
HAL Id: hal-01986510
https://hal.science/hal-01986510

Submitted on 5 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Field failures and reliability in operation
Karama Kanoun, Ram Chillarege, Ravishankar Iyer, Jean-Claude Laprie,

John Musa

To cite this version:
Karama Kanoun, Ram Chillarege, Ravishankar Iyer, Jean-Claude Laprie, John Musa. Field failures
and reliability in operation. 4th International Symposium on Software Reliability Engineering, pp.122-
126., Nov 1993, Denver, United States. �hal-01986510�

https://hal.science/hal-01986510
https://hal.archives-ouvertes.fr

Panel session on:

Field Failures and Reliability in Operation

Moderator : Karama Kanoun (LAAS-CNRS, Toulouse, France)

Panelists : Ram Chillarege (IBM T. J. Warson Research Centre) , Ravishanker K. Iyer Univ. of Illinois at Urbana Champaign),
Jean-Claude laprie (LAAS-CNRS, Toulouse), John Musa (AT&T Bell Lab, Murray Hill, NJ)

Introduction
Karama Kanoun

The majority of the reported work related to software
reliability focuses mainly on development and validation.
Reliability in operation is however the principal concern of
the users (or customers) and is thus of prime importance.
Field measurements provide information that allows the
effect of errors on software behavior to be understood. It
provides accurate information a) on the system being
observed, b) for the elaboration and validation of analytical
models and c) for the improvement of the development
process.

The data collected helps to explain and characterize the
software under study. Qualitative analysis of the failure, error
and fault types observed in the field yields feedback to the
development process and can thus contribute to improving
the production process.

In general, error analysis:
• allows identification of the various causes of outages as

well as the main factors that influence the software
behavior;

• draws attention to potential problem areas with a new
application;

• gives insight into the different ways of handling software
development;

• provides useful information which is crucial to guide
research and development.

Multiple installations provide millions of hours of
operation and, as such, supply genuine statistical failure data
allowing:

• statistically sound estimates of reliability measures, such
as the failure rate or the mean time to failure;

• sufficient experimental data, providing the means for an
accelerated feedback to the development process.

The development of realistic models to describe the failure
behavior of the software is essential and the validation of
these models needs to be based on real data from actual
measurements. Measurements allow identification of the
most influent parameters (such as the workload or the
operational profile) in order to incorporate them in the
models.

Analysis of failure data has to be carried out as soon as the
data are available otherwise the results may be obsolete for
the system under study. Early analysis also allows the project
team to validate their own data. However, it is worth noting
that analysis of failure data collected on a given system is
beneficial for the development of the following generations
of systems within the same application area.

Finally, during the panel discussion, both the supplier and
the customer viewpoints will be addressed, taking
alternatively the academic and the industrial perspective.
Emphasis will be put on experience in operational reliability
measurement and the kind of development improvement
resulting from measurement feedback.

Reliability growth with ODC
Ram Chillarege

Traditional views on software reliability growth treat
software defects as homogeneous with most of the discussion
revolving around the abscissa of the model. Discussions
worry whether the abscissa should be execution time,
calendar time or percent of tests covered with little discussion
on the focus of what is being modeled, namely the defect. A
key study, [Chillarege 91], uncovered the impact of the defect
types on the overall reliability growth experienced. This
study showed that there is a strong relationship between the
overall reliability growth experienced and the type of defects
contributing to the growth. This lead to work on Orthogonal
Defect

Classification (ODC) [Chillarege 92] which exploits
defects to gain insight into the process and explain the
progress of a product through the process. In ODC defects are
classified into a small number of categories that extract the
semantics of a defect. For the purposes of this discussion we
need to focus on one of those attributes called the defect type.
Defect types are chosen to identify the meaning of the fix and
apply almost consistently throughout the life cycle of the
development process. The idea in the classification is that the
distribution formed by these categories changes as the
product moves through the development process. Thus, the
defect type distribution measures the progress of a product
through the process. There are, however, necessary and
sufficient conditions for the choice of these categories which
makes such measurement possible.

