details, other criteria have been
used. One solution is to separate the cells with material (ac-
cording to the theoretical map) from the empty cells and to
calculate the quadratic norm on these two sets (1−CL2

B,empty ,
1 − CL2

B,with). Considering that, 1 − CL2
B,empty , empty voxels

are well reconstructed for the two objects in all polarization
cases except in the ⊥⊥ case. Indeed, in this polarization case,
there are artefacts on the reconstructed maps, which results in

FIG. 9: 3D view of the reconstructed maps in the different
polarization cases from measured scattered fields for the

circular helix (the threshold is chosen at 1.1). The real object
is superimposed in cyan.

a deterioration of this criterion. ConsideringCL2
B,with, the vox-

els that should contain material are better reconstructed for the
φφ, θθ for the cube case. For the circular helix, the four cases
φφ, θθ , lr and rl are almost equivalent with respect to this
criterion and are better than the two polarizations in the BH
basis (⊥⊥ and ‖‖).
The cross correlation Cccεr−1,B drops (i) if artifacts exist on the
reconstruction (voxels that should be empty but are not on the
reconstructed map) or (ii) if a part of the target is not recon-
structed or (iii) if the object’s permittivity value is not well re-
covered. Cccεr−1,B is very low for the cases ⊥⊥ and ‖‖ for the
two targets. For these two polarization cases, this is because
many parts of the object are not reconstructed (see Figures 9 -
12) and because, specifically for the ⊥⊥ case, there are many
artifacts (see Figures 6 -8). For the circular helix, in φφ and
θθ cases, this criterion has an average value. For φφ, there
are artifacts on the reconstructed map and for θθ, the value of
the reconstructed permittivity is too low. The two best cases
are lr and rl, where the reconstituted value of the permittiv-
ity is well recovered and there are few artifacts. For the cube
case, the best values of this criterion are for the φφ and θθ
cases, the ones where the entire shape of the object is better
reconstructed. Finally, the Cc correlation, that takes also into
account the empty voxels, goes in the same direction, i.e., the
best reconstruction cases are the ones in circular polarization
for the circular helix and φφ and θθ for the cube. The global
criterion CB, which is a simple multiplication of the three cri-
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FIG. 10: 2D cross section in the (x0y) plane at z = 0mm of
the reconstructed maps in the principal polarization cases

from measured scattered fields for the circular helix.

teria, confirms that.

VI. ANALYSIS OF THE POLARIZATION EFFECTS

This section is devoted to the analysis of differences in re-
constructions from the various elements of the scattering ma-
trix.

A. Singular Value Decomposition

To analyze the information content in each scattering ma-
trix element [SB,pq] of polarization (p q) in the basis B, a
Singular Value Decomposition of this multistatic element has
been made.

[SB, p q] = [UB, p q] [ΛB, p q] [VB, p q] (9)

with [ΛB, p q], the matrix that contains the singular values,
[UB, p q] and [VB, p q], the two matrix that contain the asso-
ciated bases singular vectors for (p, q) ∈ [φ, θ,⊥, ‖, l, r].
All these quantities expressed in the basis B for a scattered
electric field measured along es

q and for an incident electric
field polarized along ei

p.

Figures 13 and 14 show, for the two objects, the sum of the
spectrum in each polarization case considering the spherical

FIG. 11: 2D cross section in the (x0z) plane at y = 0mm of
the reconstructed maps in the principal polarization cases

from measured scattered fields for the circular helix.

basis, the BH basis and the circular basis. The cases that con-
tain most information are the co-polarization elements (Sφφ,
Sθθ, S⊥⊥, S‖‖) and the well-adapted circular polarization el-
ements (Slr, Srl). To take a closer look at the spectra, the
items with most information are detailed in Figures 15 and 16.
The size of the signal space for all polarization cases appears
to be the same. This is also in agreement with the Efficient
Bandwidth approach [33]. Indeed, with such an approach, for
a target of this size, illuminated at this frequency, the width of
this spectrum should be, given our limited circular arc, equal
to 16 for the cube case and 27 for the circular helix case.

