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Abstract
In this paper, we consider the online problem of scheduling independent jobs non-preemptively
so as to minimize the weighted flow-time on a set of unrelated machines. There has been a
considerable amount of work on this problem in the preemptive setting where several competitive
algorithms are known in the classical competitive model. However, the problem in the non-
preemptive setting admits a strong lower bound. Recently, Lucarelli et al. presented an algorithm
that achieves a O

( 1
ε2

)
-competitive ratio when the algorithm is allowed to reject ε-fraction of total

weight of jobs and has an ε-speed augmentation. They further showed that speed augmentation
alone is insufficient to derive any competitive algorithm. An intriguing open question is whether
there exists a scalable competitive algorithm that rejects a small fraction of total weights.

In this paper, we affirmatively answer this question. Specifically, we show that there exists
a O

( 1
ε3

)
-competitive algorithm for minimizing weighted flow-time on a set of unrelated machine

that rejects at most O(ε)-fraction of total weight of jobs. The design and analysis of the algorithm
is based on the primal-dual technique. Our result asserts that alternative models beyond speed
augmentation should be explored when designing online schedulers in the non-preemptive setting
in an effort to find provably good algorithms.
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1 Introduction

In this work, we study the fundamental problem of online scheduling of independent jobs on
unrelated machines. Jobs arrive over time and the online algorithm has to make the decision
which job to process non-preemptively at any time on each machine. A job j is released at
time rj and takes pij amount of processing time on a machine i. Further, each job has a
weight wj that denotes its (relative) priority. Our aim is to design a non-preemptive schedule
that minimizes the total weighted flow-time (or response time) quantity, i.e.,

∑
j wj(Cj − rj)

where Cj denotes the completion time of job j.
We are interested in designing online non-preemptive scheduling problem in the worst-case

model. Several strong lower bounds are known for simple instances [2, 4]. The main hurdle
arises from two facts: the algorithm must be online and robust to all problem instances
and the algorithmic decisions made should be of irrevocable nature. In order to overcome
the strong theoretical lower bound, Kalyanasundaram and Pruhs [7] and Phillips et al. [10]
proposed the analysis of scheduling algorithms in terms of the speed augmentation and
machine augmentation, respectively. Together these augmentation are commonly referred to
as resource augmentation. Here, the idea is to either give the scheduling algorithm faster
processors or extra machines in comparison to the adversary. For preemptive problems, these
models provide a tool to establish a theoretical explanation for the good performance of
algorithms in practice. In fact, many practical heuristics have been shown to be competitive
where the algorithm is given resource augmentation. In contrast, problems in the non-
preemptive setting have resisted against provably good algorithms even with such additional
resources [9].

Choudhury et al. [5] proposed a new model of resource augmentation where the online
algorithm is allowed to reject some of the arriving jobs, while the adversary must complete
all jobs. Using a combination of speed augmentation and rejection, Lucarelli et al. [9] break
this theoretical barrier and gave a scalable algorithm for non-preemptive weighted flow-time
problems. However, it remains an intriguing question about the power of rejection model in
comparison to the previous ones.

Recently, Lucarelli et al. [8] showed that a O(1) competitive algorithm exists if all jobs
have unit weight and one only rejects a constant fraction of the jobs. Their algorithm and
analysis are closely tied to the unweighted case and there is no natural extension to the
case where jobs have weights. The question looms, does there exist a constant competitive
algorithm for non-preemptive scheduling to minimize weighted flow-time using rejection?

1.1 Our Result and Approach
This paper gives the first algorithm with non-trivial guarantees for minimizing weighted flow
time using rejection and no other form of resource augmentation. The main result of the
paper is the following theorem. The theorem shows that constant competitiveness can be
achieved by only rejecting a small faction of the total weight of the jobs.

I Theorem 1. For the non-preemptive problem of minimizing weighted flow-time on unrelated
machines, there exists a O( 1

ε3 )-competitive algorithm that rejects at most O(ε)-fraction of
total weight of the jobs for any 0 < ε < 1.