One of the applications of ODC data is to use the defect
type classification to model reliability growth for specific
types. Since these categories are carefully chosen, and
represent an independent and orthogonal activity in the
process, the world of software reliability growth modeling
can exploit the strength of being able to study the relative
growth corresponding to activities in development. For
instance, functional defects are commonly associated with
design and should mostly be found early in the process. Thus
the growth model for functional defects, should mature
hopefully sooner than assignment and checking type defects,
that are mostly code related. Developing reliability growth
models by the semantics of defect type category give us
further insight into what parts of development are more
mature than others, aiding in quantitative risk assessment.

By contrast, to the traditional reliability modeling, ODC
throws a new light on the problem and techniques to date. It
also puts the focus back on the software defect which, in the
first place, should be the point of attention. Clearly, there are
several issues that need to be better understood and
researched to refine a classical technique such as growth
modeling. However, I believe this is one of the first steps
that has the potential to build, more general cross product and
cross process models which could be reasonably calibrated.
ODC has been deployed in the IBM Corporation quite
extensively today. Our efforts in deploying ODC began more
than two and one half years ago, and today have ten different
labs use it in their projects with some of them stepping it up
to production use. In this panel, I will raise some of the issues
that are open for research.

References

[Chillarege 91] R. Chillarege, W.L. Kao, and R. Conduit,
"Defect Type and its Impact on the Growth Curve'', Proc.
13th International Conference on Software Engineering,
May 1991.

[Chillarege 92] R. Chillarege et. al., "Orthogonal Defect

Classification for Defect Control'', IEEE Transactions on
Software Engineering, November 1992.

Measurement and Analysis of Software Failures
Ravishanker K. Iyer

When a computer system is in normal operation, various
errors occur in both the hardware and the software. There are
many possible sources of these errors, including untested
manufacturing faults and software defects, wearing out of
devices, transient errors induced by radiation, power surges,
or other physical processes, operator errors, and
environmental factors. The occurrence of errors is also highly
dependent on workloads running on the system.

Given field error data collected from a real system, a
measurement-based study typically, consists of four steps: 1)
data processing, 2) model identification and, 3) model
solution if necessary, and 4) analysis of models and measures.
With the rapid improvement in hardware reliability, the
contribution of software to overall system dependability has
become significant. Recently, [Gray 90] showed that software
accounts for 60% of unplanned outages in Tandem systems.
Two independent studies [Iyer 85, Sullivan 91] showed a
similar trend in IBM systems. With the projected increase in
the size and the complexity of software, this trend is likely to
continue.

During the past fifteen years there has been considerable
emphasis on the use of field measurements to quantify the
dependability of large continuously evolving software
systems. [Endres 75] analyzed software error data collected
from the DOS/VS operating system during the testing phase.
In [Thayer 78] a wide-ranging analysis of software error data
collected during the development phase, is described. [Basili
84] analyzes the relationships between the frequency and
distribution of errors during software development, the
maintenance procedures, and a variety of environmental
factors. In [Chillarege 92], an "orthogonal defect
classification" scheme is proposed. The scheme has been
used to provide effective feedback on the development
process.

Using test and failure data from AT&T switching system
software, [Clapp 92] related the software failure
characteristics to the system functional-structure. The
methodology was intended to support the reduction of testing
cost and enhancement of software quality by improving test
selection, eliminating test redundancy, and identifying error-
prone source files. The results showed that once the black-
box tests had been designed and developed, white-box
methods can be used to map the test-data to the product
internals and hence guide future testing efforts.