As might be expected, the co-polarized elements (Sφφ, Sθθ,
Sθθ, S⊥⊥, S‖‖) and the well-adapted circular polarized el-
ements (Srl, Slr) contain more information than the cross-
polarized elements (Sφθ, Sθφ, S⊥‖, S‖⊥) or than the not-
adapted circular polarized elements (Srr, Sll). Differences
between the co-polarized/well-adapted circular polarized ele-
ments (Sφφ, Sθθ, Sθθ, S⊥⊥, S‖‖, Srl, Slr) are small and ap-
pear to be relative to the target (below, an analysis for the two
targets under studied). This multistatic matrix analysis does
not allow to discriminate between these elements. In particu-
lar, it does not allow to choose one of the elements rather than
another.
For the cube case, the sum of the singular values of the ele-
ments Slr, Srl, Sφφ and S⊥⊥ is a bit higher than the elements
Sθθ and S‖‖) (Figure 13). These elements correspond also to
the ones having the higher values in the signal space (Figure
15). Within these elements, the differences are too small to
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FIG. 12: 2D cross section in the (y0z) plane at x = 0mm of
the reconstructed maps in the principal polarization cases

from measured scattered fields for the circular helix.

FIG. 13: Sum of all the singular values for the Cube (left: in
spherical basis, middle: in BH basis and right: in circular

basis) (
∑Nr

n=1 λ
(n)
B p q).

FIG. 14: Sum of all the singular values for the circular helix
(left: in spherical basis, middle: in BH basis and right: in

circular basis) (
∑Nr

n=1 λ
(n)
B p q).

discriminate.
For the circular helix case, as it can be seen, all the singular

FIG. 15: Spectra of singular values λ(n)
B, p q for the Cube: full

spectra (left) and spectra corresponding to the signal space
(right).

FIG. 16: Spectra of singular values λ(n)
B, p q for the circular

helix: full spectra (left) and spectra corresponding to the
signal space (right).

values of the Sφφ elements are higher than the those of the
other elements in the signal space (only the first three singular
values are almost identical for all the polarization cases) (Fig-
ure 16). Then, the spectra of the elements S⊥⊥, Slr, Srl are
almost similar and are higher than the spectra of the elements
S‖‖ and Sθθ.

B. Polarization vector analysis

In this section, we analyze, in the case of linear polariza-
tion, the filter effect created by the scalar product between the
transmitter and the receiver polarization directions. It should
be noticed that in the case of the circular base, this effect does
not exist. As it is explained in the following, we restrict our
analysis to the cases where, multiple scattering effects are
weak as a first approximation.

For a source position at rs and a receiver position at rr, the
scattered field can be written as

Es(rs, rr) =

∫
Ω

G(rr, r
′)χ(r′) E(r′)dr′ (10)

with G the dyadic Green function, χ(r′) = k2(r′) − k2
o , the

contrast term (ko being the wavenumber in the free space) and
E, the electric field vector. The scattered field measured by the
receiver, polarized along esB,q , is:

Es(rs, rr).e
s
B,q = (

∫
Ω

G(rr, r
′)χ(r′) E(r′)dr′).esB,q(11)
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B Sp Sp Sp Sp BH BH BH BH
p, q φφ φθ θφ θθ ⊥⊥ ⊥‖ ‖⊥ ‖‖
QB 0.84 0.30 0 0.55 1 0 0 0.46

TABLE IV: Values of the quantity QB for different
polarization cases.

The induced current vector in the target zone Ω, for a per-
mittivity map εr(r), obtained for an incident field vector
Ei
B,p = Ei eiB,p is:

∀r ∈ Ω,JB,p(r) = χ(r) EB,p(r) (12)

This analysis is restricted to scattering with small multiple
scattering effects and we assume that the induced current
JB,p = χEB,p is collinear to the incident field

Es(rs, rr).e
s
B,q ≈ [

∫
Ω

G(rr, r
′) JB,p(r

′)dr′ eiB,p].e
s
B,q(13)

In the far field conditions, i.e. when each receiver position rr
in the receiver zone Γ, satisfies the following conditions:

∀rr ∈ Γ,∀r′ ∈ Ω, ko rr � 1, rr � r′ et
ko r

′

2 rr
� 1(14)

