N
N

N

HAL

open science

Dependability evaluation of a distributed shared
memory multiprocessor system

Mourad Rabah, Karama Kanoun

» To cite this version:

Mourad Rabah, Karama Kanoun. Dependability evaluation of a distributed shared memory multipro-
cessor system. J.Hlavicka, E.Maehle, A.Pataricza. Dependable Computing - EDCC-3 Third European
Dependable Computing Conference Prague, Czech Republic, September 15-17, 1999 Proceedings,
1667,, Springer, pp.42-59, 1999, Lecture Notes in Computer Science, 3-540-66483-1. hal-01986493

HAL Id: hal-01986493
https://hal.science/hal-01986493
Submitted on 5 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01986493
https://hal.archives-ouvertes.fr

DEPENDABILITY EVALUATION OF A
DISTRIBUTED SHARED MEMORY
MULTIPROCESSOR SYSTEM

M. RABAH, K. KANOUN

LAAS Report N° 99100
March 1999

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of
CNRS. It has been issued as a Research Report for early
peer distribution

Paper submitted to the Program Committee of EDCC-3

Dependability Evaluation of a Distributed Shared
Memory Multiprocessor System

Mourad Rabah and Karama Kanoun
LAAS-CNRS — 7 Avenue du Colonel Roche
31077 Toulouse Cedex 4 — France

e-mail: rabah, kanoun@]laas.fr

Abstract

This paper deals with the dependability evaluation of a Multipurpose, Multiprocessor System
under investigation by a system manufacturer. MMS is a symmetric multiprocessor system with a
Distributed Shared Memory and a Cache-Coherent Non-Uniform Memory Access. As the system is
scalable, we consider two architectures: a reference one composed of four nodes and an extended
one with an additional spare node. A set of dependability and performability measures is evaluated
for these architectures with two categories of application users, accepting different service
degradation levels. Modeling is based on Generalized Stochastic Petri Nets to which reward rates
are added to evaluate performability measures. The originality of our approach is the clear
separation between the architectural and the service concerns. The results allow the quantification
of the influence of the main parameters and comparison of the dependability of the systems under
consideration. They can thus be used for supporting the manufacturer design choices as well as the

potential user configuration choices.

Index Terms:

Dependability evaluation, multiprocessor systems, graceful degradation of service,

Generalized Stochastic Petri Nets

Approximate word count: 7500 words including tables and references + less than one page figures.

1. Introduction

Nowadays, computer systems are becoming more and more complex. They are composed of
hardware and software components interacting together to ensure the required service. Even though
specific applications may need the design of specific systems to achieve the required functions,
economic reasons lead to use basic support systems (computers, operating systems, middleware)
available on the market. This situation gave rise to a category of systems that can be referred to as
multipurpose systems that are — to some extent — application-independent basic systems. Many
system providers have developed generic systems that can be used in several application domains.
Such systems can be either complete support systems (such as: LOGISIRE, developed by ABG,
Germany [Kloppenburg 1987], the TRICON system developed by TRICONEX, USA [Triconex
1996], Alpsa-8000-P320 developed by CEGELEC, France [Poueyo and Dalzon 1998]), or generic
components that can be integrated into complete systems (such as the Votrics system for hardware
fault tolerance developed by ALCATEL Austria [Wirthumer 1989]). Even though most of the time,
basic support systems are composed of Commercial Off-The-Shelf components (COTS), careful
design, development and validation are needed to provide dependable and high-performance
support systems. The evaluation of performability measures constitutes a powerful means for

assessing the dependability and performance of such systems.

The Multipurpose, Multiprocessor System, MMS considered in this paper is under
investigation by a system manufacturer. MMS is scalable and most of its components are COTS. It
uses a Distributed Shared Memory (DSM) and a Cache-Coherent Non-Uniform Memory Access. A
recent tutorial on “Distributed Shared Memory Concepts and Systems” [Protic, Tomasevic et al.
1998] showed that 1) building of commercial systems that follow the DSM paradigms is still in its
infancy despite the amount of research work performed in the domain and 2) most of the existing
multiprocessor systems based on DSM are research prototypes. Hence the importance of the

commercialization of such systems.

A reference MMS architecture is defined. It is composed of four nodes. It can be used for
various applications requiring different performance and/or dependability levels. Based on this
reference architecture, a whole family can be defined for applications necessitating either higher
performance or higher dependability levels or both. Our aim is to provide a framework for the
dependability evaluation of the reference architecture with different application needs and more
generally to define a framework (for the system manufacturer) for modeling efficiently new systems

of the same family based on this reference architecture.

2

In this paper, we define a set of dependability and performability measures that are evaluated
for the reference architecture and an extended one (using a spare node) with two examples of
application users requiring different service degradation levels. The results allow the quantification
of the influence of the main parameters on the defined measures and the comparison of the

considered systems.

The paper is organized as follows. Section 2 presents the systems under consideration. Sec-
tion 3 defines the performability measures. Section 4 describes the modeling approach and illus-

trates it through an example, while Section 5 presents some results. Section 6 concludes the paper.
2. Presentation of the systems under consideration

We first present the reference architecture with its associated failure modes. Two types of
users are then defined together with their associated service levels sand maintenance policies.

Finally an extended architecture is defined.

