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Abstract. Lightweight manycores deliver high performance and scal-
ability at low power consumption. However, architectural intricacies of
these processors impose programmability challenges that keep them away
from mass adoption. While several efforts aim at introducing parallel
programming environments to lightweight manycores, few initiatives are
concerned about how to design rich Operating Systems (OSs) to them. In
this work, we focus on the open challenges that arise from constrained
memory subsystems of lightweight manycores, such as the presence of
multiple address spaces and limited on-chip memory. To cope with trans-
parent data access in this scenario, we introduce an OS service, named
RMem. This service provides a shared memory abstraction over multi-
ple address spaces and exposes system calls that enable one-sided com-
munication on top of this abstraction. We implemented a prototype of
our service in the Nanvix research OS, and we deployed the system the
Kalray MPPA-256 lightweight manycore. Our experimental results with
a microbenchmark unveiled that, while exposing an easier-to-program
interface, the RMem Service may deliver about 91% of the write perfor-
mance and up to 2.4X better read performance than the primitives in
the libraries of the experimental platform.

1 Introduction

During the past decade, performance improvements were mostly achieved by
scaling up the number of processors in a system. However, the rapid growth
in design complexity and power consumption pushed investigations towards
lightweight manycores [7]. To address the ever-increasing performance demands
of applications, research efforts focused on bundling in a chip as many simple low-
power cores as possible, rather than integrating fewer complex and power-hungry
cores. For instance, European researchers launched the Mont-Blanc Project with
the goal of designing a scalable and power-efficient High-Performance Comput-
ing (HPC) platform based on low-power embedded technologies [30]; and, the
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Sunway TaihuLight Supercomputer, the second most-powerful computer ranked
in Top 500°, was built using 10.6 million cores running at 1.45 GHz [12].

Lightweight manycores differ from large-scale multicores and other manycore
platforms in several points, besides their operational frequency. Unlike Graphics
Processing Units (GPUs), which are meant to be used as computing accelera-
tors and primarily target Single Instruction Multiple Data (SIMD) workloads,
lightweight manycores are designed to cope with Multiple Instruction Multiple
Data (MIMD) workloads and thus may be employed in several other contexts.
In contrast to large-scale multicore platforms, lightweight manycore processors
feature a different architecture: (i) they integrate up to thousands of cores in a
single chip; (ii) they rely on a high-bandwidth Network on Chip (NoC) for fast
and reliable message-passing communication; and (iii) they present constrained
memory subsystems. Some examples of such emerging class of processors are
the Tilera TILE64 [6]; the Intel Single-Cloud Computer [15]; the Kalray MPPA-
256 [10]; the Adapteva Epiphany [20]; and the Sunway SW26010 [31].

While the aforementioned architectural differences granted lightweight many-
cores better scalability and energy efficiency than their counterparts, they in-
troduced challenges in software design. For instance, engineers are oftentimes
required to adopt a message passing programming model [16], and the missing
hardware cache coherency forces programmers to not only handle data coherency
in software level but also calls out for a redesign in applications [29]. Further-
more, the heterogeneity trend in lightweight manycores turned the actual de-
ployment of applications a daunting task [3]. Indeed, enhancing the programma-
bility support for lightweight manycores consists of a hot research subject, in
which multiple efforts are currently focused on. While some initiatives aim at
proposing parallel programming models, environments and frameworks to these
processors [8,13,28]; other investigations push towards the way in which Oper-
ating Systems (OSs) should be designed for lightweight manycores [5,17,19,25].
Researchers working in the latter frontier argue that a rich OS may broaden
the applicability of lightweight manycores. We likewise support this claim, but
we also acknowledge that multiple challenges should still be overcome before
this scenario turns into reality. For instance, existing OSs that are narrowed to
lightweight manycores do not account in their design for the presence of multiple
address spaces nor the limited amount of on-chip memory, thereby requiring en-
gineers to explicitly deal with data accessing, tiling and prefetching [11,29]. As
a side effect, several other problems arise and remain unsolved, such as efficient
process migration and thread placement, and effective multiprogramming.