G can be approximated by [4]:

G(rr, r
′) ≈ ejkorr

4πrr
e−jkoe

s
B,q.r

′
[eθ ⊗ eθ + eφ ⊗ eφ] (15)

The the scattered field measured by the receiver can thus be
written as follows:

Es(rs, rr).e
s
B,q ≈ (

∫
Ω

JB,p(r
′)e−jkoe

s
B,q.r

′
dr′) (16)

g(rr) [eθ ⊗ eθ + eφ ⊗ eφ]eiB,p.e
s
B,q

with g(rr) = ejkorr

4πrr
.

Under the previous assumptions, we were interested in the
part of the field which is not filtered by the scalar product
between the polarization of the transmitting antenna and the
polarization of the receiving antenna. Note that this quantity
does not depend on the object, it only depends on the geome-
try of the configuration, i.e., it changes depending on the posi-
tion of the source and receiver. This provides information on
the main directions examined in the target. The quantity QB
is constructed as follows:

QB =
1

NsNr

∑
Ns

∑
Nr

qB(φs, θs, θs − θr) (17)

with qB(φs, θs, θs − θr) = |[(eθ ⊗ eθ + eφ ⊗ eφ)eiB,p].e
s
B,q|

and its are provided in Table IV.
According to Table IV, the ⊥⊥ seems to be the best case:

QB is equal to one for this polarization case and none of the
measurement points is filtered in this polarization. Then, the
φφ case is an interesting case because QB is high and all

B Sp Sp BH BH
p φ θ ⊥ ‖
AB, p 0.985 0.985 0.057 0.056

TABLE V: Values of the quantity AB, p for the different
illuminations of the two linear basis in the cube case.

measurements contribute. The part of the measurement that
has the lowest weight corresponds to the smallest values of
the angle φs. θθ and ‖‖ correspond to low values of QB:
Q‖‖ ≈ 0.5. With ‖‖ case, only measurement points in the
forward scattering zone are contributing. For the θθ, a few
more measurement points contribute because there is no
filtering effect along the φs angle.

The analysis made in this section can be used only if the in-
duced current vector JB,p can be considered as collinear with
the incident field vector Ei

B,p. In the following, we use this
analysis to interpret the imaging results in the cube case. First
of all, to determine if it is in agreement with the assumption
of this analysis, we calculated the quantity AB, p for the two
linear basis (Table V):

Spherical basis, AB,p = ASp,p =
1

N

1

Ns

∑
s

| JB,p.ei
B,p |

||JB,p||
(18)

BH basis, AB,p = ABH,p =
1

N

1

NsNr

∑
s

∑
r

| JB,p.ei
B,p |

||JB,p||
.(19)

If this value is close to 1, the image obtained from an ele-
ment with such an illumination can be interpreted with the
following analysis. As it can be seen in Table V, for the cube
case, the results from the elements Sφφ, Sφθ, Sθφ and Sθθ can
be analyzed with the reasoning proposed above, but it is not
possible to use it to interpret the results from the elements of
the scattering matrix in the BH basis. With this analysis, the
best case should be the Sφφ element and then, the Sθθ ele-
ment (see table IV). It’s consistent with the imaging results
obtained from these elements (see Figures 6, 7, 8 and table I).