2.1 The reference architecture

The reference architecture is composed of 16 processors grouped into 4 identical nodes as
shown in Figure 1. The nodes are connected through an interconnection network composed of two
redundant rings. Each ring is connected to each node via a controller. To ensure high availability
level, all nodes are connected to a centralized diagnostic equipment (Deq) that is redundant. Its role
is to log and analyze all error events in the system, initiate the reboots and control them. The DEq
does not contribute to service accomplishment: the system can work without it but cannot reboot

without it,

-
.J Node 2 [| E

i

[]

H

Node 3

E

Node 1 Interconnection
1 Network

Node 4

Figure 1: MMS reference architecture
MMS has two external disks. Each disk is a dual access RAID (Redundant Array of
Independent Disks). The disks of the RAID can be stopped, changed and synchronized without
stopping the RAID system (on-line maintenance). Each RAID is shared by two nodes. In case of
failure of a node or of the interconnection controller in a node, the RAID can be used by the other

nodes. In case of a failure of both RAIDs, no external storage is available.

3

As indicated in Figure 2, each node has:

« a set of four independent processors; each processor has a two-level private cache where data
from other node memories can be replicated or migrated;

« alocal bus;

« a set of dedicated controllers such as interruption and reboot controllers;

+ a local Random Access Memory, RAM (composed of four banks) and its controller; a node is
available as long as a memory bank is available and a node can use any other node memory
bank as the RAMs of the four nodes constitute the distributed shared memory of MMS;

+ a Remote Cache Controller (RCC), interconnecting the node to the rings via two controllers;

» a set of Peripheral Component Interconnect (PCI) buses, with slots for connecting external
devices (through Ethernet, FDDI connections, etc.), connected to the local bus by a bridge;

« an internal disk, connected through an interface to the PCI bus;

« miscellaneous devices, such as power supply units and fans.

DEg
Node i —1
ode Controllers RAM
Four proce:
processors Local bus
. RCC [
T
Power supply Internal disk
PCI bus

External devices External disk 8

Figure 2: Main components of a node
In addition to the redundant diagnostic equipment, DEq, and to the redundancy of several
components (interconnection network, power supply, system disk, swap and external disks), MMS
includes other facilities to reduce system downtime following error detection, among which:
« anode is held available as long as at least one processor, one memory bank, one power supply
unit, all fans, the local bus and PCI buses with their connectors and controllers are available;
« the memories feature single error correction and double error detection codes;
« the internal disks can be hot plugged;
« a software failure of a processor leads to system reboot;
- the architecture can be automatically reconfigured: the load of a failed processor can be
partitioned among the other processors and the load of a whole node can be partitioned among

the other nodes (the node is isolated). A system reconfiguration necessitates a reboot.

4

» the components of an isolated node are not accessible by the other nodes;

- the automatic system (re)configuration can be performed when the system is in operation or
during reboot (if a failure is identified by on-line tests during system reboot);

« the automatic reboot can be complete with all on-line tests or fast (with a reduced test set);

« self-detected errors of the Operating System (OS) lead to system automatic reboot, while non-
self-detected errors of the OS require a manual reboot;

« while detected errors of a component necessitating system reboot lead to a proper reboot, non-

detected errors lead a brutal reboot (without saving properly the main parameters for example).

It is intended that some failures (whose nature is to be determined by the system manufacturer
according to some criteria) will lead to system reconfiguration without reboot or with fast reboot.
However, we assume in this paper that any component failure necessitating system reconfiguration
forces a complete reboot. This assumption can be easily modified for those failures needing system

reconfiguration without reboot or with a fast reboot.

2.2 Architectural failure modes

Given the large number of components (processors, memory banks, disks, busses,
interconnections, controllers, interfaces, etc.) and the specific influence of their failure on system
state and performance, a multitude of failure modes can be defined, related to the nature of the
failed components. Generally, they are identified by a Preliminary Risk (or Hazard) Analysis: the
consequences of all component failures are analyzed, individually and in combination. Usually

states with equivalent consequences are grouped into the same failure mode.

For the purpose of the study, from the Preliminary Risk Analysis, seven architectural failure
modes have been defined, including five levels of performance degradation. The table giving the
detailed correspondence between elementary component failures and the architecture failure modes
spreads in more than four pages for the reference MMS. The identified failure modes are:

« B: loss of one or more components among the redundant components; the processing capacity
of the architecture is not impaired. B is referred to as the benign failure mode.

« DO: loss of one processor or one memory bank or connections to external devices or loss of the
diagnostic equipment, DEq.

+ DD: loss of the two external disks.

« Di: loss of i nodes! i = {1, 2, 3}.

1 Let’s recall that a node is available as long as at least one processor, one memory block out of four, one power

supply unit, all fans, the local bus and PCI buses with their connectors or controllers are available.

5

« C: loss of the four nodes, or loss of a critical component: interconnection network, all power

supply units, and non-self-detected errors of the Operating System.

In addition, two specific states are defined:
« OK: the state without any component failure.

« Reb: the reboot state.

Note that states with components in various failure modes are considered in the most severe
failure mode. For example, when a node is in failure mode D1 and another is in DO or B, the state is

put in the failure mode D1.