We argue that the OS of a lightweight manycore should be designed from
scratch around the tight architectural constraints of the memory subsystem.
Therefore, towards the long-term goal of engineering an OS that additionally
meets this requirement, in this work, we focus on addressing the first-order pro-
grammability challenge in this context. More precisely, our goal is to introduce a
new facility that enables transparent data access at the OS level for lightweight
manycores that features multiple address spaces and a limited amount of on-chip
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memory. Overall, this work delivers the following contributions to the state-of-
the-art programmability support for lightweight manycores:

— An OS-level facility that provides a flat shared memory abstraction over mul-
tiple address spaces. We called our solution Remote Memory (RMem), and
it is provided by a new OS service that we named RMem Service. Our ab-
straction enables different applications to effectively communicate and share
data in lightweight manycores with the targeted constraints. Furthermore, it
also enables the OS to transparently migrate data around, to better exploit
locality and thus mitigate NoC congestion.

— An interface that exposes one-sided communication primitives on top of
RMem. By relying on these primitives, processes may transparently access
data, apart from their location; as well as to manipulate large amounts of
data, regardless of the limited on-chip memory. The provided interface fea-
tures two system calls: memread (), which copies data from remote to local
memory, and memwrite() which carries out the converse operation.

— The deployment of an RMem prototype in the Kalray MPPA-256 lightweight
manycore. We implemented our prototype in the Nanvix research OS [22,23]
and made it publicly available at https://github.com/nanvix/multikernel.

In addition to these contributions, in this work, we also present a performance
evaluation of RMem using a microbenchmark. We ran multiple experimental
configurations, and we compared the performance of RMem system calls with
the primitives in the libraries that are shipped with Kalray MPPA-256.

The remainder of this work is organized as follows. In Section 2, we discuss
the programmability challenges that we target in lightweight manycores. In Sec-
tion 3, we present our OS service (RMem). In Section 4, we detail the evaluation
methodology and, in Section 5, the experimental results. In Section 6, we present
an overview of related works and highlight our main contributions to them. In
Section 7, we present our conclusions and discuss future works that we aim.

2 Target Challenges on Lightweight Manycores

In this section, we precisely position the programmability challenges of lightweight
manycores that we target. We do so by taking the Kalray MPPA-256 processor
as an example, presenting a detailed view of its architecture, and then pointing
out how those challenges arise from its constrained memory subsystem.

2.1 The Kalray MPPA-256 Processor

Figure 1 presents an architectural overview of Kalray MPPA-256 [10], codenamed
Bostan. It features 256 general-purpose cores, named Processing Elements (PEs),
and 32 cores dedicated for system use, referred as Resource Managers (RMs). All
cores run at 400 MHz, and the processor is built using 28 nm CMOS technology.
This manycore was introduced to target compute-intensive and time-critical ap-
plications of the embedded computing market share. Notwithstanding, due to its
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Fig. 1: Architectural overview of the Kalray MPPA-256 processor.

high energy efficiency [11], Kalray MPPA-256 also offers a promising alternative
for other applications as well.

Both RMs and PEs implement a proprietary instruction set and present a
pipelined 5-way Very Long Instruction Word (VLIW) architecture. Furthermore,
these cores feature private 2-way associative instruction and data level-1 caches
of 8 kB each and a Memory Management Unit (MMU) for software-managed
virtual memory. PEs and RMs are grouped within 16 compute clusters and 4
I/O clusters, respectively. Each compute cluster features 16 PEs, 1 RM and a
2 MB of local Scratchpad Memory (SPM). Hardware cache coherence in compute
clusters is not supported. On the other hand, each I/O cluster features 4 RMs
with a shared level-2 coherent data cache, and a DDR controller, which enables
the access to up to 64 GB of external DDR3-1600 at 8.5 GB/s.

Clusters have a distinct physical address spaces each, and they may commu-
nicate with one another by two different NoCs: a Control NoC (C-NoC) that
features low bandwidth and it is intended for small data transfers; and a Data
NoC (D-NoC) that presents high bandwidth and thus is dedicated to dense
data transfers. Both NoCs present an interleaved 2-D torus topology with bi-
directional links, wormhole switching and XY routing with injection rate control.
Overall, D-NoC may deliver up to 1.6 GB/s per link and direction at 400 MHz.

2.2 Programmability Challenges from the Memory Subsystem

The Kalray MPPA-256 processor features a constrained memory subsystem. The
memory itself is physically distributed; several physical address spaces co-exist
and MMUs cannot be configured to provide a single address space at hardware
level; the amount of memory in each compute cluster is very limited for nowadays
applications that typically run in desktops and servers (2 MB); and caches of
compute clusters are not coherent. In the next paragraphs, we detail some of the
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first-order programming challenges that arise in this scenario, and following we
summary our motivation for this work.