C. Discussion

If one considers the information contained in the multistatic
element of the scattering matrix (see subsection VI A), the co-
polarized/well-adapted elements seem roughly equivalent. As
we have seen in section V, the imaging results from the differ-
ent elements are not equivalent at all. As a first intuition one
might think that the BH basis should be the best approach and
in particular that the S⊥⊥ should give the best results as the
component of the scattered field is measured colinearly to the
incident field vector (see subsection VI B). On the contrary,
all the reconstructions from this element failed. This surpris-
ing result may be understandable. First, as it can be seen in
subsection VI B, even for a small low-contrasted object (the
cube), the induced current vectors created in the target are not
collinear to the incident field. This can be understood keep-
ing in mind that in the BH basis, the basis vectors are defined
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in relation to the (ki,ks) plane. This implies that with this
basis, the polarization selection for source and receiver also
plays the role of a filter and its influence can be strong. Thus,
for a given illumination, the incident field vector direction is
different for each receiver. It implies that for each receiver the
induced currents in the target are different. This means that
the first step in the inverse algorithm, which is equivalent to
a backpropagation process, does not provide a first good esti-
mate of the induced current map. This result is potentially a
bad starting point for the algorithm and implies that the algo-
rithm can more easily converge towards a local minimum that
is not the global minimum. On the contrary, the co-polarized
elements in the spherical basis and the well-adapted elements
in the circular basis allow to provide a good estimate of the
induced current map at the first step as, for a given illumina-
tion, the induced current map is the same for all the receivers.
Looking to the differences between the reconstructions with
the co-polarized element in linear polarization in the spherical
basis (Sφφ, Sθθ) and the well-adapted elements in the circular
polarization (Slr, Srl), in the case of a relatively simple target,
like the cube, all these elements allow to reconstruct the tar-
get with a correct value of the permittivity (Figures 6 - 8). It
can be noticed that the reconstruction with the Sθθ is anyways
worst along the z−axis. This makes sense as, in this polar-
ization case, the induced current vectors are nearly collinear
to the incident field polarization and the choice of the receiver
polarization (along eθ) plays the role of a filter (see section
VIB) and also because the polarization vectors of the illumi-
nated field and of the scattered field have no component along
the z−axis. Now considering the circular helix, with the SVD
analysis of the multistatic element (see section VIA), the ele-
ments Sφφ, Slr and Srl should be better than the Sθθ, that is
indeed the case (see Figures 9 - 12). Based on this analysis,
the element Sφφ contains a bit more information than the el-
ements Slr and Srl, nevertheless the reconstruction with the
elements Slr and Srl are a bit better. This can be explain by
the geometry of this object, particularly adapted to a circular
polarization.

VII. CONCLUSION

In this study, we have adapted our quantitative imaging pro-
cedure from scattering matrix elements in various polarization
cases. To focus only on the influence of the polarization, we
chose to introduce no a priori information into the inversion
procedure (on the searched object or on the noise disturbing
the measurements) and no regularization term was added in

the cost functional. The scattering matrix was measured for
a multistatic configuration in the spherical basis and then, ob-
tained in the other basis by a simple basis change. In this pa-
per, we considered the scattering matrix in different kinds of
polarization (linear or circular) and in the linear case, with the
two usual basis choices. In each case, the various elements
of the scattering matrix were taken as input of our imaging
procedure. Even if the different polarization cases are gener-
ally considered as equivalent inputs in such non-linear inverse
procedures, we have shown that the polarization has a great
impact on the reconstructed permittivity maps. The first result
is not surprising, i.e., for a given choice of polarization (linear
or circular), in a given basis, the co-polarization elements or
the well-adapted polarization elements are the best ones. This
is in agreement with the analysis of the information content
in the multistatic elements of the scattering matrix with a Sin-
gular Value Decomposition. Moreover, we have seen that the
scattering matrix elements having a similar information con-
tent (considering the SVD) can lead to very different recon-
structed permittivity maps and thus, a SVD is not sufficient to
understand which elements are the optimal ones. We have also
shown that a good choice of the basis to describe the polariza-
tion is important. For the linear polarization case, results ob-
tained with scattering matrix expressed in the spherical basis
are not equivalent to those obtained with Bohren and Huffman
basis. This can be understood considering the induced current
created inside the target. It can be also noticed that, when one
is interested in relatively simple targets, like the cube, even
if the imaging results are not similar, almost all the scatter-
ing elements in co-polarization (for the linear polarization) or
well-adapted polarization (for the circular polarization) allow
to reconstruct this object. Looking to more complex objects,
as the circular helix which in addition of its shape presents a
wire diameter smaller than a third of the wavelength, that is
no longer true. For these object, the choice of the polariza-
tion (linear or circular), of the basis and of the element of the
scattering matrix have an important consequence on the imag-
ing results. In the future, possible combinations of the most
relevant scattering matrix elements can help to improve the
imaging results according to the studied problem.
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