2.3 Service degradation levels

The above MMS properties and the architecture failure modes are user-independent.
However, even though graceful degradation of the architecture is provided by the supporting
architecture, this possibility can be exploited differently by the users for different application
requirements. For instance, some applications will accept a degraded service provided by three, two
or even only one node, while others will only accept the loss of some processors, without loosing a
whole node. Indeed, the architectural failure modes lead to service degradation levels that are

strongly related to the user’s specific application needs.

It is worth noting that B and C have the same meaning for all applications: in B the entire
service is performed (ES) while in C there is no service (NS). Between B and C, several service

degradation levels can be defined according to user’s needs and to the architecture failure modes.

To illustrate the mapping between architectural failure modes and service degradation levels,
we consider two examples of users, denoted X and Y.

« User X: The service is considered as entire in states OK and B. X accepts a degraded service as
long as at least three nodes are available without a critical component failure: NS correspond to
D2, D3 and C. Between ES and NS, we have defined two significant service degradation levels:
minor and major degradation levels. The mapping between the architectural failure modes and
the service degradation levels is given in Table 1.

« User Y needs the entire capacity of the system and does not accept any service degradation.

The entire service is delivered in OK, B and DD. NS gathers all other failure modes.

The states belonging to the same service degradation level are grouped into a class state.

These classes are denoted respectively: ES-S, mD-S, MD-S and NS-S.

Service levels | Entire service (ES) | Minor degradation (mD) | Major degradation (MD) No Service (NS) | Reboot

X OK, B Dg, DD D1 D2, D3, C Reb

Y OK, B, DD — — DO, D1, D2, D3, C Reb

Table 1: Mapping between architectural failure modes and service degradation levels
User X corresponds most likely to a potential user of MMS as he takes advantage of the
architecture reconfigurations offered by the manufacturer. User Y is a special case, it has been
defined to allow comparison between the two types of users without considering complex

situations. Note that state group DD is in ES for Y while it is in mD for X.

2.4 Maintenance

Although maintenance management is user-dependent, the system supplier usually proposes a
maintenance contract. In order not to suspend system activities after each failure and call for a
paying maintenance, two maintenance policies are defined:

« Immediate maintenance: for NS-S (as defined by the user’s needs). However some time is
needed for maintenance arrival. Immediate maintenance is thus performed in two steps:
maintenance arrival (during this time, the system is unavailable) and repair.

» Delayed maintenance: for the other states with service degradation: the system continues to be
used until a period of time in which its activities can be stopped for repair. Different delays may
be allocated to the different service levels. Delayed maintenance is also performed in two steps:

a delay during which a degraded service is delivered and repair.

The repair is followed by a system reboot.

2.5 Extended architecture

To illustrate the approach, we also consider an extended architecture that features a fifth node
used as a spare. The four basic nodes are used in the same manner as in the reference architecture.
In case of failure of a first node, the latter is replaced by the spare node. We have thus four systems:
the reference architecture (composed of 4 nodes) combined with users X and Y, and the extended
arqhitecture (5 nodes), also with users X and Y. For the four systems, we assume immediate
maintenance for NS-S and delayed maintenance for the other states. For the sake of conciseness,

these systems will be respectively referred to as X4, Y4, XS and YS.

The failure modes and service degradation levels defined for the reference architecture apply
to the extended architecture as well, since the spare does not contribute to service accomplishment

in the absence of a failure.

3. Dependability and performability measures

Dependability measures are user-dependent: they are defined according to the service
degradation levels. For user Y, we have considered a conventional availability measure: the system

is available in ES-S states and unavailable in NS-S.

While this measure still holds for X, three additional dependability levels are defined
corresponding to the three service levels:
« LE(t): dependability level associated with the entire service, ES, at time t.
« Lm(t): dependability level associated with the minor service degradation level, mD.

« LM(t): dependability level associated with the major service degradation level, MD..

Let e(t) denote the system state at time t. According to the partitions defined in Section 2.3,

we have:
« LE(t) = Prob { e(t) € ES-S}.
o Lm(t) = Prob { e(t) € mD-S}
« LM(t) = Prob { e(t) € MD-S}

For X, the classical system availability and unavailability are respectively defined by:
A(t) =Prob { e(t) € {ES-S, mD-S, MD-S} } = LE(t) + Lm(t) + LM(t)
UA(t) =Prob { e(t) € {NS-S, Reb} } =1 - A(t)

An additional measure of interest for X and Y is the system unavailability due to system

reboot:

UAge,(t) = Prob { e(t) € Reb}.
The steady state measures are respectively denoted: LE, Lm, LM, A, UA and UAg,,

LE and A will be expressed in terms of probability. Lm, LM, UA and UAg,, will be

expressed as the sojourn times per year in the considered service level.

As the system continues operation even in the presence of component failures, with
performance degradation, performability measures are of prime interest as indicated in [Meyer
1978; Arlat and Laprie 1983; Meyer and Sanders 1993; Tomek, Mainkar et al. 1994].

Performability measures the performance of the system in presence of failures. In our case, we

assume that all states in a given service degradation class have the same reward rate. Let r, denote

the reward rate of the class state z: r is the performance index in the class state Z (these indexes are

appreciated by the user according to his application). The expected reward rate, W(t), at time t is
defined by:

E[W(1)] = rgg.g LE(t) + I Lm(t) + fyp s LM(E) + 1 UAQ).