The algorithmic decisions are classified into three parts: dispatching, rejecting and
scheduling policy. The scheduling follows HDF policy (Highest Density First) once jobs are
assigned to the machines. At the arrival of a job, for each machine, the algorithm computes
an approximate increase in the weighted flow-time and assigns the job to the machine with



G. Lucarelli, B. Moseley, N. Kim Thang, A. Srivastav, and D. Trystram 59:3

the least increase in the approximate weighted flow-time. To compute this quantity for a
given machine, the algorithm considers the set of uncompleted jobs in the machine queue in
the non-increasing order of densities and uses two different rejection policies.

The first rejection policy, referred as the preempt rule, rejects jobs that have already
started processing if the total weight of newly arrived “high priority” jobs (high density jobs)
exceeds a given threshold. Specifically, when a job starts executing, we associate a counter
that keeps tracks of the total weight of newly arrived jobs. Once the value of this counter
is at least 1/ε times the weight of the current executing job, the algorithm preempts the
current executing job and rejects it. The rejected job is pushed out of the system so as to be
never executed again.

We emphasize here a critical issue due to job rejection which is of different nature to speed
augmentation. Observe that rejecting a job that has already started processing may cause a
large decrease in the weighted flow-time of the jobs in the machine queue. Due to job arrivals
and job rejections, quantities associated to the machine queue (for example the remaining
job weight, etc) vary arbitrarily without any nice properties like monotonicity. That creates
a significant challenge in the dual fitting analysis. To tackle this problem, we introduce the
notion of definitive completion time for each job. Once a job is rejected or completed before
its definitive completion time, the algorithm removes the job from the queue of the machine.
However, for the purpose of analysis, the rejected jobs are still considered in the definition of
dual variables until their definitive completion time. This ensures that for any fixed time,
the weight of jobs not yet definitively completed increases with the arrival of new jobs (see
Section 3.4 for details).

The second rejection policy, referred as the weight-gap rule, rejects unprocessed “low
priority” jobs (small density jobs) from the machine’s queue. This policy simulates the
ε-speed-augmentation. In the particular case where all jobs have the same weight, this
rejection policy rejects a “low priority” job for every 1/ε arrivals of new jobs. Due to the
scheduling policy, if a “low priority” job is not rejected, then it will be completed last in the
schedule (assuming no future job arrivals).

In the algorithm’s schedule, future arriving jobs do not delay the rejected low priority
jobs, while the later ones need to be completed in the adversary’s schedule. This is where
the algorithm benefits from the power of rejection. Specifically, the algorithm can use the
difference between the rejection time and the definitive completion time of jobs to create a
similar effect to speed augmentation. The key idea is to reject the low priority jobs so their
total weight is comparable to jobs that arrive after them.

The definitive completion times play a crucial role so that the dual achieves a substantial
value compared to the primal. By carefully choosing the definitive completion times of jobs,
we manage to prove the competitive ratio of our algorithm with admittedly sophisticated
analysis.

1.2 Related Works
The problem of minimizing the total weighted flow-time has been extensively studied in
the online scenario. For the preemptive problem, Chekuri et al. [4] presented a semi-online
O(log2 P )-competitive algorithm for a single machine, where P is the ratio of the largest to
the smallest processing time of the instance. Later, Bansal and Dhamdhere [3] proposed
a O(logW )-competitive algorithm, where W is the ratio between the maximum and the
minimum weights of the jobs. This was later improved in [2]. In contrast to the single-
machine case, Chekuri et al. [4] showed a Ω(min(

√
P ,
√
W, nm

1
4 )) lower bound for m identical

machines. For the online non-preemptive problem of minimizing the total weighted flow-time,
Chekuri et al. [4] showed that any algorithm has at least Ω(n) competitive ratio for single
machine where n is the number of jobs.