Extensive analyses of operational software have also been
performed in the past decade. Two early studies [Castillo 82,

Rossetti 82] proposed a workload-dependent probabilistic
model to predict software errors based on measurements from
DEC and IBM systems. [Velardi 84, Iyer 85] evaluated the
effectiveness of error recovery routines and addressed the
issue of hardware-related software errors using failures and
recovery data from the MVS operating system. The
measurements showed that the system fault tolerance almost
doubled when recovery routines are provided. The results
also showed that 25% to 35% of all software failures were
hardware-related. The system failure probability for
hardware-related software errors was measured to be three
times that due to software errors in general. In [Hsueh 87], a
semi-Markov model was constructed from data, to describe
software error occurrence and recovery in the MVS
environment. [Sullivan 91] investigated software defects and
their impact on system availability. The study focused on the
categorization of defect types, defect-triggering events, and
failure symptoms.

Recently, [Lee 93a] investigated the effect of faults in
system software on overall system dependability, using
failure reports from a Tandem GUARDIAN operating
system. The study addressed several issues including:
1) software fault tolerance of process pairs, 2) recurrences, 3)
error propagation, and 4) the resulting effects on software
reliability.

The results showed that 72% of reported field software
failures were recurrences of known software faults. The
measured system tolerated nearly 80% of the reported
software faults, thus demonstrating the effectiveness of
hardware fault tolerance techniques against many software
faults. [Lee 93b] developed a methodology to quantify
relative and absolute improvement in the system fault
tolerance due to the implemented software techniques. The
approach was demonstrated via comparison of three major
operating systems: the Tandem GUARDIAN, the VAX/VMS,
and the IBM MVS system.

A number of methods, developed to analyze field data,
have been incorporated into MEASURE+, an automated
environment that allows, wide ranging analysis field failure
data [Tang 93]. Given measured data from real systems in a
specified format, MEASURE+ can generate appropriate
dependability models and measures which accurately reflect
system behavior in real environments. The failure behavior of
the system is mapped into a small number of states with
associated characteristics. This mapping is valuable for
understanding actual error/failure characteristics, identifying
dependability bottlenecks, evaluating dependability of real
systems, and verifying assumptions made in analytical
models.

It is clear that the need for reliable software continues to
pose formidable challenges. What is lacking is the

availability of accurate evaluation methods and tools that can
determine, how well current methods work and provide
effective feedback to designers. Further, it is critically
important that interactions between software and hardware be
taken into account and the dependability of the software be
judged by its contribution to overall system dependability.

References

[Basili 84] R V R. Basili and B. T. Perricone, "Software
errors and complexity: An empirical investigation",
Communications of the ACM, Vol. 22, No. 1, pp. 42-52,
Jan. 1984.

[Castillo 82] X. Castillo and D. Siewiorek, "A Workload
Dependent Software Reliability Prediction Model," 12th
Int. Symp. on Fault-Tolerant Computing, Santa Monica,
Ca., June, 1982.

[Chillarege 92] R. Chillarege et al., "Orthogonal Defect
Classification Concept for In-Process Measurements,"
IEEE Trans. Software Engineering, Vol. 18, No. 11, Nov.
1992, pp. 943-956.

[Clapp 92] R K. Clapp and R. K. Iyer, "Analysis of Large
System Black-Box Test Data," Proc. Third Int. Symp.
Software Reliability Engineering, pp. 94-103, Oct. 1992.

[Endres 75] R A. Endres, "An Analysis of Errors and Their
Causes in System Programs," Proc. Int. Conf. Software
Engineering, pp. 327-336, Apr. 1975.

[Gray 90] J. Gray, "A Census of Tandem System Availability
between 1985 and 1990," IEEE Trans. Reliability, Vol.
39, No. 4, Oct. 1990, pp. 409-418.

[Hsueh 87] M.C. Hsueh and R.K. Iyer, "A Measurement-
Based Model of Software Reliability in a Production
Environment," Proc. 11th Annual Int. Computer
Software & Applications Conf., pp. 354-360, Oct. 1987.