The expected reward rate at steady state is:

E[W] =155 LE + 1 Lm + 1y g LM + 1y, UA

The above equation shows that the dependability measures are special cases of the expected

reward rate with specific performance indexes (equal to zero or one).

In the rest of the paper, we will evaluate the steady unavailability, UA, the steady
unavailability due to system reboot, UAg,,, the dependability levels LE, Lm and LM and the
expected reward rate at steady state, E[W]. When necessary, other measures such as the Mean
Down Time, MDT (due to NS-S), or the Mean Time To Failure, MTTF, will be evaluated to put

emphasis on specific behaviors.
4. Dependability modeling

As the system is modular, with COTS components on which various specific applications can
be run, our modeling approach has the same properties. It is modular, it uses generic sub-models
and it is based on the separation of architectural concerns (including all basic hardware and
software components) from those related to the user's application (i. e., service concerns).
Modularity is useful for mastering complexity. The elaboration of generic sub-models is useful for
modeling efficiently similar architectures thanks to the reuse of sub-models. The separation of
concerns property allows reuse of the part of the model related to the system architecture, when the

basic architecture is to be used with different service requirements.

Model construction is based on Generalized Stochastic Petri Nets (GSPN). The GSPN is then
transformed into a Stochastic Reward net [Ciardo, Muppala et al. 1989] by assigning reward rates to
tangible markings (i. e., the states of the Markov chain associated with the GSPN). The Markov
Reward model [Howard 1971] associated with the Stochastic Reward net is then processed to

obtain dependability and performance measures.

The GSPN of the components and their structural interactions are established in a first step.
Any structured modeling approach can be used. However, to support the mapping between the
service degradation levels and the architectural failure modes, specific places corresponding to the
various failure modes are created and put into a layer, identified as the failure mode layer. The latter

constitutes the interface between the architectural and the service parts of the model. Once the

needs of a user are identified, the mapping between the service degradation levels and the failure
modes can be easily achieved. The maintenance is managed according to the user policy in the

service model. The interactions between the different parts of the model are depicted in Figure 32,

Service levels .
(accomplishment ;Z r:nntenancet 4 sn:or\::r
and degradation) agemen

) it

Failure mode layer

Architectural
> Model

Detailed models of the components
and their structural interconnections

J

Figure 3: Interactions between the different parts of the model
The architectural model is the same for users X and Y, whereas the service model is different.
It can be argued that the model is over-dimensioned for Y as we have considered several failure
modes that will be grouped into the same service degradation level. However, as we have built only
a small part of the model that is specific to Y, there is no loss of time. The gain is even more
substantial for the system manufacturer who will be able to provide to potential system buyers
quantified dependability and performability measures, based on the same model (requiring only

small adaptations for specific situations).

4.1 System model

In the architectural model, a block model is associated to each component, including
controllers, power supply units, fans, busses, diagnostic equipment, etc. When identical components
have the same behavior with respect to the evaluated measures, they are modeled by one block.
This is for example the case of the four processors and the four memory banks within a node.
Considering the model of the reference architecture, given the number of different components, the
architectural model is composed of 40 blocks (among which 19 are different). The GSPN of the
reference system has 183 places and 376 transitions for X4 (182 places and 351 transitions for Y4).
The GSPN for the extended system has 215 places and 580 transitions for X5 (213 places and 643
transitions for Y5). We have first derived the Markov chain for X4 and Y4 with two successive
failures before system unavailability (i. e., truncation of order 2) and the Markov chain

corresponding to a truncation of order 3. The error related to the dependability measures is less than

2 Note that functional interactions between the components may appear; they will be taken into account in a specific

part of the service model.

10

1%. We have thus considered models with a truncation of order 2 to process models with less
number of states and hence reduce the execution time mainly for sensitivity analyses where several

executions are needed.

To illustrate the approach, we present the GSPN related to the processors within a node. Our
objective is to show how the architectural model communicates with service model through the

failure mode layer.

4.2 The processor model

The four processors of a node are modeled by the GSPN of Figure 4. The upper part of the
figure gives a simplified view of the service model (corresponding to X4): places in the left side
represent the four service levels and places in the right side represent the maintenance states: P, ,; -
call for delayed maintenance, Py,,: reboot state and Py,: the repairman presence place. The lower

part of the figure gives the architectural model with the failure mode layer.

All transitions are not shown for clarity. In particular, in the architectural model, the enabling

conditions Ci associated with the transitions are indicated at the bottom of the figure.

In the architectural model, P,, gives the number of operational processors of node x (its initial
marking is 4). After a software failure of a processor (transition Tp), the system is rebooted through
ths- A hardware failure of a processor (transition T,,) leads to a minor service degradation level.
However the failure of the last processor (transition T,,) leads to a major service degradation level.

P, represents the number of processors with a software failure waiting for reboot and P, those

with a hardware failure waiting for repair.
The failure mode layer gathers all the architecture’s failure information. Figure 4 shows only

information used or updated by the processor model. Each failure mode Z has 3 places:
1) P,,: occurrence of a failure bringing the system into failure mode Z that has to be taken
into account in the service model;
2) P,,: waiting for repair;

3) Py, end of processor repair; the service degradation level has to be accordingly updated.