ESA 2018
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In speed-augmentation model, Anand et al. [1] presented a scalable competitive algorithm
for the preemptive problem on a set of unrelated machines. For the non-preemptive setting,
Phillips et al. [10] gave a constant competitive algorithm in identical machine setting that uses
m logP machines (recall that the adversary uses m machines). They also showed that there
exists a O(logn)-machine O(1)-speed algorithm that returns the optimal schedule for the
unweighted flow-time objective. Epstein et al. [6] proposed an `-machines O(min{

√̀
P ,
√̀
n})-

competitive algorithm for the unweighted case on a single machine. This algorithm is optimal
up to a constant factor for constant `.

Lucarelli et al. [9] presented a strong lower bound on the competitiveness for the weighted
flow-time problem on a single machine that uses arbitrarily faster machine than that of the
adversary. Choudhury et al. [5] extended the resource augmentation model to allow rejection,
according to which the algorithm does not need to complete all jobs and some of them can be
rejected. Using a combination of speed augmentation and rejection, Lucarelli et al. [9] gave
a constant competitive algorithm for the weighted flow-time problem on a set of unrelated
machines. In particular, they showed that there exists a O(1/ε2)-competitive algorithm that
uses machines with speed (1 + ε) and rejects at most an ε-fraction of jobs for arbitrarily
small ε > 0. Recently, Lucarelli et al. [8] provided a scalable competitive algorithm for the
case of (unweighted) flow time where there is no speed augmentation.

2 Definitions and Notations

2.1 Problem definition
We are given a setM of unrelated machines and a set of jobs J that arrive online. Each job
j is characterized by its release time rj and its weight wj . If job j is executed on machine i, it
has a processing requirement of pij time units. The goal is to schedule jobs non-preemptively.
Given a schedule S, the completion time of the job j is denoted by CSj . The flow-time of j
is defined as FSj = CSj − rj , which is the total amount of time job j remains in the system.
The objective is to minimize the weighted flow-times of all jobs, i.e.,

∑
j∈J wjF

S
j . In the

following section we formulate this problem as a linear program.

2.2 Linear Programming Formulation
The LP formulation presented below is an extension of those used in the prior works of [1, 9].
For each job j, machine i and time t ≥ rj , there is a binary variable xijt which indicates if j
is processed or not on i at time t. The problem of minimizing weighted flow-time can be
expressed as:

min
∑
i,j,t

wj

(
t− rj
pij

+ 21
)
xijt

∑
i,t

xijt
pij

= 1 ∀j (1)

∑
j

xijt ≤ 1 ∀i, t (2)

xijt ∈ {0, 1} ∀i, j, t ≥ rj (3)

The objective value of the above integer program is at most a constant factor than that
of the optimal preemptive schedule. The above integer program can be relaxed to a linear
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program by replacing the integrality constraints of xijt with 0 ≤ xijt ≤ 1. The dual of the
relaxed linear program can be expressed as follows:

max
∑
j

αj −
∑
i,t

βit

αj
pij
− βit ≤ wj

(
t− rj
pij

+ 21
)

∀i, j, t ≥ rj (4)

βit ≥ 0 ∀i, t (5)

For the rejection model considered in this work, it is assumed that the algorithm is
allowed to reject jobs. Rejection can be interpreted in the primal LP by only considering
constraints corresponding to non-rejected jobs. That is, the algorithm does not have to
satisfy the constraint (1) for rejected jobs.