Inter-Cluster Communication and Data Access Threads that run on differ-
ent clusters necessarily work on different address spaces. If a thread A running
on cluster 1 wants to communicate to a thread B running on cluster 2, it must
either use explicit message-passing primitives or Direct Memory Access (DMA)
transfers. Unfortunately, in both cases, thread A needs to know the physical lo-
cation where thread B is running, at the bare minimum. Consequently, if thread
B is deployed in a different location, communication fails.

Data Tiling Each compute cluster features 2 MB of local memory and no
advanced virtual memory facility. As a consequence, if a thread wants to ma-
nipulate a dataset that is larger than 2 MB, it has to explicitly tile the dataset
into chunks, load/store them from/to a remote memory, and locally manipulate
these chunks one at a time.

Data Prefetching The actual way in which data accesses and tiling are car-
ried out directly impacts on the time in which threads waste due to NoC la-
tencies. Therefore, to achieve high-performance, an application should rely on
asynchronous transfers and prefetching schemes, so that it overlaps communica-
tion with computation as much as possible.

Apart from runtime alternatives that target these challenges, OS-level solu-
tions for them were not so far investigated. We argue that inter-cluster commu-
nication, explicit data accessing and data tiling impose important programma-
bility barriers for lightweight manycores. If data cannot be accessed regardless
where it is placed, nor arbitrarily large amounts of data can be transparently
manipulated, not only software development becomes more challenging and non-
portable, but also essential OS mechanisms, such as process and data migration,
core multiplexing, and core partitioning, may not be addressed. In summary,
these observations motivated our work.

3 The Remote Memory Service

In this section, we present the RMem Service in a top-down fashion. First, we
introduce the system call interface that is exported by it; then, we detail the
design of RMem; and finally, we unveil insights of the implementation of our
prototype in the Kalray MPPA-256 lightweight manycore processor.

3.1 System Call Interface Overview

The RMem Service exposes two blocking system calls: (i) memread(), which
copies data from a remote to the local memory; and (ii) memwrite(), which
carries out the converse transfer. By relying on these primitives, it is possible
to access data regardless of where it is physically placed, as well as manipulate
large amounts of data without having to deal explicitly with tiling.

Code Snippet 1.1 depicts how these two primitives may be naively used to
carry out a scalar-vector multiplication. In this example, a is a pointer to the
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1 void scalar_vector_multiply(double *a, int n, double f)
2 {

3 double tmp;

4 for (int i = 0; i < nj; i++) {

5 memread (&tmp, &alil, sizeof (double));

6 tmp *= f;

7 memwrite (&tmp, &alil, sizeof (double));

8 ¥

9 }

Snippet 1.1: Scalar-vector multiplication using RMem Service.

remote memory address where the target vector resides, n is the length of the
array itself, and f is the scalar multiplying factor. First, the i-th element of the
vector is loaded into a local variable tmp, using the memread () operation (line
5). Then, the actual computation is performed (line 6). Finally, the resulting
element is written back to the remote memory, using the memwrite () operation
(line 7). Both system calls handle underlying data transfers between the local and
remote memories in a thread-safe fashion. Furthermore, they perform bounds
and permissions checks to ensure access is granted only to allowed data.

At this point, it is essential to state the differences between the system call
interface exposed by the RMem Service from existing solutions that lie in the
runtime system level, such as message-passing libraries and Partitioned Global
Address Space (PGAS) frameworks. First, the unified addressing scheme exposed
by our service enables data to be transparently accessed. That is, threads do not
need to know where the target data is placed. Second, our system call interface
allows a thread to expand its address space and thereby transparently manip-
ulate datasets that are effectively too large to fit in the local memory. Third,
thanks to the shared memory abstraction provided by RMem, processes may
effectively share data and operate on it, as they would do in a shared memory
programming environment. Fourth, our service features bounds and permissions
checks, thereby enabling two unrelated threads (i.e., threads of different appli-
cations) to communicate with each other safely. Finally, the RMem Service does
not require communication peers to be paired at all. One thread may write data
to the remote memory regardless if there is a reader thread in the other end.

3.2 Design Discussion

Figure 2 pictures an architectural overview of the RMem Service. Essentially,
it features a distributed structure, so that it matches the distributed configu-
ration that is inherent in lightweight manycores; and it is in conformance with
the multikernel OS design approach, which is a trending OS architecture for
manycores [5,17,19,25]. In our design, the RMem Service is implemented on top
of multiple system engines and facilities: (i) Name Client; (ii) Name Server; (iii)
IPC Connectors; (iv) RMem Client; and (v) RMem Server. To simply explain the
internals of our service, as well as present how it actually works, let us consider
an example, where a thread A writes some data to the remote memory.