Also the interface contains places summarizing the state of each node x: Py, , (number of

failures in x) and P, , (When it is marked, node x is unavailable).

11

Service model

Transitio Rate Definition
Ton M(P,)*A,, | Hardware failure (M(P,,): marking of P; A, hardware failure rate of a processor).
Software failure of a processor.
! o) Hard fail f t: last
ardware failure of the last processor.

Tphl M P

L_Eps - The processor becomes available after software failure and reboot.

Tope o Processor repair after a hardware failure (the node has not been isolated).

D!
Repair of one processor, reintegration of the node

Tonf Hoh P P g

T Delayed maintenance rate.

| 'Mdel | SMdel

T Reboot rate.

Reb OReb
tytend - End of maintenance intervention (there’s no more failure in the system).
[+311
FME [- Change of service degradation level following the failure of the last processor.
- Change of service degradation level after a repair from MD-S.
g nge of s g i ©l p

The model is explained through an example. Let us assume that the last available processor in

node x fails. The firing of Ty, removes a token from P, and puts a token in 1) Py, (there is an

C1: M(Pph) =3and M(PNS) =0 and M(Punav_x) =0 C4: M(PReb) =1
C2: M(Pp) > 3 and M(Pys) = 0 and M(P .y) =0 C5: M(Py) =1
C3: M(Pyg) = 0 and M(Pnay) =0 C6: M(Py) =1

Figure 4: GSPN of the four processors of a node

additional processor failure in node x), 2) Py, , (there is an additional failure in node x), 3) P

(node x becomes unavailable) and 4) Py, (D1 failure mode). The failure is thus recorded in the
failure mode layer to update the service model. Assuming that the system was in mD, the token

from Pp,, enables t;,q\q; Whose firing changes the current service level from mD to MD and puts a

token in Ppy;,, meaning that the failure has been recorded and is waiting for repair. Also it puts a

12

token in P .. for an additional call for maintenance. The presence of a token in P ,;, enables Ty,

corresponding to the delayed maintenance call. The firing of Ty;4, means that a repairman has
arrived and the repair is performed. After the repair of a processor of node x, the token is moved

from Pp,,, to Pp;, and the service level returns to mD consuming a token from Py,

4.3 Model parameters

The nominal values of the model parameters (failure rates, repair time, maintenance delay and
arrival times) have been either provided by the system manufacturer or assigned according to our
experience. Sensitivity analyses have been performed to evaluate their relative influence on
dependability and performability measures. Unless specified, the results of the next section have

been obtained using the nominal values.
5. Results

Based on the models of the reference architecture and the extended architecture, as well as on
the nominal parameter values, the dependability measures presented in Section 3 have been
evaluated for users X and Y and several sensitivity analyses have been carried out. We have
selected a subset of results to show the influence of some parameters. We first give some results

related to user X, then to Y, before summarizing the results.

5.1 User X

Influence of the maintenance time. The immediate maintenance time is equal to the sum of the
maintenance arrival time and the repair time (Cf. 2.4). The nominal value of each time is 2 hours
and it is assumed that all components have the same repair time. In order to analyze the influence of
the maintenance time on dependability, we carry out a sensitivity analysis with respect to the repair

time.

Table 2 shows that the sojourn time in mD-S, Lm, is not sensitive to the repair time, while
the sojourn time in MD-S, LM, and the unavailability are affected. To a large extent, the
unavailability of the system is due to the reboot time as shown by the last column. The difference
between the last two columns gives the unavailability due to NS-S. Reducing the repair time by one

hour reduces the sojourn time in NS-S by 21 min per year (from 35 min to 14 min).

Repair time LE (probability) Lm LM UA | UAgg
2h 0.98913 47h40| 46h13| 1h20| 0h45
1h 0.98926 47h42| 45h23| 0h58| 0h44

Table 2: X4 dependability measures in hours per year (and probability) according to the repair time

13

Using the nominal values of the parameters, the mean time to failure (MTTF) is 42033 hours (4.8
years) and the mean downtime (MDT) due to NS-S is 2 h 43. The sojourn time in NS-S is 34 min

per year (= 2 h 43 min / 4.8 years); which is in accordance with the 35 min obtained from Table 2.

Influence of the reboot time. The nominal reboot time is 20 min. Table 2 suggests that on average
there are two system reboots per year. Table 3 confirms this result for different values of the reboot
time. As mentioned in Section 2.1, it is assumed that all system reconfigurations force a reboot. In
addition, the re-insertion of the off-line repaired component(s) necessitates a system reboot. The
results of Tables 2 and 3 argue in favor of performing a reconfiguration without a reboot whenever

possible or with fast reboot (lasting less time).

Also Table 3 shows that the 35 min of unavailability due to NS-S are independent from the reboot

time (it is given by the difference between UAg,,, and UA).