2.3 Notations
In this section, we define notations that will be helpful during the design and analysis of the
algorithm.

t− denotes the time just before t that is, t− = t − ε′ for an arbitrarily small value of
ε′ > 0.
Ui(t) denotes the set of pending jobs at time t on machine i, i.e., the set of jobs dispatched
to i that have not yet completed and also have not been rejected until t.
κi(t) denotes the job currently executing on machine i at time t.
Vi(t) denotes the set of unprocessed jobs in Ui(t) that is Vi(t) = Ui(t)\{κi(t)}. Throughout
this paper, we assume that the jobs in Vi(t) are indexed in non-increasing order of their
densities that δi1 ≥ δi2, . . . ,≥ δi|Vi(t)|.
νi(t) denotes the smallest density job in Vi(t).
R1
i (a, b) denotes the set of jobs rejected due to the prempt rule (to be defined later)

during time interval (a, b]. In particular, R1
i (t) is the set of job rejected at time t due to

the prempt rule.
Similarly, R2

i (a, b) denotes the set of jobs rejected due to the weight-gap rule (also to be
defined later) during time interval (a, b]. In particular, R2

i (t) is the set of job rejected at
time t due to the weight-gap rule.
qij(t) denotes the remaining processing time of j at a time t on machine i.
δij is the density of a job j on machine i that is δij = wi

pij
.

Sj denotes the starting of job j on some machine i. If a job is rejected before it starts
executing, set Sj =∞.

By the previous definitions, it follows that R1
i (rj), R2

i (rj) ⊆ U(r−j ) ∪ {j} and U(rj) =
(U(r−j ) ∪ {j}) \ {R1

i (rj) ∪R2
i (rj)}.

3 The Algorithm

In this section, we describe our algorithm. Specifically, we explain how to take the following
decisions: dispatching that is to decide the machine assignment of jobs; scheduling that is to
decide which jobs to process at each time; and rejection. The algorithm is denoted by A.
Let 0 < ε < 1 be an arbitrarily small constant. Note that the proposed algorithm rejects
an O(ε)-fraction of the total weight of jobs and dispatches each job to a machine upon its
arrival.

ESA 2018
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3.1 Scheduling policy
At each time t if the machine i is idle either due to the rejection of a job or due to the
completion of a job, then the algorithm starts executing the job j with the highest density
among all the jobs in Ui(t), i.e. j = arg maxh∈Ui(t) δih. In case of ties, the algorithm selects
the job with the earliest release time.

3.2 Rejection policies
Our algorithm uses two different rules for rejecting jobs. The first rule called as the preempt
rule, bounds the total weight of “high priority” jobs that arrive during the execution of a
job. The second rule called as the weight-gap rule, helps the algorithm to balance the total
amount of weight of low density jobs. The algorithm associates two counters, count1

j and
count1

j , with each job j which are both initialized to 0 at rj .

1. Preempt rule: Let j = κi(t) be the job processing on i at time t. During the processing
of j, if a new job j′ is dispatched to i then count1

j is incremented by wj′ . Let k be the
earliest job released and dispatched to machine i during the execution of j such that
count1

j ≥ wj/ε, if it exists. At rk, the algorithm interrupts the processing of j and rejects
it, that is R1

i (rk) = {j}. If no job is rejected due to the preempt rule at rk, then we set
R1
i (rk) = ∅.

2. Weight-gap rule: We associate a function Wi(t) : R+ → R+ with each machine i which
is initialized to 0 for every t. Informally Wi(t) represents the total budget for future
rejections. If a job j is dispatched to machine i then Wi(t) for t ≥ rj is updated according
to the following policy.
Let V = Vi(r−j ) ∪ {j}. Assume that the jobs in V are indexed in non-increasing order of
their densities that is, δi1 ≥ δi2 ≥ . . . ≥ δiν , where the job with index ν is the smallest
density job in V . Note that the job j is included in this ordering. Let s be the smallest
index in {1, 2, . . . , ν} such that:

ν∑
h=s

wh ≤ ε(Wi(t−) + wj) <
ν∑

h=(s−1)

wh (6)

We say that no such job with index s exists if and only if wν > ε(Wi(t−)+wj). Algorithm 1
defines the set of jobs R2

i (rj). The algorithm rejects the jobs in R2
i (rj) and updates Wi(t)

as follows:

Wi(t) = max{0,Wi(r−j ) + wj −
∑

h∈R2
i

(rj)

wh/ε}, ∀t ≥ rj (7)

The following lemma describes some properties arising due to the weight-gap rule.