When A invokes the memwrite () system call, the RMem Client intercepts and
handles it as follows. First, the RMem Client parses the target remote memory
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address to check if the they lie within the bounds of the remote address space.
This address space is disjoint from the local one, has the size of the available
remote DRAM, and is not handled nor managed by the compiler. In Nanvix,
the Memory Allocator service provides extra facilities to user applications, so
that they can allocate/deallocate memory regions in the remote memory. Due
to space limitations, details about the implementation of this second service
are out of the scope of this work, but can be retrieved from the source code
that we made available. Either way, in the case in which the remote addresses
lie within the remote memory address space, the system call then determines
which RMem server is in charge of bookkeeping and performing access to the
target data. It does so by extracting the w most significant bits of the address
and using them to index the array of known RMem Servers. The number of
RMem Servers in the system (2%) grows proportionally with the amount of
remote DRAM banks that are available. In the Kalray MPPA-256 lightweight
manycore, system configurations with up to two RMem Servers are possible.

Once the RMem Client has determined the target RMem Server, it should
find out the physical location of the server (i.e., in which cluster and core).
To do so, the RMem Client relies on the Name Service, an OS daemon of the
process management subsystem. This supporting service is implemented by the
Name Client and Server, and it provides a naming functionality that enables user
applications and system servers to link/unlink symbolic names to themselves, as
well as a mechanism for resolving symbolic names into physical locations in the
processor. The RMem Client invokes the name resolution interface exposed by
the Name Service, and the request is intercepted by the Name Client. This latter
client looks up into its cache for a valid entry that is linked with supplied name.
If such entry exists, the physical location of the target RMem Server is directly
retrieved from there and returned to the RMem Client. Otherwise, the Name
Client queries the Name Server engine for this information, caches the response
and returns it to the RMem Client facility.

With the physical location of the target RMem Server, the RMem Client pro-
ceeds with the data transfer in two steps, through the IPC Connectors. First,
the RMem Client (i) sends the header of the remote write operation to the
RMem Server using a mailbox, a communication primitive that is intended for
small messages; (ii) setups the write operation; and (iii) and it waits for an

Name Client Name Server Name Client Named IPC

Kernel Kernel Kernel

Interconnect

Fig.2: RMem Service architectural overview.
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acknowledgment from the RMem server to continue. The operation header con-
tains meta-information about the request, such as the type of the operation, the
remote memory address and the transfer size. When the RMem Server receives
the operation request, it checks if the operation lies within the bounds of the
remote memory that is addressable by the target RMem Server, and if the re-
mote application has enough permissions to write to the target address range.
If the operation passes both assertions, then the RMem Server sends a positive
acknowledgment to the application and waits for the data; otherwise it returns
an error code. As soon as the RMem Client receives a reply from the RMem
Server, it resumes. Upon a negative acknowledgement, it aborts the execution of
the thread A, else it sends the data through a portal, a communication primitive
designed to dense data transfers.

We implemented a prototype of the RMem Service in Nanvix [22,23], a re-
search OS that features a multikernel design and targets lightweight manycores.
Our implementation is available at: https://github. com/nanvix/multikernel.

4 Evaluation Methodology

The performance of our RMem Service is quantified by the throughput that it
sustains. Thus, to evaluate this performance, we relied on an in-house implemen-
tation of the microbenchmark kernel proposed in [14], which performs several
accesses to RMem in blocks of fixed size and no computation. The kernel takes
as input three parameters: (i) the number of blocks to read/write; (ii) the size of
a block; and (iii) the number of peers that concurrently use the RMem Service.

Overall, based on this synthetic kernel, we conducted two experiments, iter-
atively. In the first experiment, which we named Transfer Size Scaling, we fixed
in 1, the number of peers that concurrently use the RMem Service; and we var-
ied the block size of our service in a constant factor of 2, from 1 kB to 2!° kB.
With this assessment, we aimed at identifying the block size that leads to the
best performance. Once we identified this scenario, we then launched the second
experiment, which we labeled Peer Scaling. In this latter experiment, we fixed
the block size into the previous value that we noted; and we varied the number
of peers in a constant factor of 2, from 1 to 16. Our goal was to analyze whether
or not the performance of RMem was impacted when scaling up the stress on it.