[Iyer 85] R.K. Iyer and P. Velardi, "Hardware-Related
Software Errors: Measurement and Analysis," IEEE
Trans. Software Engineering, Vol. SE-11, No. 2, pp. 223-
231, Feb. 1985.

[Lee 93a] I. Lee and R.K. Iyer, "Measurement-Based
Reliability Analysis of the Tandem GUARDIAN
Operating System," submitted for review to IEEE Trans.
Software Engineering.

[Lee 93b] I. Lee, D. Tang, R. K. Iyer, and M.-C. Hsueh,
"Measurement-Based Evaluation of Operating System
Fault Tolerance," to appear in IEEE Trans. Reliability,
June 1993.

[Rossetti 82] D.J. Rossetti and R.K. Iyer, "Software failures
on the IBM-3081", COMPSAC-82, Chicago, October
1982.

[Sullivan 91] M.S. Sullivan and R. Chillarege, "Software
Defects and Their Impact on System Availability — A
Study of Field Failures in Operating Systems," Proc.

21st Int. Symp. Fault-Tolerant Computing, pp. 2-9, June
1991.

[Tang 92] D. Tang and R.K. Iyer, "Analysis of the VAX/VMS
Error Logs in Multicomputer Environments — A Case
Study of Software Dependability," Proc. Third Int.
Symp. Software Reliability Engineering, pp. 216-226,
Oct. 1992.

[Tang 93] D. Tang and R.K. Iyer, "MEASURE+ — A
Measurement-Based Dependability Analysis Package",
ACM SIGMETRICS

Conference on Measurement and Modeling of Computer
Systems, Santa Clara, California, May 1993.

[Thayer 78] T.A. Thayer, M. Lipow, and E.C. Nelson,
Software Reliability, North-Holland Publishing
Company, 1978.

[Velardi 84] P. Velardi and R.K. Iyer, "A Study of Software
Failures and Recovery in the MVS Operating System",
IEEE Trans. Computers, Vol. C-33, No. 6, pp. 564-568,
June 1984.

On the temporary character of
operation-persistent software faults

Jean-Claude Laprie

Temporary faults have long been recognized as
constituting the vast majority of hardware faults, and the
progresses in hardware integration can only emphasize this
tendency (see e.g., the field data from several sources in
[Siewiorek 92]). A direct consequence is the emphasis placed
in the design of fault-tolerant systems on discriminating
between temporary and permanent faults: the
misinterpretation of a temporary fault as a permanent fault
results in an unnecessary decrease in the available
redundancies, thus in lowering dependability.

Temporary faults are not limited to hardware: the notion of
temporary fault applies to software as well. Although such a
notion has been introduced a long time ago [Elmendorf 72],
and more recent studies have shown that most of the software
faults present during operational life are temporary faults
[Gray 86], the very notion of temporary software fault is
often felt as contradicting our perception of software. In fact,
if it is not arguable that the ultimate cause of software faults
are present as long as they are not fixed, it has to be
recognized that most software faults manifesting in operation
in large, complex, software are subtle enough in order that
their activation conditions depend on equally subtle
combinations of internal state and external solicitation, so
that they can hardly be reproduced. Stated in other terms, the
failure domain in the input space of software faults which
persist in operation can vary with the conditions of execution
of the software, and be a null space under most operating
conditions.

Acknowledging that operation-persistent software faults
are temporary is likely to have dramatic consequences on the
design for dependability of software systems, via their
structuring into self-checking components [Yau 75, Blum 89,
Laprie 90] which incorporate measures for error detection in
addition to functional code. Several strategies for error
treatment (following error detection) could then be
implemented, from backward recovery via recovery points, to
exception handling in order to prevent the failure of a task to
lead to system failure. Although such strategies for software-
fault tolerance have already been implemented in some
systems [Gray 86, Huang 93], they are far from large
adoption. There is however a real need for providing software
with fault tolerance, as software is currently recognized as the
current bottleneck in terms of dependability [Gray 90, Cramp
92]. Recognizing the temporary character of software faults
would enable software fault tolerance not to be restricted to
design diversity, and thus to widen its field of application,
which is currently mostly limited to safety-critical
applications because of the high cost of design diversity.