I Lemma 2. The following properties hold.
(Property 1) If R2

i (rj) = {νi(r−j ), j} or R2
i (rj) = {(s− 1), . . . , v} then Wi(rj) = 0.

(Property 2) εWi(t) < wνi(t) for every pair of i, t.
(Property 3) Let w|R2

i
(rj)| denote the weight of smallest density job in R2

i (rj). If j /∈ R2
i (rj)

then
∑
h∈R2

i
(rj) wh − w|R2

i
(rj)| ≤ 2εwj.

(Property 4) If j ∈ R2
i (rj), then R2

i (rj) = {j} or {j, νi(r−j )}.

I Lemma 3. The total weight of jobs rejected by the preempt rule is at most O(ε)-fraction
of the total weight of jobs in J .
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Algorithm 1 Weight-gap Rejection Rule.
1: if no job with index s exists then
2: if j is not the smallest density job in V then
3: No job is rejected that is, R2

i (rj) := ∅
4: else
5: {j is the smallest density job in V that is, j is the job with index ν}
6: {vi(r−j ) is the job with index ν − 1}
7: if pij ≥ εpi(ν−1) then
8: No job is rejected that is, R2

i (rj) := ∅
9: else

10: count2
(ν−1) := count2

(ν−1) + wj

11: if count2
(ν−1) ≥ w(ν−1) then

12: Reject j and νi(r−j ) that is, R2
i (rj) := {j, νi(r−j )}

13: else
14: No job is rejected that is, R2

i (rj) := ∅
15: else
16: {a job with index s exists}
17: if wj ≥ w(s−1)/ε then
18: Reject jobs with indices s− 1, . . . , ν in V that is, R2

i (rj) := {s− 1, . . . , ν}
19: else
20: {wj < w(s−1)/ε}
21: if j is not one of the jobs in s, . . . , ν that is, j /∈ {s, . . . , ν} then
22: Reject jobs with indices s, . . . , ν in V that is, R2

i (rj) := {s, . . . , ν}
23: else
24: {j ∈ {s, . . . , ν}}
25: count2

(s−1) := count2
(s−1) + wj

26: if count2
(s−1) ≥ w(s−1) then

27: Reject jobs with indices s− 1, . . . , ν in V that is, R2
i (rj) := {s− 1, . . . , ν}.

28: else
29: Reject jobs with indices s, . . . , ν in V that is, R2

i (rj) := {s, . . . , ν}.

Proof. From preempt rule, it follows that each job j can be associated with a set of jobs such
that their total weight is at most wj/ε. For every pair of j, j′ and j 6= j′, the intersection of
the associated sets is empty and hence the lemma follows. J

I Lemma 4. The total weight of jobs rejected by the weight-gap rule is at most O(ε)-fraction
of the total weight jobs in J .

3.3 Dispatching policy

When a new job j arrives, a variable ∆ij is set. Intuitively, ∆ij is the approximate increase
in the total weighted flow-time objective if the job j is assigned to the machine i and j is not
rejected. Then, ∆ij is defined as follows.

∆ij = wj
∑

h∈Vi(rj):δih≥δij

pih + pij
∑

h∈Vi(rj):δih<δij

wh

+ wjqiκi(r−j )(rj) · 1{κi(r−j ) is not rejected currently due to preempt rule}

ESA 2018



59:8 Online Non-Preemptive Scheduling to Minimize Weighted Flow-time

− qiκi(r−j )(rj) ·
∑

h∈Ui(rj)\{j}

wh · 1{κi(r−
j ) is currently rejected due to the preempt rule}

The first term corresponds to the flow-time of the new job j due to waiting on jobs with
higher density than δij in Vi(rj). The second term corresponds to the delay of the jobs
in Vi(rj) with smaller density than δij . The third and the fourth terms give corrections
depending on whether job κi(r−j ) is rejected due to the preempt rule.