In both experiments, we considered as our baseline the implementation of
the same synthetic kernel using the native runtime system and libraries that
are shipped with the Kalray MPPA-256 processor. The rationale for choosing
such baseline lies on the fact that the actual implementation of our RMem Ser-
vice prototype is based on the latter runtime system and libraries. Therefore,
by taking this baseline, we may effectively observe the overheads (or improve-
ments) when using a richer Application Programming Interface (API). Finally,
it is important to note we carried out several experimental replications for each
configuration to ensure 95% of confidence in our results. For each replica, the
actual order in which individual runs were executed was randomly determined.


https://github.com/nanvix/multikernel

RMem: An OS Service for Transparent Memory Access in LW Manycores 9

5 Experimental Results

Figure 3a and Figure 3b depict the write and read throughput on the remote
memory, respectively, when varying the transfer size and one communication
peer. When analyzing the write throughput to the remote memory, we spot-
ted a three-phase performance behavior: (i) first the write throughput little
increases for small block sizes, i.e., up to 2 kB; (ii) then it scales up linearly
for medium-sized blocks, i.e., from 2 kB to 64 kB; and finally, (iii) it shows up
little performance increases for large block sizes, i.e., larger than 64 kB. Indeed,
we found out that the rationale for this behavior in the time results for the
experiment itself. In the first phase, the overhead imposed by system libraries
is greater than the network time. However, in the second phase, not only this
scenario reverses, but also when the block size increases no important impact
in the network time was observed. Finally, in the third phase, when increasing
the block size, network time significantly lengthens, thus causing throughput to
scale poorly. Overall, we observed that our service may achieve similar write
throughput to NodeOS (default library in Kalray MPPA-256). We noted that
128 kB block sizes offer the best trade-off between the performance achieved by
RMem and the overhead that it imposes. In this scenario, our service achieves
about 91% of write throughput that is delivered by NodeOS.

When studying the read throughput from the remote memory, we observed
a different behavior. Performance significantly increases when using block sizes
of up to 64 kB, and then it sharply decreases to the performance plateau of
NodeOS. We found out that rationale for this behavior is two-fold. First, during
the read operation itself, the RMem server and its remote peer partially overlap
their execution in time, thanks to the two-step protocol that we employ. In this
scheme, as soon as the remote peer sends the read request header to the RMem
server, it may set up the read operation in its side. In contrast, when using
the native interface in a naive way (i.e., single-step protocol), the remote peer
blocks until the other remote is ready to send the data. Second, we observed that
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Fig. 3: Experimental results for Transfer Size Scaling experiment.
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Fig. 4: Experimental results for Peer Scaling experiment.

the actual reduction in the synchronization time due to the two-step protocol
accounts for an important amount of time in the transfer for block sizes of up to
64 kB. As a consequence, the read throughput is significantly increased. However,
for larger block sizes, we observed the network time dominated the total transfer
time, thus causing read throughput to drop sharply. In comparison with NodeOS,
we observed that RMem may achieve up to 2.4x higher read throughput.

After analyzing write and read throughputs in the remote memory, we ob-
served that our service achieves the best performance for blocks of 64 kB. Recall
that this result was observed when a single remote peer is communicating with
the RMem Server. Therefore, in order to conclusively determine whether or
not this performance is impacted by the number of peers that concurrently
write/read to/from the RMem, we conducted a Peer Scaling experiment in
the peak-performance point that we identified. That is, we benchmarked the
throughput of remote writes and reads when fixing the block size of the RMem
Service in 64 kB and varying the number of peers. Figure 4a and Figure 4b out-
line the write and read throughput on the remote memory in this second exper-
iment, respectively. Overall, we observed that for both operations, throughputs
do not significantly change when varying the number of remote peers. Putting
it differently, nor the RMem server nor the underlying on-chip interconnect im-
pose significant overheads in 64 kB remote reads and remote writes, thereby
enabling a constant performance to be sustained regardless the number of re-
mote peers that are involved. We also noted that the performance gap between
RMem NodeOS remained nearly constant, for both operations, at the same levels
that we observed before, in the Transfer Size Scaling experiment. This outcome
further supports the conclusions that we drew previously.

As a final remark, it is important to note that regardless the size of the
blocks and number of peers employed in our experiments, the theoretical 1.6
GB/s throughput for the D-NoC link (i.e., the hardware peak performance) was
not achieved by either facilities, which are the NodeOS runtime and the Nanvix
RMem Service. Indeed, after investigating this behavior further, we found out
that the native development libraries, which are available in the experimental
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platform and used by both facilities, are not optimized. Therefore, for NoC-
intensive workloads peak performance cannot be achieved.