Reboot time | LE (probability) Lm LM UA | UAgg
10 min 0.98916 47h41| 46h18| Oh57| 0h23
20 min 0.98913 47h40| 46h13| 1h20| 0h45
30 min 0.98910 47h41| 46h09| 1h41| 1h07

Table 3: X4 dependability measures according to the reboot time
Influence of the maintenance delay: Immediate maintenance is performed only when the system
is in NS-S. When the system is in a degraded service state, maintenance is delayed. The average
nominal maintenance delay is one week for both minor and major service degradation states. Table
4 shows that if the maintenance delay is two weeks for mD-S, the time spent in mD-S, Lm, is
almost multiplied by two. On the other hand, when the delay is reduced to two days for MD-S, the
time spent in MD-S, LM, is significantly reduced. In both cases, unavailability is not affected.

Delay in mD-S / MD-S LE (probability) Lm LM UA
1 week / 1 week 0.98913 47h40 46h13 1h20
2 weeks / 1 week 0.98378 94h33 | 46h15 1h19
1 week / 2 days 0.99274 47h51 14h25 1h19

Table 4: X4 dependability measures according to maintenance delay in mD-S and MD-S
Another possibility could be to perform the delayed maintenance in a more regular manner:
i.e., to make periodic maintenance even without any error reported. However, periodic
maintenance could be more expensive than on-request maintenance if the time between two
maintenance interventions (i. e., its period) is too short (to improve system availability). A tradeoff
has to be made: the periodicity can be optimized through the evaluation of the number of visits to

the delayed maintenance states. The models we have developed can be modified to model periodic

14

maintenance: this modification affects only the maintenance part of the model and its interactions

with the failure mode layer.

Influence of the hardware failure rate (Aph). The nominal hardware failure rate of a processor is
10°%/h. Table 5 shows the sensitivity of system dependability to this failure rate. If this rate is one
order of magnitude lower, the unavailability is reduced by 8 min per year, whereas if the failure rate
is one order of magnitude higher, it is increased by 1 h 09 min per year. The most influenced level
corresponds to the minor service degradation level. This is due to the presence of 16 processors in

the system whose first three successive failures lead to minor service degradation.

Aph | LE (probability) Lm M UA

1.0E-07 0.99145 28n02 | 45h40 1h12
1.0E-06 0.98913 47h40 | 46h13 1h20
1.0E-05 0.96602 245h20 | 49nh52 2h29

Table 5: X4 dependability measures according to Aph
Influence of the remote cache controller (RCC) failure rate. The nominal failure rate of an RCC
is 107/h. Table 6 shows that system dependability is affected by the value of this failure rate.
Indeed, a failure rate of 10”/h increases the system unavailability by 14 min per year and doubles

the sojourn time in LM (corresponding to the major service degradation level, MD-S). The most

influenced level is LM; this is due to the presence of 4 RCCs whose failures lead to MD-S.

ARCC | LE (probability) Lm LM UA
1.0E-07 0.98913 | 47h40 46h13[1h20
1.0E-06 0.08855 | 47h42 51h18| 1h21
1.0E-05 0.98282 | 47h47 101h10| 1h34

Table 6: X4 dependability measures according to ARCC
Influence of the spare node. Table 7 gives the dependability measure for the extended
architecture, system X35. These results are to be compared with those of Table 2. It can be seen that
the system unavailability is unaffected but the time spent in MD-S, LM, is considerably reduced.
The “Spare use” column indicates the time during which the spare is used. For the nominal values,
this time is 46 h 25 per year: it is distributed among mD-S and ES-S. Note that the major service
degradation level, LM, corresponds here to the loss of 2 nodes before maintenance achievement. A

sojourn time in MD-S of 14 min per year shows that the double failure is unlikely.

Arrival / repair times | LE (probability) Lm LM UA UAge, | Spare use
2h/2h 0.99426 | 48h46 Oh14 1h19 Oh45 46h25
1h/2h(or2h/1h) 0.99433 | 48h28 Oh14 Oh58 0h44 45h35

Table 7: X5 dependability measures

15

Expected reward rate. Let us assume that the performance index of a given state class represents
the percentage of system processing capacity in this class (an index of 0.6 for example, mean that
the processing capacity is 60 %). We have thus 1y =1 and ry, = 0. In this context, Table 8 gives
the expected reward rate at steady state with various values of the performance indexes r,, and ryp.
Obviously, X5 has higher expected reward rate than X4. Note that X5 is less sensitive to the
performance index associated to MD-S because of the reduced sojourn time in MD-S. The last line

gives the system availability

Performance indexes E[W] for X4 E[W] for X5
rop=0.8 ; ryp = 0.6 0.996650 0.998726
[rp=0.8; =07 0.997178 0.998728
ron=0.9; yp =07 0.997722 0.999285
fp=0.9; np=0.8 0.998250 0.999288

[ro=1;rp=1 (A) [A=0.999849 |A =0.999850

Table 8: Expected reward rate at steady state, E[W]

52UserY

For Y, the service is either entire or nil. The availability results according to the repair time
are summarized in table 9. Reducing the repair time improves the availability of the system. This is
not surprising since most of the failures lead to immediate maintenance. Note that, as opposed to
what was observed for X4, system unavailability is mainly due to NS-S (difference between the last

two columns): 3 h 25 compared to 24 min of unavailability due to system reboot.