We now describe the dispatching policy of jobs to machines. At the arrival time of a job
j, we hypothetically assign j to every machine i and compute the variables αij . Finally, we
assign j to the machine that minimizes αij . For notional purposes, we put an additional
apostrophe to previously defined variables. The additional apostrophe stands for the fact that
these variables correspond to the case where we hypothetically assign j to i. For example,
R2′
i (rj) denote the set of rejected jobs due to the weight-gap rule when j is hypothetically

assigned to i. Similarly, W ′i (rj) denote the function Wi at rj in the case if j is assigned to i.
Further, let ρ = ρij be an index of a job in Vi(r−j ) such that the following two inequalities
hold simultaneously:

|Vi(r−j )|∑
h=ρ

wh ≤W ′i (rj) <
|Vi(r−j )|∑
h=(ρ−1)

wh

The variable αij is computed for each machine i as follows:

αij = 20wjpij
ε

+ wj
∑

h∈Vi(r−j ):δih≥δij

pih + wjpij + pij
∑

h∈Vi(r−j ):δij>δih

wih − nij

where nij is defined as follows.

nij = wj

 ∑
h∈Vi(r−j ):δiρ≥δih

ph +
(
W ′i (rj)−

∑
h∈Vi(r−j ):δiρ≥δih

wh

)
pi,(ρ−1)

w(ρ−1)


if R2′

i (rj) = {j},

nij = wj
∑

h∈R′2
i

(rj)

pih if R′2i (rj) = {j, νi(r−j )},

nij = pij
∑

h∈R′2
i

(rj)

wh + ε2W ′i (rj)pij otherwise.

The algorithm assigns j to machine i∗ = arg mini∈M αij .

3.4 Dual variables
Suppose job j is assigned to machine i. Assume Lj represents the last time t such that j is
in Ui(t). Informally, Lj is the time at which j is removed from the queue of the machine i.
Note that j can be removed from Ui(t) due to three following reasons:
1. If j has being scheduled for pij time units on machine i then Lj = Cj
2. If j is rejected due to preempt rule
3. If j is rejected due to weight-gap rule.
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In cases 2 and 3, j is rejected due to the arrival of some job, denoted by rej(j). Recall that
R1
i (rj , Lj) is the set of jobs that are rejected due to preempt rule during the interval (rj , Lj ]

on machine i. Note that those jobs cause a decrease in the flow of j. Observe that R1
i (rj , Lj)

contains j if j is rejected due to the preempt rule. We define the definitive completion time,
denoted by C̃j , of a job j as follows.

1. If j is not rejected due to the weight-gap rule (corresponds to cases 1 and 2) .

C̃j = Lj +
∑

h∈R1
i

(rj ,Lj)

qih(rrej(h)) (8)

2. If j is rejected due to the weight-gap rule on the arrival of some job other than j that is,
rj′ where j′ 6= j

C̃j = Lj +
∑

h∈R1
i

(rj ,Lj)

qih(rrej(h)) +
∑

h∈Ui(Lj):δih≥δij

qih(Lj) +
∑

h∈R2
i

(rrej(j)):δih≥δij

pih (9)

3. If j is immediately rejected (i.e., j ∈ R2
i (rj)) and job νi(r−j ) is also rejected due to the

arrival of j.

C̃j = Lj + pij +
∑

h∈Ui(Lj)

qih(Lj) (10)

4. If j is immediately rejected and it is the only job rejected due to the weight gap rule at
rj . Denote ρ = ρij .

C̃j = Lj + pij +
∑

h∈Vi(L−j ):δih>δi(ρ−1)

pih

+

1−

Wi(Lj)−
∑

h∈Vi(L−j ):δiρ≥δih
wh

w(ρ−1)

 pi(ρ−1) + qiκi(Lj)(Lj).1{R1
i

(Lj)=∅} (11)

This completes the description of the definitive completion time.