6 Related Work

The distributed memory configuration and tight memory footprint constraints of
low-power manycores introduce several challenges that still should be addressed,
such as one-sided inter-process communication support and transparent data
accessing and tiling. Aiming at an utterly transparent solution, some research
efforts looked for hardware level alternatives to implement a coherent global
memory system on top of the bare metal distributed configuration. For instance,
a fully-programmable processor to be integrated into the network interface of a
NoC was proposed [24]. That interface, called Typhoon, transparently handles
low-level communication and exposes to user-level a cache coherent shared mem-
ory system that may be fine-tuned to cope with the application characteristics.
However, the hardware-level implementation introduces additional complexity,
and thus increases power consumption and chip area utilization. Applications
that do not much benefit from this feature end up wasting resources [1,2].

Orthogonal to the idea of solving memory-related problems on low-power
manycores at the hardware level, other research efforts sought for providing a
coherent memory system in software [21]. Supporters of this alternative approach
argued that by providing a shared memory abstraction on software, coherency
traffic and power-consumption might be decreased, as well as the memory system
may be dynamically reconfigured to better meet the characteristics of applica-
tions [32]. The main idea consisted in providing a transparent shared memory
abstraction at page granularity in the OS [4,18]. For instance, in Shasta [27] re-
mote loads and stores were intercepted and transparently handled. However, the
downside arises when memory-bound applications come into play, with a high
number of remote fetches incurring on performance degradation.

To overcome this problem, alternative software solutions tackled memory-
related challenges of distributed architectures at the runtime system level em-
ploying high-performance parallel programming models. Among the alternatives,
PGAS has stood out as a promising and ever-growing solution [9]. It consists
of a runtime system that provides a globally shared address space abstraction
to processes of a distributed application, and it exposes one-sided communica-
tion primitives to operations on this address space. Indeed, due to its success,
PGAS is already available on the Intel Single-Cloud Computer and Adapteva
Epiphany low-power manycores, and it proved to achieve reasonable performance
and energy efficiency [13,26]. Nevertheless, despite its advantages, PGAS is not
a fully-featured solution, once it lies on the runtime system, and thus it may not
address the communication of different applications, nor provide means for an
application to operate on large amounts of data.

Our proposal (RMem) differs from the previously discussed solutions in sev-
eral points. In contrast to hardware solutions, the application may or may not
use the service itself, but applications that do not choose RMem, do not have
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any extra cost. When compared to existing solutions in the OS level, the RMem
stands out as a different abstraction, which in turn may be used to build higher-
level features, such as process migration. Finally, different from runtime system
level solutions, our service enables a fully featured alternative, in which pro-
cesses from different applications may communicate; data can be transparently
accessed and migrated, and data may be securely shared.

7 Conclusions

Lightweight manycores deliver performance and scalability while featuring low-
power requirements and high energy efficiency. Unfortunately however, due to
their architectural intricacies and programmability challenges that follow, these
processors face several barriers that keep them away from mass adoption.

Aiming at bridging the programmability gap in lightweight manycores, in this
work, we focus on addressing open challenges that arise from their constrained
memory subsystems, such as the presence of multiple address spaces and lim-
ited on-chip memory. To cope with transparent data access in this scenario, we
introduce a new facility at the OS level, which we named RMem. Our solution
consists in an OS service that provides a shared memory abstraction over multi-
ple address spaces and exposes system calls that enable one-sided communication
on top of this abstraction. By relying on the RMem Service, (i) processes may
manipulate large amounts of data, regardless the limited on-chip memory; (ii)
different applications may effectively communicate and share data; and (iii) the
OS itself is able to transparently migrate data around, to better exploit locality
and thus mitigate NoC congestion. We implemented a prototype of our service
in the Nanvix research OS, and we deployed it in the Kalray MPPA-256 pro-
cessor. Furthermore, we evaluated the performance of RMem using a synthetic
kernel and contrasted its performance with the communication primitives that
are available in the libraries which are shipped with the experimental platform.
Our results unveiled that while exposing a simpler and easier-to-program API,
RMem may deliver about 91% of the write performance that is achieved by
the baseline primitives, and 2.4x better read performance. Overall, these results
strongly encourage us to a high-performance implementation of our prototype.

In future work, we intend to investigate how to integrate data caching,
prefetching and tiling into RMem. Also, we intend to rely on our service to
introduce high-level OS abstractions, such as shared memory segments, core
multiplexing and process migration, to lightweight manycores that feature a
constrained memory subsystem.
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