Repair time A (probability) UA | UAge
2h 0.99957 | 3h49 | 0Oh24
1h 0.99970 | 2h37 | 0©Oh24

Table 9: Y4 availability according to the repair time
Considering the nominal values, the MTTF is 7175 h and the MDT due to NS-S is 3 h 09 min.
This means that immediate maintenance is called on average a little bit more than once a year and
the reboot time of 24 min corresponds to system reboot after maintenance: the system does not
exercise reboots in ES-S as all failures are tolerated without system reconfiguration. Recall that for
X4, the immediate maintenance is called on average once every 4.8 years, but the system is

rebooted on average twice a year.

The maintenance delay rate does not influence the availability of the system: the maintenance
is delayed only for benign failures that do not affect service delivery. Sensitivity analyses with

respect to hardware processor and to the RCC failures are similar to those obtained for X4.

Influence of the spare node: The presence of a spare node directly impacts the availability of the

system since the first node failure can be tolerated. Table 10 shows that unavailability is divided by

16

3 for Y5 compared to Y4 (Table 7). Moreover, it can be seen that the unavailability is of the same

order of magnitude as for X4 (these values are 1h20 and 58 min from Table 2).

Considering the nominal values of the parameters, the time during which the spare is used is
93h 08 min. This time is almost equal to the sum of Lm and LM of Table 2, line 1, that is 93 h 53
min. The difference (45 min) corresponds to the time spent in states without an external disk

(failure mode DD defined in Section 2; also Cf. Table 1).

Repair time | A (probability) UA UAgas Spare use
2h 0.99986 1h15 Oh41 93h08
ih 0.99990 0h55 0h40 92h17

Table 10: Y5 dependability

5.3 Tradeoff dependability - performance

Table 11 reports, from the previous tables, the expected reward rate and availability of the
four systems for the nominal values of the parameters (for X, the expected reward rate is equal to
availability). It shows that the reference architecture provides better availability for user X and
better performance for Y: there is thus a tradeoff between system performance and availability. On
the other hand, the extended architecture provides better availability and better performance for Y.
However, the difference between X and Y availability is not significant. We should be careful about
the latter result as it is obtained for the nominal values of the parameters. Additional sensitivity
analyses are under investigation to evaluate the impact of other important parameters. In particular,

we are considering the influence of coverage factor.

Measure User Reference architecture Extended Architecture
(4 nodes) (5 nodes)
Expected reward rate X 0.99825 0.99929
Y 0.99957 0.99986
Availability X 0.99985 0.99985
Y 0.99957 0.99986

Table 11: Comparison of the reference and extended architectures

5.4 Summary of results

The main results presented in this paper can be summarized as follows:

For user X:

« system unavailability is mainly due to the reboot time;

« the no service states are reached on average once each 4.8 years but the system is rebooted

twice a year;

17

. the maintenance delay affects only the sojourn time in states with minor and major service
degradation; while the repair time affects system unavailability;
. the addition of a spare does not affect system unavailability but reduces the sojourn time in

states with major service degradation.

Foruser Y:
« system unavailability is mainly due to the maintenance time;
« the no service states are reached on average once a year and the system is rebooted once a year
(following system maintenance);

« the addition of a spare considerably reduces system unavailability.

The results revealed the existence of a tradeoff between system availability and system
performance. Sensitivity analyses showed the influence of the failures rates of the processors and
the remote cache controllers on system dependability. For example selecting a processor with a
failure rate one order of magnitude higher to the nominal value assumed by the manufacturer will

increase the system unavailability by 50 %.
6. Conclusions

This paper was devoted to the dependability evaluation of a multipurpose, multiprocessor
system, MMS, under investigation by a system manufacturer. We have presented a reference
architecture and an extended architecture and compared their dependability measures considering
two examples of users with different service requirements. Modeling is based on GSPNs to which
reward rates are added to evaluate performability. The modeling approach is modular, as many of
other published approaches (see e. g., [Meyer and Sanders 1993; Kanoun, Borrel et al. 1996; Nelli,
Bondavalli et al. 1996; Fota, Kianiche et al. 1998]). The originality of our approach is the
separation between the architectural and the service concerns. This separation of concerns is very
important in particular as we are considering a system manufacturer perspective, in which the user’s
needs are explicitly accounted for. In a typical user’s perspective, as the user is interested in
comparing possible architectural solutions for the same service purposes, there is no need to
consider explicitly service concerns and usually emphasis is put on architectural concerns. Note
that, even though several publications have been devoted to multiprocessors systems (see e. g.,
[Marsan, Balbo et al. 1984; Muppala, Sathaye et al. 1992], none of them addressed explicitly the
manufacturer and the user concerns at the same time. Moreover none considered in detail the

system architecture with all components.

The results presented for MMS can be classed into two categories: those supporting the

manufacturer choices and those that will support the potential user choices. Of course, these results

18

are not independent and have to be used together. Proper design choices by the manufacturer will

— hopefully — be of great benefits for the user.

From the manufacturer perspective, the results are mainly related to:
« the selection of the processors and of the remote cache controllers, RCC, according to the
impact of their failure rates on dependability measures (and their cost most probably);
. the decision concerning the reboot policy: reboot after system reconfiguration or not, reboot
with or without on-line tests;
« the provision of a spare node. With respect to this point, a tradeoff should be made between the
dependability improvement and the additional difficulty for developing the underlying

mechanisms for the insertion of the spare into the system.