Let Qi(t) denote the set of jobs that have not been definitely completed that is

Qi(t) := {j : j has been assigned to i, t < C̃j}.

Next, we define the notion of artificial fractional weight of a job j ∈ Qi(t),

wfj (t) =

wj if rj ≤ t ≤ C̃j − pij

wj

(
C̃j−t
pij

)
if C̃j − pij < t < C̃j

Now, we have all the necessary tools to set dual variables. At the arrival of job j, set

αj =
(

ε

1 + ε

)
min
i∈M

αij

and never change this value again. The second dual variable βit is set to
ε

(1 + ε)(1 + ε2)
∑

h∈Qi(t)

wfh(t)

Let QRi (t) ⊆ Qi(t) be the set of jobs that are rejected due to the weight-gap rule and are
not yet definitively completed until time t.
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I Lemma 5. For fixed time t, βit may only increase as new jobs arrive and some old jobs
might get rejected.

Observe that above lemma holds as jobs are removed from Qi(t) only after their definitive
completion time. Thus a job that might have already completed its execution on a machine
or rejected, can still be present in the Qi(t). During the analysis, we will show that the dual
constraint corresponding to job j are feasible at rj . Since βit only increases with respect to
the arrival of new jobs, the feasibility holds for all t ≥ rj .

4 Analysis

We present first two technical lemmas which are important for the analysis of our primal-dual
algorithm. In Lemma 6, we relate the weight of rejected jobs in QRi (t) to the weight of jobs
pending in Ui(t). This will help us in proving the feasibility of dual constraints in Lemma 9,
Lemma 10 and Lemma 11. In Lemma 7, we show that the negative parts in the definition of
αjs’ are relatively small. This will help us to bound the value of the dual objective.

I Lemma 6. Let κ = κi(t). For any machine i and any time t, it holds that wκ
piκ
qiκ(t) +∑

h∈Vi(t)
wfh(t)−Wi(t) ≤ 1

ε

∑
h∈QR

i
(t)
wh(t).

Proof. We prove by induction on the arrival of jobs. The base case when no job has been
released, holds trivially. Assume that the above inequality holds for every time t, before
the arrival of job j on machine i, we show that it holds after j arrives. We split the proof
into two cases depending upon if j is immediately rejected or not. The rest of the proof is
omitted due to space constraints. J

I Lemma 7. Let Ji(t) denote the set of jobs dispatched to machine i until the time t that is,
J(i) =

⋃
t′≤t

Ui(t′). Then the following inequality holds at all time and for all i ∈M

D1 −D2 ≤ B1 + B2 + B3 (12)

where

D1 =
∑

j∈Ji(t)\R2
i

(rj)

(
ε2Wi(rj)pij − wjpi,νi(r−j ).1{j=νi(rj) and pj<εpiνi(r−

j
)
}

)
,

D2 =
∑

j∈R2
i

(rj)

(
wjpi,νi(rj).1{|R2

i
(rj)|=1} + wνi(r−j )pi,νi(r−j ).1{|R2

i
(rj)|>1}

)
,

B1 =
∑

j∈R2
i

(0,t)

wjpij , B2 =
∑

j∈Ji(t)\{R2
i

(0,t)∪Ui(t)}

wjpij + εWi(t)pi,νi(t) and

B3 =
∑

j∈Ji(t)

wjpij/ε.

Proof. The proof is omitted due to space constraints. J

I Corollary 8. Let Ji ⊆ J be the set of jobs dispatched to machine i that Ji =
⋃
t≥0

Ui(t).