References
[Blum 89] M. Blum, S. Kannan, "Designing programs that

check their work", Proc. ACM Symposium on Theory of
Computing, 1989, pp. 86-97.

[Cramp 92] R. Cramp, M.A. Vouk, W. Jones, "On operational
availability of a large software-based
telecommunications system", Proc. 3rd Int. Symp. on
Software Reliability Engineering, Research Triangle
Park, North Carolina, Oct. 1992, pp. 358-366.

[Elmendorf 72] W.R. Elmendorf, "Fault-tolerant
programming", Proc. 2nd IEEE Int. Symp. on Fault
Tolerant Computing (FTCS-2), Newton, Massachusetts,
June 1972, pp. 79-83.

[Gray 86] J.. Gray, "Why do computers stop and what can be
done about it?", Proc. 5th Symp. on Reliability in
Distributed Software and Database Systems, Los
Angeles, Jan. 1986, pp. 3-12.

[Gray 90] J. Gray, "A census of Tandem system availability
between 1985 and 1990", IEEE Trans. on Reliability,
vol. 39, no. 4, Oct. 1990, pp. 409-418.

[Huang 93] Y. Huang, C. Kintala, "Software implemented
fault tolerance: technologies and experience", Proc. 23rd
IEEE Int. Symp. on Fault-Tolerant Computing (FTCS-
23), Toulouse, June 1993, pp. 2-9.

[Laprie 90] J.C. Laprie, J. Arlat, C. Beounes, K. Kanoun,
"Definition and analysis of hardware- and software-fault-
tolerant architectures", IEEE Computer, vol. 23, no. 7,
July 1990, pp. 39- 51.

[Siewiorek 92] D.P. Siewiorek, R.S. Swarz, The Theory and
Practice of Reliable System Design, Digital Press, 1992.

[Yau 75] S.S. Yau, R.C. Cheung, "Design of self-checking

software", Proc. Int. Conf. on Reliable Software, Los
Angeles, CA, April 1975, pp. 450-457.

Position statement
John D. Musa

The principal task in the field is to monitor field
reliabilities against objectives. We deliberately emphasize the
plural because we may be tracking reliabilities of key
components as well as the reliability of the total system, AND
we usually track reliabilities for different failure severity
classes.

Monitoring requires that we collect failure and operational
profile data. It is best, of course, that we collect complete
failure data from all installations. This is probably
economically feasible only if we instrument the delivered
software so that failures are detected automatically. This has
the disadvantage that types of failures that are not foreseen
cannot be detected. However, if the ratio of automatically-to-
manually-detected failures remains

reasonably stable, we can estimate total failures from
automatically-detected ones. If we must record failures
manually, we will probably have to select a random sample of
installations. It is important that we collect actual failure, not
fault, data; manual trouble reports often represent faults. Each

recurrence of a failure must be reported if we are to
accurately access customer impact and level of customer
satisfaction.

We need to collect operational profile data to determine if
we accurately estimated how the system was going to be
used. An inaccurate operational profile is a possible cause of
variation in software reliability achieved.

When we compare reliabilities achieved with objectives,
we note discrepancies and try to find their causes. In addition
to an inaccurate operational profile, other possibilities include
differences in failure definition, errors in data collection, and
variations from the planned development process.

The primary purpose of the monitoring is to identify both
product and process improvements to help us better or more
efficiently meet the reliability requirements. Product
improvements are typically introduced in near term releases.
Process improvements may be introduced over a wider time
span and usually a wide range of projects.

We not only check actual reliabilities achieved but we also
survey the level of satisfaction of customers with the
products. This can highlight situations where reliability
objectives are not being correctly set.