From the user perspective, the results concern:

« the selection of the maintenance policy: delayed or immediate maintenance, tradeoff between
the maintenance guaranteed time and the cost of the maintenance contract (to agree on with the
system provider);

« the selection between the reference architecture and the extended one, and more generally

between all available solutions.

Another important point of interest concerns the exploitation by the user of the various
degradation possibilities offered by the architecture. According to the service expected by the
application, the user has to make choices concerning service degradation levels he can accept and
the tradeoff between performance and availability. This choice may affect the architecture of the

applicative software architecture.

The work is under progress. More specifically, additional performability measures are under
investigation, particularly to study some specific points such as the dependability improvement
induced by distributed, shared memories. Also, other extended architectures are under
consideration. As the architectural model is modular, and the component models are generic, their

modeling is based on extensive reuse of the GSPN developed in this paper.

References

[Arlat and Lapriec 1983] J. Arlat and J.-C. Laprie, “Performance-Related Dependability Evaluation of
Supercomputer Systems”, Proc. Proc. 13th Int. Symp. on Fault-Tolerant Computing (FTCS-13),
Milano, Italy, IEEE Computer Society Press, pp. 276-283, 1983.

[Ciardo, Muppala et al. 1989] G. Ciardo, J. Muppala and K.S. Trivedi, “SPNP: Stochastic Petri Net
Package”, Proc. 3rd Int. Workshop on Petri Nets and Performance Models, Los Alamitos, CA, USA,
pp- 142-151, 1989.

19

[Fota, Kdaniche et al. 1998] N. Fota, M. Kéaniche and K. Kanoun, “Dependability Evaluation of an Air
Traffic Control System”, Proc. 3rd IEEE Int. Computer Performance & Dependability Symposium
(IPDS), Durham, NC, pp. 206-215, 1998.

[Howard 1971] R.A. Howard, Dynamic Probabilistic Systems, New York, J. Wiley and Sons, 1971.

[Kanoun, Borrel ef al. 1996] K. Kanoun, M. Borrel, T. Moreteveille and A. Peytavin, “Modeling the
Dependability of CAUTRA, a Subset of the French Air Traffic Control System”, Proc. 26th IEEE Int.
Symp. Fault-Tolerant Computing (FTCS-26), Sendai, Japan, pp. 106-115, 1996.

[Kloppenburg 1987] T. Kloppenburg, “LOGISIRE — A Safe Computer System for Process-Automation”,
Proc. 3rd Intern. GI/IGT/GMA Conf., Bremerhaven, Germany, Springer-Verlag, 1987.

[Marsan, Balbo ef al. 1984] A. Marsan, G. Balbo and G. Conte, “A Class of Generalized Stochastic Petri
Nets for the Performance Analysis of Multiprocessor Systems”, ACM Transactions on Computers, 2
(2), pp. 93-122, 1984.

[Meyer 1978] J.F. Meyer, “On Evaluating the Performability of Degradable Computing Systems”, Proc. 8th
IEEE Int. Symp. Fault-Tolerant Computing (FTCS-8), Toulouse, France, pp. 43-52, 1978.

[Meyer and Sanders 1993] J.F. Meyer and W.H. Sanders, “Specification and Construction of Performability
Models”, Proc. Int. Workshop on Performability Modeling of Computer and Communication Systems,
Mont Saint Michel, France, pp. 1-32, 1993.

[Muppala, Sathaye et al. 1992] J.K. Muppala, A. Sathaye, R. Howe, C and K.S. Trivedi, “Dependability
Modeling of a Heterogeneous VAX-cluster System Using Stochastic Reward Nets”, Hardware and
Software Fault Tolerance in Parallel Computing Systems, Ed. D.R. Avresky, pp. 33-59, 1992.

[Nelli, Bondavalli et al. 1996] M. Nelli, A. Bondavalli and L. Simoncini, “Dependability Modeling and
Analysis of Complex Control Systems: An Application to Railway Interlocking”, Proc. 2nd European
Dependable Computing Conf., Taormina, Italy, Springer-Verlag, 1996.

[Poueyo and Dalzon 1998] J. Poueyo and J.P. Dalzon, “Mastering Safety of Opel and Distributed Systems in
Compliance with IEC 61508”, Proc. IFAC 2nd Symp. on Information Control Manufacturing
(INCOM'98), Nancy-Metz, France, pp. 511-516, 1998.

[Protic, Tomasevic et al. 1998] J. Protic, M. Tomasevic and V. Milutinovic, Eds. Distributed Shared
Memory — Concepts and Systems, IEEE Computer Society, 1998.

[Tomek, Mainkar ef al. 1994] L.A. Tomek, V. Mainkar, R.M. Geist and K.S. Trivedi, “Reliability Modeling
of Life-Critical, Real-Time Systems”, Proceeding of the IEEE, Special Issue on Real-Time Systems, 82
(1), pp. 108-121, 1994.

[Triconex 1996] Triconex, TRICON Technical Product Guide, Version 9 Systems, Irvine, Triconnex
Corporation, , 1996.

[Wirthumer 1989] G. Wirthumer, “Votrics — Fault Tolerance Realized in Software”, Proc. 8th IFAC Int.
Conference on Computer Safety, Reliability and Security (SAFECOMP'89), Vienna, Austria, pp. 135-
140, 1989.

20