Then the following inequality holds for every machine i ∈M,∑
j∈Ji\R2

i
(rj)

ε2Wi(rj)pij ≤
(

5
ε

) ∑
j∈Ji

wjpij
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Proof. From Lemma 7, it immediately follows that

∑
j∈Ji\R2

i
(rj)

(ε2Wi(rj)pij − wjpi,νi(r−j ).1{j=ν(rj) and pj<εpi,νi(r−
j

)
})

−
∑

j∈R2
i

(rj)

(
wjpi,νi(rj).1{|R2

i
(rj)|=1} + wνi(r−j )pi,νi(r−j ).1{|R2

i
(rj)|>1}

)
≤ 2
ε

∑
j∈Ji

wjpij



Rearranging the terms, we get

ε2
∑

j∈Ji\R2
i

(rj)

Wi(rj)pij

−
∑

j∈R2
i

(rj)

(
wjpi,νi(rj).1{|R2

i
(rj)|=1} + wνi(r−j )pi,νi(r−j ).1{|R2

i
(rj)|>1}

)

≤ 2
ε

∑
j∈Ji

wjpij

+
∑

j∈Ji\R2
i

(rj)

wjpi,vi(r−j ).1{j=v(rj) and pj<εpivi(r−
j

)
}

≤ 2
ε

∑
j∈Ji

wjpij

+
∑
h∈Ji

pih
∑

j∈Ji:j=ν(rj),h=ν(r−
j

)

wj

≤ 2
ε

∑
j∈Ji

wjpij

+
∑
h∈Ji

pihwh/ε

since count2
h < wh/ε, otherwise h is rejected due to Line 12 in Algorithm 1

≤ 3
ε

∑
j∈Ji

wjpij


Rearranging the terms again, we get

ε2
∑

j∈Ji\R2
i

(rj)

Wi(rj)pij

≤ 3
ε

∑
j∈Ji

wjpj

+
∑

j∈R2
i

(rj)

(
wjpi,νi(rj).1{|R2

i
(rj)|=1} + wνi(r−j )pi,νi(r−j ).1{|R2

i
(rj)|>1}

)

≤ 4
ε

∑
j∈Ji

wjpj

+
∑

j∈R2
i

(rj)

(
wjpi,νi(rj).1{|R2

i
(rj)|=1}

)
since R2

i (rj) = {j, νi(r−j )}

≤ 4
ε

∑
j∈Ji

wjpj

+
∑
h∈Ji

pih
∑

j∈Ji:h=νi(r−j )=νi(rj)

wj

≤ 5
ε

∑
j∈Ji

wjpj



The last inequality holds since count2
h < wh/ε, otherwise h is rejected in Line 27 in Algorithm 1.

Thus, the corollary follows. J
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Now we show the proof of dual feasibility for each job j on every pair of i, t. Thus, for a
given machine i, j may or may not be assigned to i. by the algorithm.

I Lemma 9. Suppose that a job j is not immediately rejected at rj when j is hypothetically
assigned to i. Then, the dual constraint (4) corresponding to j holds.

I Lemma 10. Assume that a job j is immediately rejected at rj and R2
i (rj) = {j, νi(r−j )}

when j is hypothetically assigned to i. Then, the dual constraint (4) corresponding to j holds.

I Lemma 11. Suppose that a job j is immediately rejected at rj and R2
i (rj) = {j} when j

is hypothetically assigned to i. Then, the dual constraint (4) corresponding to j holds.

I Lemma 12. It holds that
∑
j∈J

αj ≥ ε
1+ε

∑
j∈J

(C̃j − rj).

The proofs of above lemmas are omitted due to space constraints

4.1 Proof of theorem 1
Proof. In the definition of dual variables, each job j is accounted in βit variable until its
definitive completion time. Thus,

∑
i,t

βit ≤ ε
(1+ε)(1+ε2)

∑
j∈J wj(C̃j − rj). Combining it with

Lemma 12, we have that the dual objective is at least ε3

(1+ε)(1+ε2)
∑
j∈J wj(C̃j − rj). Further,

the cost of the primal is at most 22
∑
j∈J wj(C̃j − rj). Hence the theorem follows. J
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